SlideShare a Scribd company logo
1 of 57
Download to read offline
Case Study 1 
Adaptive Phase 2 Design in post‐surgical painp g p g p
Proof‐of‐Concept & Dose‐Exploration Stage A 
Maximizing Dose‐Finding Design Stage B
Jim Bolognese, Cytel
EAST UGM
22Oct201422Oct2014
bolognese@cytel.com
OUTLINEOUTLINE
• Adaptive design based on customized clinicalAdaptive design based on customized clinical 
utility function
• Simulation results document performance• Simulation results document performance 
characteristics
R k• Remarks 
Overall Summary
• Phase 2 trial test drug versus placebo and active control for post surgery• Phase 2 trial  test drug versus placebo and active control for post‐surgery 
analgesia
• Objectives: PoC + estimate dose regimen with optimal balance between 
maximum  efficacy and minimum intolerance
• Maximizing adaptive dose‐finding design (Ivanova, 2009) chosen to yield 
better quality information
– fewer patients assigned to dose regimens which are ineffective or 
intolerableintolerable
• True potential efficacy and tolerability dose‐response (DR) curves were 
constructed to span the range of potential DR curves
• Clinical utility function defined to combine all of the efficacy and 
t l bilit dtolerability dose‐response curves
• Simulation study evaluated performance characteristics
• Results indicate the maximizing design 
– Has high probability to estimate the correct or nearest to correct dose– Has high probability to estimate the correct or nearest to correct dose 
with maximum clinical utility (i.e., “target dose”) 
– Maximizes assignment of subjects to the target dose
– Minimizes assignment of subject to doses remote from target dose
Illustration of Maximizing Design
(Ivanova et al 2009)
Current cohort Next cohort
(Ivanova et al. 2009)
Doses 1 2 3 4 1 2 3 4
Active pair
At given point of the study subjects are randomized to the levels of the
Active pair
of levels
At given point of the study, subjects are randomized to the levels of the 
current dose pair and placebo only.  The next pair is obtained by shifting the 
current pair according to the estimated slope.
Maximizing Design Update Rule based on 
Standarized Difference
)/1/1(ˆ
)ˆˆ(
2
1 jj
nn
T


 


)/1/1( 1 jj nn 
Let dose j and j+1 constitute the current dose pair.
1 Use isotonic (unimodal) regression or quadratic regression fitted locally1. Use isotonic (unimodal) regression or quadratic regression fitted locally 
to estimate responses at all dose levels using all available data
2. Compute T
i. If T > 0.3 then next dose pair  (j+1,j+2), i.e. "move up“p (j ,j ), p
ii. If T < ‐0.3 then next dose pair ( j‐1, j), i.e.  "move down“
iii. Otherwise, next dose pair ( j, j+1),  i.e. “stay”
• If not possible to “move” dose pair, ( j=1 or j=K‐1), change pair’s 
randomization probabilities from 1:1 to 2:1 (the extreme dose of 
the pair get twice more subjects) 
M difi i f hi l (i l di diff ff f T) iblModification of this rule (including different cutoffs for T) are possible 
but logic is similar
Final Phase 2 Design Choice:
2‐Stage adaptive PoC+Dose‐Findingg p g
• Stage A ‐ PoC: Initial Cohort of 150 patients randomized 1:1:1:1:1:1 to 1 of 
4 Test Drug regimens; active control; placebo)
• Enrollment pause for ~1 month while Stage A data are analyzed
• Stage B – Dose‐Finding: Maximizing Design for clinical utility; 2 starting  
doses based on the analysis of Stage A
– Patients randomized in ~10 successive weekly cohorts of 
approximately 25 patients (depending on weekly enrollment rate)
– Each successive Stage B cohort of ~25 will be randomized 4:8:8:5 to g
placebo, 2 doses of Test Drug, and active control, respectively
– Expected to yield for final analysis ~
• 65 total placebo patients65 total placebo patients
• 75 total  active control patients
• > 80‐100 patients on target dose
Potential utility outcome
f hfor each Test Drug group
← Increasing Test Drug Tolerability
Increasing
Test Drug
AC<T~plc AC<T<plc AC~T<plc T<AC<plc
AC>T~plc 0
AC>T>plc
g
Efficacy
↓
AC>T>plc
AC~T>plc
T>AC>plc 100
Utility ranges from 0‐100 higher is betterUtility ranges from 0‐100, higher is better
Defining the efficacy cutoffs (>, ~, < on 
ff )efficacy) 
← Increasing Test Drug Tolerability
AC<T~plc AC<T<plc AC~T<plc T<AC<plcAC<T~plc AC<T<plc AC~T<plc T<AC<plc
T efficacy is less 
than AC
T‐AC < ‐1
0
Increasing
Test Drug
Efficacy
(NRS)
T efficacy is similar 
to AC
‐0.5 < T‐AC < 0.5
T ffi i b↓ T efficacy is better 
than AC
0.5 < T‐AC < 1.5
T efficacy is much 100
better than AC
T‐AC >1.5
Defining the tolerability cutoffs
( l b l )(>, ~, < on tolerability) 
← Increasing Test Drug Tolerability (Relative prevalence of AE)
T has better T tolerability is a T tolerability is a T tolerability isT has better 
tolerability than 
AC
T‐AC < ‐20
T tolerability is a 
bit better than AC
‐20 < T‐AC < 0
T tolerability is a 
bit worse than AC
0 > T‐AC > 20
T tolerability is
worse than AC
T‐AC > 20
T efficacy is less 0
Increasing
Test Drug
Effi
T efficacy is less 
than AC
T‐AC < ‐1
0
T efficacy is similar 
ACEfficacy
(NRS)
↓
to AC
‐0.5 < T‐AC < 0.5
T efficacy is better 
than AC
0.5 < T‐AC < 1.5
T efficacy is much
better than AC
100
T‐AC >1.5
Potential utility outcome
for each Test Drug group •Exact numbers not importantfor each Test Drug group •Exact numbers not important
•Determines “routing” of next patients
•Gradients are more important
← Increasing Test Drug Tolerability (Relative prevalence of AE)
T has better 
tolerability than 
AC
T tolerability is a 
bit better than AC
20 T AC 0
T tolerability is a 
bit worse than AC
0 T AC 20
T tolerability is
worse than AC
T AC 20
T‐AC < ‐20
‐20 < T‐AC < 0 0 > T‐AC > 20 T‐AC > 20
T efficacy is less 
than AC
20 0 0 0
Increasing
Test Drug
Efficacy
(NRS)
↓
T‐AC < ‐1
T efficacy is similar 
to AC
‐0.5 < T‐AC < 0.5
60 40 0 0
T efficacy is better 
than AC
0.5 < T‐AC < 1.5
80 50 40 0
T ffi i h 100 90 50 20T efficacy is much
better than AC
T‐AC >1.5
100 90 50 20
True Underlying Efficacy Dose‐Response Curves for simulation 
study (values are mean difference from active control in TWA0‐y (
48hr change from baseline in 0‐10 NRS pain intensity ratings)
Efficacy DR CurvesEfficacy DR Curves
AC D1 D2 D3 D4 pbo
DRh1 0 0 0.5 0.9 1.1 ‐1.5
DRh2 0 ‐1 ‐0.5 0.5 1.1 ‐1.5
DRh3 0 ‐0.5 0 0.4 0.6 ‐1.5
DRh4 0 ‐1.5 ‐1 0 0.6 ‐1.5
DRm1 0 ‐1 ‐0.5 ‐0.2 0 ‐1.5
DRm2 0 ‐1.5 ‐1.1 ‐0.4 0 ‐1.5DRm2 0 1.5 1.1 0.4 0 1.5
DRm3 0 ‐1.5 ‐1.5 ‐1 0 ‐1.5
DRnull 0 ‐1.5 ‐1.5 ‐1.5 ‐1.5 ‐1.5
True Underlying Efficacy Dose‐Response Curves for simulation 
study (values are mean difference from active control in TWA0‐y (
48hr change from baseline in 0‐10 NRS pain intensity ratings)
True Underlying Safety Dose‐Response Curves for simulation study 
(values are difference in AE rates between active control and Test Drug)(values are difference in AE rates between active control and Test Drug)
Safety DR Curves y
AC D1 D2 D3 D4 Pbo
DRh1 0 ‐0.05 0.1 0.17 0.21 ‐0.3
DRh2 0 ‐0.29 ‐0.1 0.1 0.21 ‐0.3
DRm1 0 ‐0.15 ‐0.01 0.07 0.1 ‐0.3
DR 2 0 0 3 0 2 0 03 0 1 0 3DRm2 0 ‐0.3 ‐0.2 0.03 0.1 ‐0.3
DRm3 0 ‐0.3 ‐0.3 ‐0.05 0.1 ‐0.3
DRl1 0 ‐0.25 ‐0.2 ‐0.1 ‐0.05 ‐0.3DRl1 0 0.25 0.2 0.1 0.05 0.3
DRl2 0 ‐0.3 ‐0.3 ‐0.2 ‐0.05 ‐0.3
True Underlying Safety Dose‐Response Curves for simulation study 
(values are difference in AE rates between active control and Test Drug)(values are difference in AE rates between active control and Test Drug)
True Underlying Utility DR Curves by combining all pairs of Efficacy and Safety 
DR Curves via 2‐dimensional linear interpolation of Utility Function values
U il DUtil.D
R Eff. Tol. Mor. D1 D2 D3 D4 Pbo
1 DRh1 DRh1 20 30 20 23.4 19.55 0
2 DRh2 DRh1 20 10 0 13 19.55 0
Util.DR Eff. Tol. Mor. D1 D2 D3 D4 Pbo
15 DRm3 DRh2 20 19 0 0 0 0
16 DRnull DRh2 20 19 0 0 0 0
3 DRh3 DRh1 20 20 0 10.4 10.8 0
4 DRh4 DRh1 20 0 0 0 10.8 0
5 DRm1 DRh1 20 10 0 0 0 0
6 DRm2 DRh1 20 0 0 0 0 0
17 DRh1 DRm1 20 45 33.8 38 41 0
18 DRh2 DRm1 20 18.3 14.7 23.8 41 0
19 DRh3 DRm1 20 31.7 22 20.2 24 0
20 DRh4 DRm1 20 5 7.33 6 24 06 DRm2 DRh1 20 0 0 0 0 0
7 DRm3 DRh1 20 0 0 0 0 0
8 null DRh1 20 0 0 0 0 0
9 DRh1 DRh2 20 59 45 36 19.55 0
21 DRm1 DRm1 20 18.3 14.7 5.2 0 0
22 DRm2 DRm1 20 5 5.87 4.4 0 0
23 DRm3 DRm1 20 5 0 2 0 0
ll10 DRh2 DRh2 20 32.3 26.7 20 19.55 0
11 DRh3 DRh2 20 45.7 40 16 10.8 0
12 DRh4 DRh2 20 19 13.3 0 10.8 0
13 DRm1 DRh2 20 32.3 26.7 0 0 0
24 DRnull DRm1 20 5 0 0 0 0
25 DRh1 DRm2 20 60 57.5 40.6 41 0
26 DRh2 DRm2 20 33.3 36.7 28.8 41 0
27 DRh3 DRm2 20 46.7 50 25.8 24 0
14 DRm2 DRh2 20 19 10.7 0 0 0 28 DRh4 DRm2 20 20 23.3 14 24 0
True Underlying Utility DR Curves by combining all pairs of Efficacy and Safety 
DR Curves via 2‐dimensional linear interpolation of Utility Function values
Util.DR Eff. Tol. Acntl D1 D2 D3 D4 Pbo
29 DRm1 DRm2 20 33.3 36.7 12.1 0 0
30 DRm2 DRm2 20 20 20.7 10.3 0 0
Util.DR Eff. Tol. Acntl D1 D2 D3 D4 Pbo
43 DRh3 DRl1 20 41.7 50 44 40.5 0
44 DRh4 DRl1 20 15 23.3 40 40.5 0
l
31 DRm3 DRm2 20 20 10 4.67 0 0
32 DRnull DRm2 20 20 10 0 0 0
33 DRh1 DRm3 20 60 70 45.8 41 0
45 DRm1 DRl1 20 28.3 36.7 34.7 30 0
46 DRm2 DRl1 20 15 20.7 29.3 30 0
47 DRm3 DRl1 20 15 10 13.3 30 0
48 DR ll DRl1 20 15 10 0 0 0
34 DRh2 DRm3 20 33.3 46.7 38.8 41 0
35 DRh3 DRm3 20 46.7 60 37 24 0
36 DRh4 DRm3 20 20 33.3 30 24 0
48 DRnull DRl1 20 15 10 0 0 0
49 DRh1 DRl2 20 60 70 63.5 50.75 0
50 DRh2 DRl2 20 33.3 46.7 57.5 50.75 0
51 DRh3 DRl2 20 46.7 60 56 40.5 0
37 DRm1 DRm3 20 33.3 46.7 26 0 0
38 DRm2 DRm3 20 20 30.7 22 0 0
39 DRm3 DRm3 20 20 20 10 0 0
52 DRh4 DRl2 20 20 33.3 50 40.5 0
53 DRm1 DRl2 20 33.3 46.7 44.7 30 0
54 DRm2 DRl2 20 20 30.7 39.3 30 0
l40 DRnull DRm3 20 20 20 0 0 0
41 DRh1 DRl1 20 55 57.5 49 50.75 0
42 DRh2 DRl1 20 28.3 36.7 45 50.75 0
55 DRm3 DRl2 20 20 20 23.3 30 0
56 DRnull DRl2 20 20 20 10 0 0
True underlying utility functions for the simulation study
(yellow highlighted value is maximum utility value for indicated DR curve
Representative set of utility DR curves to simulate
DR Curve pbo D1 D2 D3 D4
1 0 0 0 0 111 0 0 0 0 11
2 0 10 0 0 0
3 0 32 27 20 20
4 0 46 40 16 11
5 0 60 58 41 41
6 0 20 21 10 0
7 0 20 10 5 0
8 0 20 33 30 24
9 0 55 58 50 50
10 0 28 37 45 51
11 0 15 23 40 41
12 0 20 33 50 4112 0 20 33 50 41
13 0 20 31 39 30
14 0 20 20 23 30
True underlying utility functions for 
h l dthe simulation study
Simulation Specifications
• Stage A N=25 on pbo 4 doses Test Drug active control• Stage A N=25 on pbo, 4 doses Test Drug, active control
– Pause enrolment for Stage B starting dose selection
• Stage B 10 cohorts N=25, maximizing design adaptationStage B 10 cohorts N 25, maximizing design adaptation 
beginning with 4th Stage B cohort
• Simulated 1000 times for each of 14 selected utility functions
– Normally distributed means per utility function
– Conservatively assumed SD of a 0‐100 uniform distribution
NO t ti t 0 100 l i t b ti i– NO truncation to 0‐100 scale – again to be conservative in 
order to preserve the assumed SD
– Therefore, actual design performance may be even betterTherefore, actual design performance may be even better 
than reported herein.
• Custom SAS program
Performance Characteristics Computed
1000 i l ti h f 14 tilit DRacross 1000 simulations per each of 14 utility DR curves
• Average estimated target doseg g
• Proportion of simulations in which the correct target dose was 
estimated
• Proportion of simulations in which the estimated target dose 
was adjacent to the correct target dose
• Average number of subjects assigned to each doseAverage number of subjects assigned to each dose
Results Summary
• For all 14 utility DR curves• For all 14 utility DR curves
– ≥50% of simulations yielded correct estimates of target dose
– percents ranged from 58‐98%
– median was close to 90%
– ≥91% of simulations yielded estimated target dose at or adjacent to 
the true target
– Thus, the maximizing design estimates the target dose well.
•
• Most subjects were allocated at or adjacent to the true target dosej j g
– Equal allocation design would assign N=65/dose
– For all 14 utility DR curve scenarios:
• maximizing design assigned ≥68 subjects to target dose (range• maximizing design assigned  ≥68 subjects to target dose (range 
was 68‐105)
• range of N at dose farthest from target was 25‐62
d f d d• Hence, maximizing design is functioning as desired
Performance characteristics of maximizing design (N=400)
based on 1000 simulations of each utility DR curve
T E ti t d % ti ti % ti ti % ti ti t
DR#
True 
Target 
Dose
Estimated 
Target Dose 
Average
% estimating 
exactly at True 
Target Dose
% estimating 
adjacent to True 
Target Dose
% estimating at or 
adjacent to True 
Target Dose
1 4 3.9 93 1 95
2 1 1.3 87 4 91
3 1 1.3 77 21 98
4 1 1.1 86 14 100
5 1 1.4 58 42 100
6 2 1.6 64 36 100
7 1 1.0 96 3 99
8 2 2.3 74 25 98
9 2 1 9 72 24 969 2 1.9 72 24 96
10 4 3.9 91 9 100
11 4 3.6 59 41 100
12 3 3 0 98 2 10012 3 3.0 98 2 100
13 3 3.0 93 7 100
14 4 3.7 86 6 92
Average N’s assigned to each dose across 1000 simulations for 
each utility DR curve
(yellow highlighted cells indicate TRUE target dose)(yellow highlighted cells indicate TRUE  target dose)
Average Number of Subjects Assigned to Each Dose
DR# D1 D2 D3 D4
1 30 32 100 98
2 86 91 44 39
3 82 89 48 41
4 91 97 39 33
5 73 82 57 48
6 68 87 62 43
7 98 101 32 29
8 41 71 89 59
9 53 68 77 629 53 68 77 62
10 25 33 105 97
11 25 45 105 85
12 25 63 105 6712 25 63 105 67
13 28 64 102 66
14 31 37 99 93
Overall Summary
• Phase 2 trial of Test Drug versus placebo and active control• Phase 2 trial of Test Drug versus placebo and active control
• Objectives: PoC + estimate dose regimen with optimal balance between 
maximum  efficacy and minimum intolerance
• Maximizing adaptive dose‐finding design (Ivanova, 2009) chosen to yield g p g g ( ) y
better quality information
– fewer patients assigned to dose regimens which are ineffective or 
intolerable
• True potential efficacy and tolerability dose response (DR) curves were• True potential efficacy and tolerability dose‐response (DR) curves were 
constructed to span the range of potential DR curves for Test Drug
• Clinical utility function defined to combine all of the efficacy and 
tolerability dose‐response curves
• Simulation study evaluated performance characteristics
• Results indicate the maximizing design 
– Has high probability to estimate the correct or nearest to correct dose 
with maximum clinical utility (i e “target dose”)with maximum clinical utility (i.e.,  target dose ) 
– Maximizes assignment of subjects to the target dose
– Minimizes assignment of subject to doses remote from target dose
Case Study 2
Adaptive Dose‐Finding Designp g g
for 2‐drug Combination
Jim Bolognese, Cytel
EAST UGM
22Oct201422Oct2014
bolognese@cytel.com
Assumptions for Adaptive Design
K E d i t 0 3 i t Lik t S l Gl b l A t f R t• Key Endpoint: 0‐3 point Likert Scale Global Assessment of Response to 
Therapy (0=none; 1=some; 2=good; 3=excellent)
– Since sample size is “large”, can use continuous endpoint stat methods 
(i l di t ib ti )(i.e., assume normal distribution)
• Typical for global assessments of response to therapy in arthritis and 
pain using Likert scale responses similar to above
– Prior data: mean difference between active & placebo 2.2 vs 1.6 (SD~0.9)
• Suggests N=41/treatment group for 80% power (alpha=0.05, 1‐sided)
• Traditional Design would have 2 or 3 dose‐combinations plus placebo (N=123 
to 164)
• Investigate Adaptive Dose‐finding Phase 2 trial design with Total N=135
– 3 doses of 1st drug + 3 doses of 2nd drug (9 dose‐combinations) + placebo3 doses of 1 drug   3 doses of 2 drug (9 dose combinations)   placebo
– Ivanova(2012) Bayesian Isotonic 2‐dimensional design software (CytelSim
– in‐house tool) updated to accommodate 3x3 dose‐combinations
Overview of Adaptive Design
I iti l C h t N 46 (10 36 l b d 4/d bi ti )• Initial Cohort N=46 (10:36, placebo:drug, 4/dose‐combination)
• 3 additional cohorts, each N=30 (7:23 pbo:drug), with doses assigned 
adaptively
• Extension of Adaptive Dose‐Finding Design (Ivanova, 2012)
– Optimizes dose‐assignments for Target Responses 0.5 and 1.0 (arbitrarily 
chosen, can be modified) different from placebo
– Assumes non‐decreasing response with increasing dose of each drug 
within each dose‐level of the other drug
– Models the dose‐response relationship via isotonic regression
• Improves statistical efficiency compared to raw means
Isotonic Regression
• Nonparametric (robust) shape ExampleNonparametric (robust) shape 
constrained fit (least square error 
fit subject to order restriction)
• “Borrow” strength cross doses
0.4
observed proportions
isotonic fit
Example
• Typically isotonic regression  
improve probability of right 
selection of the target dose 
0.20.3
tyofToxicity
• Better describe dose‐response 
relation
• Modified for 2‐dimensions
0.00.1
Probabilit
1 2 3 4 5 6 7
0
Dose
28
Ivanova(2012) Bayesian Isotonic 
Adaptive Dose‐Finding Design (3x3)p g g ( )
• Compute Bayesian isotonic regression means from previous 
cohort(s)
– Assign patients to dose‐combinations in cohorts 2,3,4 
using Bayesian posterior distribution proportions of 
simulations that each dose is closest to target levels of 
response
• Half the patients to lower target, half to upper target
• E g if doses 1 2 3 are closest to target dose in 25 50E.g., if doses 1,2,3 are closest to target dose in 25, 50, 
and 25% of the Bayesian posterior distribution samples, 
then randomization ratios are 1:2:1 
• After 4 completed cohorts combine all data• After 4 completed cohorts, combine all data
– Fit isotonic regression means, test for difference from 
placebo, estimate target doses, etc. 
Assess usefulness of Adaptive Dose‐Finding Design: 
Compare Performance Characteristics
Si l i l f h f h 2 i l d• Simulation results for each of the 2 potential dose‐response 
scenarios are summarized by the following performance 
characteristics, compared between adaptive and traditional non‐
adaptive designs:
– Power to yield statistically significant (alpha=0.05, 1‐sided) 
difference from placebodifference from placebo
– Average assigned sample size per dose
– Probability of identifying the correct target doseProbability of identifying the correct target dose
• Multiple dose‐response scenarios chosen as examples of TRUE 
underlying DR curves to assess performance characteristics
Assumed True Underlying Dose‐Response Curves
for Simulations
• “R” designates one drug
• “d” designates 2nd drug "good" response (SD=0.9)
b 1 6 d1 d2 d3• R0d0 is placebo
• R2d3 designates 2nd highest dose 
of Drug R, 3rd highest dose of 
pbo=1.6 d1 d2 d3
R1 1.6 2.1 2.3
R2 1.8 2.3 2.4g , g
Drug d, etc.
• Pink Highlighted Cells indicate 
doses with Target Levels of 
R3 2.1 2.3 2.6
"zero" response (SD=0.9)g
Response (0.5 or 1.0 different 
from placebo)
zero  response (SD 0.9)
pbo=1.6 d1 d2 d3
R1 1.6 1.6 1.6
R2 1 6 1 6 1 6R2 1.6 1.6 1.6
R3 1.6 1.6 1.6
Additional Assumed True Underlying Dose‐Response Curves 
(Pink Highlighted Cells indicate doses with Target Levels of Response: 0.5 or 1.0 
different from placebo)different from placebo)
“decreasing DR” (SD=0.9)
pbo=1.6 D1 d2 D3
“constant2.1” (SD=0.9)
pbo=1.6 d1 d2 d3
R1 2.6 2.35 2.1
R2 2.35 2.1 1.85
R3 2 1 1 85 1 6
R1 2.1 2.1 2.1
R2 2.1 2.1 2.1
R3 2 1 2 1 2 1 R3 2.1 1.85 1.6
“U‐shaped DR” (SD=0.9)
R3 2.1 2.1 2.1
“constant2.6” (SD=0.9)
pbo=1.6 D1 d2 d3
R1 1.6 1.85 2.1
R2 1.85 2.6 1.85
pbo=1.6 d1 d2 d3
R1 2.6 2.6 2.6
R2 2.6 2.6 2.6
R3 2.1 1.85 1.6R3 2.6 2.6 2.6
Additional Assumed True Underlying Dose‐Response Curves 
(Pink Highlighted Cells indicate doses with Target Levels of Response: 0.5 or 1.0 
different from placebo)
“linear low DR” (SD=0.9)
pbo=1.6 D1 d2 d3
“linear DR” (SD=0.9)
pbo=1.6 d1 d2 d3
different from placebo)
R1 1.6 1.7 1.8
R2 1.7 1.8 2.1
R3 1 8 2 1 2 6
R1 1.6 1.85 2.1
R2 1.85 2.1 2.35
R3 2 1 2 35 2 6 R3 1.8 2.1 2.6
“asymmetric DR” (SD=0.9)
R3 2.1 2.35 2.6
“linear plateau DR” (SD=0.9)
pbo=1.6 d1 d2 D3
R1 1.85 2.0 2.5
R2 1.9 2.1 2.6
pbo=1.6 d1 d2 d3
R1 1.8 2.1 2.6
R2 2.1 2.6 2.6
R3 1.9 2.1 2.6R3 2.6 2.6 2.6
Additional Assumed True Underlying Dose‐Response Curves 
(Pink Highlighted Cells indicate doses with Target Levels of Response: 0.5 or 1.0 
different from placebo)
Only 1active2.6 (SD=0.9)
pbo=1.6 d1 d2 d3
Step Function (SD=0.9)
pbo=1.6 d1 d2 d3
different from placebo)
R1 1.6 1.6 1.6
R2 2.2 2.2 2.2
R3 2 6 2 6 2 6
R1 1.6 1.6 1.6
R2 1.6 1.6 2.6
R3 1 6 2 6 2 6 R3 2.6 2.6 2.6
DR4 (SD=0.9)
R3 1.6 2.6 2.6
Only1 active2.8 (SD=0.9)
pbo=1.6 d1 d2 d3
R1
R2
pbo=1.6 d1 d2 d3
R1 1.6 1.6 1.6
R2 2.2 2.2 2.2
R3R3 2.8 2.8 2.8
Assumed True Underlying Dose‐Response Curves
for Simulations
• “R” designates one drug;    “d” designates 2nd drug;   R0d0 is placebo
• R2d3 designates middle dose (2) of Drug R, highest dose (3) of Drug d
• Pink Highlighted Cells indicate doses with Target Levels of Response (0 5 orPink Highlighted Cells indicate doses with Target Levels of Response (0.5 or 
1.0 different from placebo)
3x3 format3x3 format
pbo=1.6 d1 d2 d3
R1 1.6 2.1 2.3
R2 1 8 2 3 2 4R2 1.8 2.3 2.4
R3 2.1 2.3 2.6
Linear Format R0d0 R1d1 R1d2 R1d3 R2d1 R2d2 R2d3 R3d1 R3d2 R3d3
Increasing DR 1.6 1.6 2.1 2.3 1.8 2.3 2.4 2.1 2.3 2.6g
Assumed True Underlying Dose‐Response Curves
for Simulations
• “R” designates one drug;    “d” designates 2nd drug;   R0d0 is placebo
• R2d3 designates middle dose (2) of Drug R, highest dose (3) of Drug d
• Pink Highlighted Cells indicate doses with Target Levels of Response (0 5 orPink Highlighted Cells indicate doses with Target Levels of Response (0.5 or 
1.0 different from placebo)
R0d0 R1d1 R1d2 R1d3 R2d1 R2d2 R2d3 R3d1 R3d2 R3d3
increasing 1.6 1.6 2.1 2.3 1.8 2.3 2.4 2.1 2.3 2.6increasing 1.6 1.6 2.1 2.3 1.8 2.3 2.4 2.1 2.3 2.6
all2.1 1.6 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1
all2.6 1.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6
null 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6null 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6
decreasing DR 1.6 2.6 2.35 2.1 2.35 2.1 1.85 2.1 1.85 1.6
u-shaped DR 1.6 1.6 1.85 2.1 1.85 2.6 1.85 2.1 1.85 1.6
linear DR 1.6 1.6 1.85 2.1 1.85 2.1 2.35 2.1 2.35 2.6
linear low DR 1.6 1.6 1.7 1.8 1.7 1.8 2.1 1.8 2.1 2.6
linear plateau 1.6 1.8 2.1 2.6 2.1 2.6 2.6 2.6 2.6 2.6
DR
asymmetric DR 1.6 1.85 2 2.5 1.9 2.1 2.6 1.9 2.1 2.6
Step Function 1.6 1.6 1.6 1.6 1.6 1.6 2.6 1.6 2.6 2.6
Number of patients assigned to each dose‐combination
Average N per Dose‐Combination Group
TRUE DR Curve R0d0 R1d1 R1d2 R1d3 R2d1 R2d2 R2d3 R3d1 R3d2 R3d3
increasing 31 10 13 13 11 11 11 12 12 13
all2.1 31 13 10 11 9 9 10 10 10 22
all2.6 31 24 11 10 11 9 9 10 9 12
null 31 8 8 10 8 8 11 9 10 33
decreasing DR 31 16 8 9 8 8 9 8 8 29decreasing DR 31 16 8 9 8 8 9 8 8 29
u-shaped DR 31 9 11 11 10 10 9 9 8 27
linear DR 31 10 11 13 10 11 12 12 12 14
linear low DR 31 9 9 12 9 11 14 11 15 16
Lin.plateauDR 31 13 14 13 13 11 9 11 9 11
asymmetricDR 31 11 11 14 10 11 11 11 13 14
With this sample size, algorithm allocates fewer patients away from doses with target 
levels of response
asymmetricDR 31 11 11 14 10 11 11 11 13 14
Step Function 31 8 9 13 9 13 15 13 14 11
levels of response
In some cases, the isotonic smoothing results in increased allocation at some of the 
higher dose combinations
In general, dose‐assignments are improved from equal allocation
Number of patients assigned to each dose‐combination
Average N per Dose‐Combination Group
TRUE DR Curve R0d0 R1d1 R1d2 R1d3 R2d1 R2d2 R2d3 R3d1 R3d2 R3d3
increasing 31 10 13 13 11 11 11 12 12 13
all2.1 31 13 10 11 9 9 10 10 10 22
all2.6 31 24 11 10 11 9 9 10 9 12
null 31 8 8 10 8 8 11 9 10 33
Only 1active2 6 31 9 9 13 13 12 13 13 10 12Only 1active2.6 31 9 9 13 13 12 13 13 10 12
Only 1active2.8 31 9 10 13 14 12 15 13 9 10
linear DR 31 10 11 13 10 11 12 12 12 14
linear low DR 31 9 9 12 9 11 14 11 15 16
Lin.plateauDR 31 13 14 13 13 11 9 11 9 11
asymmetricDR 31 11 11 14 10 11 11 11 13 14
With this sample size, algorithm allocates fewer patients away from doses with target 
levels of response
asymmetricDR 31 11 11 14 10 11 11 11 13 14
Step Function 31 8 9 13 9 13 15 13 14 11
levels of response
In some cases, the isotonic smoothing results in increased allocation at some of the 
higher dose combinations
In general, dose‐assignments are improved from equal allocation
Performance Characteristics
Power
(%)
% at
lower TGT*
%at/near
lower TGT
% at
upper TGT
% at/near
upper TGT(%) lower TGT* lower TGT upper TGT upper TGT
increasing 79 50 1 38 84
all2.1 66 19 47 92 98
all2 6 98 94 99 23 44all2.6 98 94 99 23 44
null 5.0 93 98 99 100
decreasing DR 21 24 100 04 13
h d DR 8 20 60 4 100u-shaped DR 8 20 60 4 100
linear DR 78 65 100 41 93
linear low DR 74 48 95 61 99
linear plateau DR 77 74 100 95 100
asymmetric DR 79 40 100 61 99
Step Function 66 86 100 98 100
• Relatively high power for the monotonic dose‐response configurations
p 66 86 00 98 00
* TGT = lowest dose combination with target level of response
• Moderate‐to‐high probability of estimating correct dose‐combination
• Very low probability of identifying dose‐combination NOT at or near Target
Performance Characteristics
Power
(%)
% at
lower TGT*
%at/near
lower TGT
% at
upper TGT
% at/near
upper TGT(%) lower TGT* lower TGT upper TGT upper TGT
increasing 79 50 1 38 84
all2.1 66 19 47 92 98
all2 6 98 94 99 23 44all2.6 98 94 99 23 44
null 5.0 93 98 99 100
Only 1active2.6 73 74 100 72 100
Only 1active2.8 72 76 100 57 100
linear DR 78 65 100 41 93
linear low DR 74 48 95 61 99
linear plateau DR 77 74 100 95 100
asymmetric DR 79 40 100 61 99
Step Function 66 86 100 98 100
• Relatively high power for the monotonic dose‐response configurations
Step Function 66 86 100 98 100
* TGT = lowest dose combination with target level of response
• Moderate‐to‐high probability of estimating correct dose‐combination
• Very low probability of identifying dose‐combination NOT at or near Target
Remarks & Interpretations
Ad ti D i• Adaptive Design:
– Permits assessment of more doses than traditional design
– Retains adequate power
– Tends to assign more patients towards target doses
– Has high probability of estimating “at” or “adjacent” to doses with 
TRUE target levels of response
– AD permits early stopping if little or no drug effect (TBD)
Next Steps
• Identify design logistics (Enrolment rate, timing of end point observation, y g g ( , g p ,
cohort sizes, number of adaptations, early stopping rules, other??)
– To be addressed in draft protocol synopsis needed by end of summer
• Additional simulations to assess design improvements (after review of aboveAdditional simulations to assess design improvements (after review of above 
simulation summary):
– size of initial cohort 
total sample size– total sample size
– early stopping for futility
C S d 3Case Study 3
Adaptive Phase 2 Dose‐Finding Design
for Proof‐of‐Concept & Dose‐Exploration
via Linear Clinical Utility Function
Jim Bolognese, Cytel Inc.
EAST UGM
22Oct201422Oct2014
bolognese@cytel.com
43
OUTLINEOUTLINE
• Adaptive design based on linear function ofAdaptive design based on linear function of 
efficacy + tolerability for clinical utility
• Simulation results of two design choices• Simulation results of two design choices 
document performance characteristics of each 
designdesign 
44
Overall Summary
• Phase 2 trial of test drug versus placebog p
• Objectives: PoC + estimate dose regimen with optimal balance between 
maximum  efficacy and minimum intolerance
• Maximizing adaptive dose‐finding design yields better quality informationMaximizing adaptive dose finding design yields better quality information
– fewer patients assigned to dose regimens which are ineffective or 
intolerable
– IVANOVA (2009)IVANOVA (2009)
– Normal Dynamic Linear Model (NDLM, COMPASS User Manual, Cytel Inc.) 
• True potential efficacy and tolerability dose‐response (DR) curves were 
constructed to span the range of potential DR curvesconstructed to span the range of potential DR curves
• Linear clinical utility function combines efficacy and tolerability dose‐
response curves
• Simulation study evaluated performance characteristics• Simulation study evaluated performance characteristics
• Results indicate the maximizing design 
– Has high probability to estimate the correct or nearest to correct dose 
ith i li i l tilit (i “t t d ”)with maximum clinical utility (i.e., “target dose”) 
– Maximizes assignment of subjects at or adjacent to the target dose
– Minimizes assignment of subject to doses remote from target dose
45
Clinical Utility Function Definition
CU ( ffi l b ) (BP ff t l b )• CU = (efficacy vs placebo) – (BP effect vs placebo)
– Efficacy target difference from placebo = 4
– BP target difference from placebo < 10mmHg
– CU = w1*(EFF drug – EFF placebo)*(10/4)
– w2*(∆BP drug – ∆BP placebo)
• Where w1=1.5 and w2=1, i.e., Efficacy effect is weighted 50% moreWhere w1 1.5 and w2 1, i.e., Efficacy effect is weighted 50% more 
than BP effect
– Examples
• 1 5*(4 – 4)*(10/4) – (10 –10) = 0• 1.5 (4 – 4) (10/4) – (10 –10) = 0
• 1.5*(4 – 4)*(10/4) – (10 –0) = ‐10
• 1.5*(4 – 0)*(10/4) – (10 –10) = +15
• 1.5*(4 – 0)*(10/4) – (10 –0) = +5
– Refer to accompanying spreadsheet for more detail and more 
examples
46
Efficacy and Tolerability TRUE DR Curves
Efficacy response
scenario placebo dose1 dose2 dose3 dose4 dose5
1:null 0 0 0 0 0 0
2:modest 0 0 1 2 3 4
3 d t 0 1 2 4 5 53:moderate 0 1 2 4 5 5
4:robust 0 1 4 5 5 5
BP response
1:null 0 0 0 0 0 01:null 0 0 0 0 0 0
2:modest 0 0 5 10 15 20
3:moderate 0 5 10 20 30 40
47
3:moderate 0 5 10 20 30 40
4:robust 0 5 20 30 40 50
TRUE Clinical Utility DR Curves (SD=38)
Scenario Combination Clinical Utility Values*
Efficacy BP placebo dose1 dose2 dose3 dose4 dose5
1:null 1:null 0 0 0 0 0 0
1:null 2:modest 0 0 ‐5 ‐10 ‐15 ‐20
1:null 3:moderate 0 ‐5 ‐10 ‐20 ‐30 ‐401:null 3:moderate 0 ‐5 ‐10 ‐20 ‐30 ‐40
1:null 4:robust 0 ‐5 ‐20 ‐30 ‐40 ‐50
2:modest 1:null 0 0 3.75 7.5 11.25 15
2:modest 2:modest 0 0 ‐1.25 ‐2.5 ‐3.75 ‐5
2:modest 3:moderate 0 ‐5 ‐6.25 ‐12.5 ‐18.75 ‐25
2:modest 4:robust 0 ‐5 ‐16.25 ‐22.5 ‐28.75 ‐35
3:moderate 1:null 0 3.75 7.5 15 18.75 18.75
3:moderate 2:modest 0 3.75 2.5 5 3.75 ‐1.25
3:moderate 3:moderate 0 ‐1 25 ‐2 5 ‐5 ‐11 25 ‐21 253:moderate 3:moderate 0 ‐1.25 ‐2.5 ‐5 ‐11.25 ‐21.25
3:moderate 4:robust 0 ‐1.25 ‐12.5 ‐15 ‐21.25 ‐31.25
4:robust 1:null 0 3.75 15 18.75 18.75 18.75
48
4:robust 2:modest 0 3.75 10 8.75 3.75 ‐1.25
4:robust 3:moderate 0 ‐1.25 5 ‐1.25 ‐11.25 ‐21.25
4:robust 4:robust 0 ‐1.25 ‐5 ‐11.25 ‐21.25 ‐31.25
Assumptions for Adaptive Design for Clinical Utility
5 d f d (4 8 12 16 20 ) l l b• 5 doses of  test drug (4,8,12,16,20mg) plus placebo
– Total N=192
• 1st cohort N=24 (4:4:4:4:4:4)• 1 cohort  N=24 (4:4:4:4:4:4)
• 10 cohorts N=14, 7 on each of 2 doses adaptively assigned 
per maximizing design
– Adaptive Design permits early stopping for futility if 
Conditional Power < 10% after 1st 60 patients; not considered 
in initial simulationsin initial simulations
• Response Lag 2 weeks to permit 1 week observation and 1 week 
for collection and analysis of data to feed adaptation
– Assumed 13/week enrolment over ~15 weeks to achieve 
N=192
49
Results of Simulated Maximizing Adaptive Design to 
Id tif D ith O ti l Cli i l UtilitIdentify Dose with Optimal Clinical Utility
• In general, the adaptive design migrates the assignment of 
i dj h d i h i li i lpatients at or adjacent to the dose with maximum clinical 
utility
• The design with a 2‐week lag in response works reasonablyThe design with a 2 week lag in response works reasonably 
well at total N=192 for many circumstances, but there are 
some clinical utility function scenarios for which it does not 
(see e g scenario #12)(see, e.g., scenario #12)
• Increasing the sample size to nearly double overcomes the 
deficiency in the 2‐week lag.y g
50
Average sample size assigned by the adaptive design to each 
dose group (NOTE: non‐adaptive design would assign 
approximately 32 per dose group)approximately 32 per dose group)
Scenario Combination average sample size assigned by adaptive design 
Efficacy BP pbo D1 D2 D3 D4 D5
1:null 1:null 30 32 32 31 30 361:null 1:null 30 32 32 31 30 36
1:null 2:modest 30 57 38 30 18 17
1:null 3:moderate 30 78 34 21 14 13
1:null 4:robust 30 111 21 11 9 8
2:modest 1:null 30 13 21 37 39 50
2:modest 2:modest 30 23 31 49 31 25
2:modest 3:moderate 30 37 36 40 25 21
2:modest 4:robust 30 82 34 23 12 102:modest 4:robust 30 82 34 23 12 10
3:moderate 1:null 30 9 11 17 33 89
3:moderate 2:modest 30 15 19 30 37 59
3:moderate 3:moderate 30 22 23 28 34 53
3:moderate 4:robust 30 68 31 23 18 18
4:robust 1:null 30 9 13 25 49 64
4:robust 2:modest 30 11 23 40 47 39
4:robust 3:moderate 30 15 28 38 43 36
51
4:robust 3:moderate 30 15 28 38 43 36
4:robust 4:robust 30 45 45 33 22 14
yellow highlighted cells indicate dose with TRUE underlying maximum clinical utility
performance characteristics: Adaptive vs. NON‐adaptive design
NDLM Adaptive Design NON‐Adaptive Design
Scenario Combination TRUE 
target 
dose
Average 
Estimated 
Target Dose
Percent of Simulations 
Estimating: Average 
Estimated 
Target Dose
Percent of Simulations 
Estimating:
Efficacy BP at Target at/near Tgt at Target at/near Tgt
ll ll1:null 1:null 12 11.6 18 50 11.9 16 28
1:null 2:modest 4 5.5 75 90 5.9 69 75
1:null 3:moderate 4 4.1 98 100 4.3 94 98
1:null 4:robust 4 4.0 100 100 4.0 100 100
2:modest 1:null 12 16.1 28 60 16.4 24 40
2:modest 2:modest 12 11.7 57 88 12.0 49 61
2:modest 3:moderate 12 8.3 29 57 8.8 29 38
2:modest 4:robust 4 4.1 97 100 4.2 96 100
3:moderate 1:null 20 19.5 90 99 19.4 86 100
3:moderate 2:modest 20 17.5 58 83 17.6 60 77
3:moderate 3:moderate 20 16.6 56 76 16.4 54 70
3:moderate 4:robust 4 4.7 90 95 5.0 85 90
4:robust 1:null 16 18.2 37 100 18.4 30 48
4:robust 2:modest 16 15.4 46 96 15.6 42 58
4:robust 3:moderate 16 14.7 40 87 14.8 38 53
4:robust 4:robust 4 7.7 38 77 7.7 38 46
52
performance characteristics: Adaptive vs. NON‐adaptive design
----------Maximizing Design------ -------------NDLM Design-----------
Est Est
utility true max pct pct pct max pct pct pct
DR max utility correct est correct utility correct est correct
curve utility dose estimates adjacent adjacent dose estimates adjacent adjacent
1 3(12) 2.7 23 42 65 2.9 18 32 50
2 1( 4) 2.1 36 31 67 1.4 75 14 90
3 1( 4) 1.8 52 28 80 1.0 98 2 100
4 1( 4) 1.3 83 10 92 1.0 100 0 100
5 5(20) 3.2 18 26 44 4.0 28 32 60
6 3(12) 2.7 44 37 81 2.9 57 30 88
7 3(12) 2.4 39 34 73 2.1 29 28 57
8 1( 4) 1.7 55 23 78 1.0 97 3 100
9 5(20) 4.3 68 13 81 4.9 90 9 99
10 5(20) 3.4 31 18 49 4.4 58 24 83
11 5(20) 3.1 24 19 43 4.1 56 20 76
12 1( 4) 2.0 46 27 73 1.2 90 5 95
13 5(20) 3.9 31 44 75 4.5 37 63 100
14 4(16) 3.2 40 35 75 3.8 46 50 96
15 4(16) 3.0 36 31 67 3.7 40 47 87
16 2( 8) 2.2 38 51 88 1.9 38 38 77
53
Average Sample Sizes Assigned: Adaptive vs. NON‐adaptive design
DR ---Maximizing Design---- correct ------NDLM Design---------DR Maximizing Design correct NDLM Design
curve D1 D2 D3 D4 D5 Dmax* dose Dmax* D1 D2 D3 D4 D5
1 11 17 25 63 47 25 3 31 32 32 31 30 36
2 19 27 29 53 36 19 1 57 57 38 30 18 17
3 27 34 25 46 31 27 1 78 78 34 21 14 133 27 34 25 46 31 27 1 78 78 34 21 14 13
4 50 56 17 24 16 50 1 111 111 21 11 9 8
5 6 12 26 68 50 50 5 50 13 21 37 39 50
6 10 20 33 60 40 33 3 49 23 31 49 31 25
7 12 22 31 58 40 31 3 40 37 36 40 25 21
8 32 41 26 39 25 32 1 82 82 34 23 12 10
9 5 7 15 73 63 63 5 89 9 11 17 33 89
10 6 10 21 70 56 56 5 59 15 19 30 37 5910 6 10 21 70 56 56 5 59 15 19 30 37 59
11 9 13 21 67 52 52 5 53 22 23 28 34 53
12 21 27 23 53 38 21 1 68 68 31 23 18 18
13 4 7 26 73 53 53 5 64 9 13 25 49 64
14 6 12 32 68 45 68 4 47 11 23 40 47 39
15 7 13 32 67 44 67 4 43 15 28 38 43 36
16 16 25 33 55 34 25 2 45 45 45 33 22 14
BOLD underlined values indicate doses with TRUE MAX Clin.Utility
54
y
*Dmax indicates N assigned to dose with maximum clinical utility
Overall Summary
• Phase 2 trial of test drug versus placebog p
• Objectives: PoC + estimate dose regimen with optimal balance between 
maximum  efficacy and minimum intolerance
• Maximizing adaptive dose‐finding design yields better quality informationMaximizing adaptive dose finding design yields better quality information
– fewer patients assigned to dose regimens which are ineffective or 
intolerable
– IVANOVA (2009)IVANOVA (2009)
– Normal Dynamic Linear Model (NDLM, COMPASS User Manual, Cytel Inc.) 
• True potential efficacy and tolerability dose‐response (DR) curves were 
constructed to span the range of potential DR curvesconstructed to span the range of potential DR curves
• Linear clinical utility function combines efficacy and tolerability dose‐
response curves
• Simulation study evaluated performance characteristics• Simulation study evaluated performance characteristics
• Results indicate the maximizing design 
– Has high probability to estimate the correct or nearest to correct dose 
ith i li i l tilit (i “t t d ”)with maximum clinical utility (i.e., “target dose”) 
– Maximizes assignment of subjects at or adjacent to the target dose
– Minimizes assignment of subject to doses remote from target dose
55
Remarks & Potential Next Steps for Consideration
• Maximizing Design via NDLM seems viable
• Additional simulations could be conducted to assess if further 
improvements can be made to:
M dif l t t t 4/ k & l t 3 k– Modify enrolment rate to 4/week & lag to 3 weeks
– Sample Size (size of initial cohort,  total N)
– Utility Function Refinement ??Utility Function Refinement ??
56
References
• Ivanova A, Liu K, Snyder E, Snavely D.  An adaptive design for 
identifying the dose with the best efficacy/tolerability profile 
with application to a crossover dose finding study Statistwith application to a crossover dose‐finding study.  Statist. 
Med. 2009; 28:2941‐2951
• COMPASS V1.1 Users Manual, Cytel Inc., Cambridge, MA 2012
• Ivanova A, Xiao C, Tymofyeyev Y.  Two‐stage designs for Phase 
2 dose‐finding trials.  Statist. Med. 2012; 31:2872–2881

More Related Content

Similar to Adaptive Phase 2 Design in Post Surgical Pain

Rotator R20000WF brochure
Rotator R20000WF brochureRotator R20000WF brochure
Rotator R20000WF brochureNhà Bè Agri
 
6-MK-Nylon Cable Ties.PDF
6-MK-Nylon Cable Ties.PDF6-MK-Nylon Cable Ties.PDF
6-MK-Nylon Cable Ties.PDFMukund Kamdar
 
Gravity water supply design illustration using SW software
Gravity water supply design illustration using SW softwareGravity water supply design illustration using SW software
Gravity water supply design illustration using SW softwarePratap Bikram Shahi
 
Joshua Matz Portfolio 2014
Joshua Matz Portfolio 2014Joshua Matz Portfolio 2014
Joshua Matz Portfolio 2014Joshua Matz
 
Consolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdfConsolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdfA K
 
Waterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - UpdatedWaterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - UpdatedJason Rota
 
Unconsolidated Undrained (UU) Triaxial Test
Unconsolidated Undrained (UU) Triaxial TestUnconsolidated Undrained (UU) Triaxial Test
Unconsolidated Undrained (UU) Triaxial TestA K
 
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...KR Walters Consulting Services
 
Original Opto PC815 LTV815 V815 815 DIP-4 New
Original Opto PC815 LTV815 V815 815 DIP-4 NewOriginal Opto PC815 LTV815 V815 815 DIP-4 New
Original Opto PC815 LTV815 V815 815 DIP-4 Newauthelectroniccom
 
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 New
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 NewOriginal Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 New
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 NewAUTHELECTRONIC
 
Use of control charts in laboratory as per ISO 17025:2017
Use of control charts in laboratory as per ISO 17025:2017Use of control charts in laboratory as per ISO 17025:2017
Use of control charts in laboratory as per ISO 17025:2017Rahul Gupta
 
Quality report Macronix
Quality report MacronixQuality report Macronix
Quality report MacronixVivektrips
 
Ltw 32'', 37'', 42'' lcd tv series
Ltw 32'', 37'', 42'' lcd tv seriesLtw 32'', 37'', 42'' lcd tv series
Ltw 32'', 37'', 42'' lcd tv seriesluiz carlos
 
Kyoritsu Electrical Test Tools in ROnexbd
Kyoritsu Electrical Test Tools in ROnexbdKyoritsu Electrical Test Tools in ROnexbd
Kyoritsu Electrical Test Tools in ROnexbdROnex International
 

Similar to Adaptive Phase 2 Design in Post Surgical Pain (20)

Rotator R20000WF brochure
Rotator R20000WF brochureRotator R20000WF brochure
Rotator R20000WF brochure
 
Control charts
Control chartsControl charts
Control charts
 
6-MK-Nylon Cable Ties.PDF
6-MK-Nylon Cable Ties.PDF6-MK-Nylon Cable Ties.PDF
6-MK-Nylon Cable Ties.PDF
 
Gravity water supply design illustration using SW software
Gravity water supply design illustration using SW softwareGravity water supply design illustration using SW software
Gravity water supply design illustration using SW software
 
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
Chromatography: Meeting the Challenges of EU regulations with up-to-date Conf...
 
Joshua Matz Portfolio 2014
Joshua Matz Portfolio 2014Joshua Matz Portfolio 2014
Joshua Matz Portfolio 2014
 
Consolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdfConsolidated Drained (CD) Triaxial Test.pdf
Consolidated Drained (CD) Triaxial Test.pdf
 
Aligning on SH Needs - Zaleski v0103
Aligning on SH Needs - Zaleski v0103Aligning on SH Needs - Zaleski v0103
Aligning on SH Needs - Zaleski v0103
 
Waterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - UpdatedWaterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - Updated
 
Unconsolidated Undrained (UU) Triaxial Test
Unconsolidated Undrained (UU) Triaxial TestUnconsolidated Undrained (UU) Triaxial Test
Unconsolidated Undrained (UU) Triaxial Test
 
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...
Forest Structure & Spatial Restrictions: Interactions & How They Affect Harve...
 
Original Opto PC815 LTV815 V815 815 DIP-4 New
Original Opto PC815 LTV815 V815 815 DIP-4 NewOriginal Opto PC815 LTV815 V815 815 DIP-4 New
Original Opto PC815 LTV815 V815 815 DIP-4 New
 
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 New
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 NewOriginal Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 New
Original Mosfet Driver 3110A ADP3110AKRZ-RL 3110 SOP-8 New
 
Use of control charts in laboratory as per ISO 17025:2017
Use of control charts in laboratory as per ISO 17025:2017Use of control charts in laboratory as per ISO 17025:2017
Use of control charts in laboratory as per ISO 17025:2017
 
Quality report Macronix
Quality report MacronixQuality report Macronix
Quality report Macronix
 
MITSUBISHI ELECTRIC SPLIT-TYPE
MITSUBISHI ELECTRIC SPLIT-TYPEMITSUBISHI ELECTRIC SPLIT-TYPE
MITSUBISHI ELECTRIC SPLIT-TYPE
 
Ltw 32'', 37'', 42'' lcd tv series
Ltw 32'', 37'', 42'' lcd tv seriesLtw 32'', 37'', 42'' lcd tv series
Ltw 32'', 37'', 42'' lcd tv series
 
Homework 3 Write Up vJMC
Homework 3 Write Up vJMCHomework 3 Write Up vJMC
Homework 3 Write Up vJMC
 
Bjs green belt ppt
Bjs green belt pptBjs green belt ppt
Bjs green belt ppt
 
Kyoritsu Electrical Test Tools in ROnexbd
Kyoritsu Electrical Test Tools in ROnexbdKyoritsu Electrical Test Tools in ROnexbd
Kyoritsu Electrical Test Tools in ROnexbd
 

More from Cytel USA

From the clinic to the cfo adaptive trials and financial decision making
From the clinic to the cfo   adaptive trials and financial decision makingFrom the clinic to the cfo   adaptive trials and financial decision making
From the clinic to the cfo adaptive trials and financial decision makingCytel USA
 
Eugm 2012 unknown - incivex drug development process overview road to findi...
Eugm 2012   unknown - incivex drug development process overview road to findi...Eugm 2012   unknown - incivex drug development process overview road to findi...
Eugm 2012 unknown - incivex drug development process overview road to findi...Cytel USA
 
Eugm 2012 pritchett - application of adaptive sample size re-estimation in ...
Eugm 2012   pritchett - application of adaptive sample size re-estimation in ...Eugm 2012   pritchett - application of adaptive sample size re-estimation in ...
Eugm 2012 pritchett - application of adaptive sample size re-estimation in ...Cytel USA
 
Eugm 2012 oneill - perspective on the current environment for adaptive clin...
Eugm 2012   oneill - perspective on the current environment for adaptive clin...Eugm 2012   oneill - perspective on the current environment for adaptive clin...
Eugm 2012 oneill - perspective on the current environment for adaptive clin...Cytel USA
 
Eugm 2012 mehta - future plans for east - 2012 eugm
Eugm 2012   mehta - future plans for east - 2012 eugmEugm 2012   mehta - future plans for east - 2012 eugm
Eugm 2012 mehta - future plans for east - 2012 eugmCytel USA
 
Eugm 2012 jemiai - introduction to east architect
Eugm 2012   jemiai - introduction to east architectEugm 2012   jemiai - introduction to east architect
Eugm 2012 jemiai - introduction to east architectCytel USA
 
Eugm 2012 gaydos - design and analysis approaches to evaluate cardiovascula...
Eugm 2012   gaydos - design and analysis approaches to evaluate cardiovascula...Eugm 2012   gaydos - design and analysis approaches to evaluate cardiovascula...
Eugm 2012 gaydos - design and analysis approaches to evaluate cardiovascula...Cytel USA
 
Eugm 2012 demets - clinical trials and the impact of regulations
Eugm 2012   demets - clinical trials and the impact of regulationsEugm 2012   demets - clinical trials and the impact of regulations
Eugm 2012 demets - clinical trials and the impact of regulationsCytel USA
 
Eugm 2011 pocock - dm cs-and-adaptive-trials
Eugm 2011   pocock - dm cs-and-adaptive-trialsEugm 2011   pocock - dm cs-and-adaptive-trials
Eugm 2011 pocock - dm cs-and-adaptive-trialsCytel USA
 
Eugm 2011 mehta - execution of adaptive trials operational considerations
Eugm 2011   mehta - execution of adaptive trials operational considerationsEugm 2011   mehta - execution of adaptive trials operational considerations
Eugm 2011 mehta - execution of adaptive trials operational considerationsCytel USA
 
Eugm 2011 mehta - adaptive designs for phase 3 oncology trials
Eugm 2011   mehta - adaptive designs for phase 3 oncology trialsEugm 2011   mehta - adaptive designs for phase 3 oncology trials
Eugm 2011 mehta - adaptive designs for phase 3 oncology trialsCytel USA
 
EUGM 2011 | JEMIAI
EUGM 2011 | JEMIAIEUGM 2011 | JEMIAI
EUGM 2011 | JEMIAICytel USA
 
EUGM 2011 | JEHL | group sequential designs with 2 time to event endpoints
EUGM 2011 | JEHL | group sequential designs with 2 time to event endpointsEUGM 2011 | JEHL | group sequential designs with 2 time to event endpoints
EUGM 2011 | JEHL | group sequential designs with 2 time to event endpointsCytel USA
 
EUGM 2011| Fretault | Use of bayesian approach in phase ii
EUGM 2011| Fretault | Use of bayesian approach in phase iiEUGM 2011| Fretault | Use of bayesian approach in phase ii
EUGM 2011| Fretault | Use of bayesian approach in phase iiCytel USA
 
EUGM 2011 | DAY | Experiences with interim analyses and dm cs
EUGM 2011 | DAY | Experiences with interim analyses and dm csEUGM 2011 | DAY | Experiences with interim analyses and dm cs
EUGM 2011 | DAY | Experiences with interim analyses and dm csCytel USA
 
EUGM 2011 | DARCHY | Deployment & use of east within sanofi r & d
EUGM 2011 | DARCHY | Deployment & use of east within sanofi r & dEUGM 2011 | DARCHY | Deployment & use of east within sanofi r & d
EUGM 2011 | DARCHY | Deployment & use of east within sanofi r & dCytel USA
 
EUGM 2014 | BEKELE | Adaptive Dose Finding Using Toxicity Probability Intervals
EUGM 2014 | BEKELE | Adaptive Dose Finding Using Toxicity Probability IntervalsEUGM 2014 | BEKELE | Adaptive Dose Finding Using Toxicity Probability Intervals
EUGM 2014 | BEKELE | Adaptive Dose Finding Using Toxicity Probability IntervalsCytel USA
 
EUGM 2014 | BOLOGNESE | Case Studies of Phase 2 Adaptive Dose-Finding Trials
EUGM 2014 | BOLOGNESE | Case Studies of Phase 2 Adaptive Dose-Finding TrialsEUGM 2014 | BOLOGNESE | Case Studies of Phase 2 Adaptive Dose-Finding Trials
EUGM 2014 | BOLOGNESE | Case Studies of Phase 2 Adaptive Dose-Finding TrialsCytel USA
 
A Bayesian Industry Approach to Phase 1 Combination Trials in Oncology
A Bayesian Industry Approach to Phase 1 Combination Trials in OncologyA Bayesian Industry Approach to Phase 1 Combination Trials in Oncology
A Bayesian Industry Approach to Phase 1 Combination Trials in OncologyCytel USA
 
2012-05-30 EUGM | GAYDOS | Design & Analysis Approaches to Evaluate Cardiovas...
2012-05-30 EUGM | GAYDOS | Design & Analysis Approaches to Evaluate Cardiovas...2012-05-30 EUGM | GAYDOS | Design & Analysis Approaches to Evaluate Cardiovas...
2012-05-30 EUGM | GAYDOS | Design & Analysis Approaches to Evaluate Cardiovas...Cytel USA
 

More from Cytel USA (20)

From the clinic to the cfo adaptive trials and financial decision making
From the clinic to the cfo   adaptive trials and financial decision makingFrom the clinic to the cfo   adaptive trials and financial decision making
From the clinic to the cfo adaptive trials and financial decision making
 
Eugm 2012 unknown - incivex drug development process overview road to findi...
Eugm 2012   unknown - incivex drug development process overview road to findi...Eugm 2012   unknown - incivex drug development process overview road to findi...
Eugm 2012 unknown - incivex drug development process overview road to findi...
 
Eugm 2012 pritchett - application of adaptive sample size re-estimation in ...
Eugm 2012   pritchett - application of adaptive sample size re-estimation in ...Eugm 2012   pritchett - application of adaptive sample size re-estimation in ...
Eugm 2012 pritchett - application of adaptive sample size re-estimation in ...
 
Eugm 2012 oneill - perspective on the current environment for adaptive clin...
Eugm 2012   oneill - perspective on the current environment for adaptive clin...Eugm 2012   oneill - perspective on the current environment for adaptive clin...
Eugm 2012 oneill - perspective on the current environment for adaptive clin...
 
Eugm 2012 mehta - future plans for east - 2012 eugm
Eugm 2012   mehta - future plans for east - 2012 eugmEugm 2012   mehta - future plans for east - 2012 eugm
Eugm 2012 mehta - future plans for east - 2012 eugm
 
Eugm 2012 jemiai - introduction to east architect
Eugm 2012   jemiai - introduction to east architectEugm 2012   jemiai - introduction to east architect
Eugm 2012 jemiai - introduction to east architect
 
Eugm 2012 gaydos - design and analysis approaches to evaluate cardiovascula...
Eugm 2012   gaydos - design and analysis approaches to evaluate cardiovascula...Eugm 2012   gaydos - design and analysis approaches to evaluate cardiovascula...
Eugm 2012 gaydos - design and analysis approaches to evaluate cardiovascula...
 
Eugm 2012 demets - clinical trials and the impact of regulations
Eugm 2012   demets - clinical trials and the impact of regulationsEugm 2012   demets - clinical trials and the impact of regulations
Eugm 2012 demets - clinical trials and the impact of regulations
 
Eugm 2011 pocock - dm cs-and-adaptive-trials
Eugm 2011   pocock - dm cs-and-adaptive-trialsEugm 2011   pocock - dm cs-and-adaptive-trials
Eugm 2011 pocock - dm cs-and-adaptive-trials
 
Eugm 2011 mehta - execution of adaptive trials operational considerations
Eugm 2011   mehta - execution of adaptive trials operational considerationsEugm 2011   mehta - execution of adaptive trials operational considerations
Eugm 2011 mehta - execution of adaptive trials operational considerations
 
Eugm 2011 mehta - adaptive designs for phase 3 oncology trials
Eugm 2011   mehta - adaptive designs for phase 3 oncology trialsEugm 2011   mehta - adaptive designs for phase 3 oncology trials
Eugm 2011 mehta - adaptive designs for phase 3 oncology trials
 
EUGM 2011 | JEMIAI
EUGM 2011 | JEMIAIEUGM 2011 | JEMIAI
EUGM 2011 | JEMIAI
 
EUGM 2011 | JEHL | group sequential designs with 2 time to event endpoints
EUGM 2011 | JEHL | group sequential designs with 2 time to event endpointsEUGM 2011 | JEHL | group sequential designs with 2 time to event endpoints
EUGM 2011 | JEHL | group sequential designs with 2 time to event endpoints
 
EUGM 2011| Fretault | Use of bayesian approach in phase ii
EUGM 2011| Fretault | Use of bayesian approach in phase iiEUGM 2011| Fretault | Use of bayesian approach in phase ii
EUGM 2011| Fretault | Use of bayesian approach in phase ii
 
EUGM 2011 | DAY | Experiences with interim analyses and dm cs
EUGM 2011 | DAY | Experiences with interim analyses and dm csEUGM 2011 | DAY | Experiences with interim analyses and dm cs
EUGM 2011 | DAY | Experiences with interim analyses and dm cs
 
EUGM 2011 | DARCHY | Deployment & use of east within sanofi r & d
EUGM 2011 | DARCHY | Deployment & use of east within sanofi r & dEUGM 2011 | DARCHY | Deployment & use of east within sanofi r & d
EUGM 2011 | DARCHY | Deployment & use of east within sanofi r & d
 
EUGM 2014 | BEKELE | Adaptive Dose Finding Using Toxicity Probability Intervals
EUGM 2014 | BEKELE | Adaptive Dose Finding Using Toxicity Probability IntervalsEUGM 2014 | BEKELE | Adaptive Dose Finding Using Toxicity Probability Intervals
EUGM 2014 | BEKELE | Adaptive Dose Finding Using Toxicity Probability Intervals
 
EUGM 2014 | BOLOGNESE | Case Studies of Phase 2 Adaptive Dose-Finding Trials
EUGM 2014 | BOLOGNESE | Case Studies of Phase 2 Adaptive Dose-Finding TrialsEUGM 2014 | BOLOGNESE | Case Studies of Phase 2 Adaptive Dose-Finding Trials
EUGM 2014 | BOLOGNESE | Case Studies of Phase 2 Adaptive Dose-Finding Trials
 
A Bayesian Industry Approach to Phase 1 Combination Trials in Oncology
A Bayesian Industry Approach to Phase 1 Combination Trials in OncologyA Bayesian Industry Approach to Phase 1 Combination Trials in Oncology
A Bayesian Industry Approach to Phase 1 Combination Trials in Oncology
 
2012-05-30 EUGM | GAYDOS | Design & Analysis Approaches to Evaluate Cardiovas...
2012-05-30 EUGM | GAYDOS | Design & Analysis Approaches to Evaluate Cardiovas...2012-05-30 EUGM | GAYDOS | Design & Analysis Approaches to Evaluate Cardiovas...
2012-05-30 EUGM | GAYDOS | Design & Analysis Approaches to Evaluate Cardiovas...
 

Recently uploaded

Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Call Girls in Nagpur High Profile
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...perfect solution
 
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...tanya dube
 
Call Girls Agra Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Agra Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Agra Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Agra Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋TANUJA PANDEY
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...Arohi Goyal
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableDipal Arora
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Dipal Arora
 
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...Sheetaleventcompany
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...parulsinha
 
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableDipal Arora
 
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...parulsinha
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...Taniya Sharma
 
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service AvailableDipal Arora
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...parulsinha
 

Recently uploaded (20)

Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
Book Paid Powai Call Girls Mumbai 𖠋 9930245274 𖠋Low Budget Full Independent H...
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
 
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bareilly Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
Premium Bangalore Call Girls Jigani Dail 6378878445 Escort Service For Hot Ma...
 
Call Girls Agra Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Agra Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Agra Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Agra Just Call 8250077686 Top Class Call Girl Service Available
 
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
VIP Hyderabad Call Girls Bahadurpally 7877925207 ₹5000 To 25K With AC Room 💚😋
 
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
All Time Service Available Call Girls Marine Drive 📳 9820252231 For 18+ VIP C...
 
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service AvailableCall Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
Call Girls Gwalior Just Call 8617370543 Top Class Call Girl Service Available
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
Call Girls Service Jaipur {9521753030} ❤️VVIP RIDDHI Call Girl in Jaipur Raja...
 
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Dehradun Just Call 9907093804 Top Class Call Girl Service Available
 
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
Premium Call Girls In Jaipur {8445551418} ❤️VVIP SEEMA Call Girl in Jaipur Ra...
 
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Faridabad Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Jabalpur Just Call 8250077686 Top Class Call Girl Service Available
 
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
 
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
(👑VVIP ISHAAN ) Russian Call Girls Service Navi Mumbai🖕9920874524🖕Independent...
 
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
 
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
(Low Rate RASHMI ) Rate Of Call Girls Jaipur ❣ 8445551418 ❣ Elite Models & Ce...
 

Adaptive Phase 2 Design in Post Surgical Pain

  • 1. Case Study 1  Adaptive Phase 2 Design in post‐surgical painp g p g p Proof‐of‐Concept & Dose‐Exploration Stage A  Maximizing Dose‐Finding Design Stage B Jim Bolognese, Cytel EAST UGM 22Oct201422Oct2014 bolognese@cytel.com
  • 2. OUTLINEOUTLINE • Adaptive design based on customized clinicalAdaptive design based on customized clinical  utility function • Simulation results document performance• Simulation results document performance  characteristics R k• Remarks 
  • 3. Overall Summary • Phase 2 trial test drug versus placebo and active control for post surgery• Phase 2 trial  test drug versus placebo and active control for post‐surgery  analgesia • Objectives: PoC + estimate dose regimen with optimal balance between  maximum  efficacy and minimum intolerance • Maximizing adaptive dose‐finding design (Ivanova, 2009) chosen to yield  better quality information – fewer patients assigned to dose regimens which are ineffective or  intolerableintolerable • True potential efficacy and tolerability dose‐response (DR) curves were  constructed to span the range of potential DR curves • Clinical utility function defined to combine all of the efficacy and  t l bilit dtolerability dose‐response curves • Simulation study evaluated performance characteristics • Results indicate the maximizing design  – Has high probability to estimate the correct or nearest to correct dose– Has high probability to estimate the correct or nearest to correct dose  with maximum clinical utility (i.e., “target dose”)  – Maximizes assignment of subjects to the target dose – Minimizes assignment of subject to doses remote from target dose
  • 4. Illustration of Maximizing Design (Ivanova et al 2009) Current cohort Next cohort (Ivanova et al. 2009) Doses 1 2 3 4 1 2 3 4 Active pair At given point of the study subjects are randomized to the levels of the Active pair of levels At given point of the study, subjects are randomized to the levels of the  current dose pair and placebo only.  The next pair is obtained by shifting the  current pair according to the estimated slope.
  • 5. Maximizing Design Update Rule based on  Standarized Difference )/1/1(ˆ )ˆˆ( 2 1 jj nn T       )/1/1( 1 jj nn  Let dose j and j+1 constitute the current dose pair. 1 Use isotonic (unimodal) regression or quadratic regression fitted locally1. Use isotonic (unimodal) regression or quadratic regression fitted locally  to estimate responses at all dose levels using all available data 2. Compute T i. If T > 0.3 then next dose pair  (j+1,j+2), i.e. "move up“p (j ,j ), p ii. If T < ‐0.3 then next dose pair ( j‐1, j), i.e.  "move down“ iii. Otherwise, next dose pair ( j, j+1),  i.e. “stay” • If not possible to “move” dose pair, ( j=1 or j=K‐1), change pair’s  randomization probabilities from 1:1 to 2:1 (the extreme dose of  the pair get twice more subjects)  M difi i f hi l (i l di diff ff f T) iblModification of this rule (including different cutoffs for T) are possible  but logic is similar
  • 6. Final Phase 2 Design Choice: 2‐Stage adaptive PoC+Dose‐Findingg p g • Stage A ‐ PoC: Initial Cohort of 150 patients randomized 1:1:1:1:1:1 to 1 of  4 Test Drug regimens; active control; placebo) • Enrollment pause for ~1 month while Stage A data are analyzed • Stage B – Dose‐Finding: Maximizing Design for clinical utility; 2 starting   doses based on the analysis of Stage A – Patients randomized in ~10 successive weekly cohorts of  approximately 25 patients (depending on weekly enrollment rate) – Each successive Stage B cohort of ~25 will be randomized 4:8:8:5 to g placebo, 2 doses of Test Drug, and active control, respectively – Expected to yield for final analysis ~ • 65 total placebo patients65 total placebo patients • 75 total  active control patients • > 80‐100 patients on target dose
  • 7. Potential utility outcome f hfor each Test Drug group ← Increasing Test Drug Tolerability Increasing Test Drug AC<T~plc AC<T<plc AC~T<plc T<AC<plc AC>T~plc 0 AC>T>plc g Efficacy ↓ AC>T>plc AC~T>plc T>AC>plc 100 Utility ranges from 0‐100 higher is betterUtility ranges from 0‐100, higher is better
  • 8. Defining the efficacy cutoffs (>, ~, < on  ff )efficacy)  ← Increasing Test Drug Tolerability AC<T~plc AC<T<plc AC~T<plc T<AC<plcAC<T~plc AC<T<plc AC~T<plc T<AC<plc T efficacy is less  than AC T‐AC < ‐1 0 Increasing Test Drug Efficacy (NRS) T efficacy is similar  to AC ‐0.5 < T‐AC < 0.5 T ffi i b↓ T efficacy is better  than AC 0.5 < T‐AC < 1.5 T efficacy is much 100 better than AC T‐AC >1.5
  • 9. Defining the tolerability cutoffs ( l b l )(>, ~, < on tolerability)  ← Increasing Test Drug Tolerability (Relative prevalence of AE) T has better T tolerability is a T tolerability is a T tolerability isT has better  tolerability than  AC T‐AC < ‐20 T tolerability is a  bit better than AC ‐20 < T‐AC < 0 T tolerability is a  bit worse than AC 0 > T‐AC > 20 T tolerability is worse than AC T‐AC > 20 T efficacy is less 0 Increasing Test Drug Effi T efficacy is less  than AC T‐AC < ‐1 0 T efficacy is similar  ACEfficacy (NRS) ↓ to AC ‐0.5 < T‐AC < 0.5 T efficacy is better  than AC 0.5 < T‐AC < 1.5 T efficacy is much better than AC 100 T‐AC >1.5
  • 10. Potential utility outcome for each Test Drug group •Exact numbers not importantfor each Test Drug group •Exact numbers not important •Determines “routing” of next patients •Gradients are more important ← Increasing Test Drug Tolerability (Relative prevalence of AE) T has better  tolerability than  AC T tolerability is a  bit better than AC 20 T AC 0 T tolerability is a  bit worse than AC 0 T AC 20 T tolerability is worse than AC T AC 20 T‐AC < ‐20 ‐20 < T‐AC < 0 0 > T‐AC > 20 T‐AC > 20 T efficacy is less  than AC 20 0 0 0 Increasing Test Drug Efficacy (NRS) ↓ T‐AC < ‐1 T efficacy is similar  to AC ‐0.5 < T‐AC < 0.5 60 40 0 0 T efficacy is better  than AC 0.5 < T‐AC < 1.5 80 50 40 0 T ffi i h 100 90 50 20T efficacy is much better than AC T‐AC >1.5 100 90 50 20
  • 11. True Underlying Efficacy Dose‐Response Curves for simulation  study (values are mean difference from active control in TWA0‐y ( 48hr change from baseline in 0‐10 NRS pain intensity ratings) Efficacy DR CurvesEfficacy DR Curves AC D1 D2 D3 D4 pbo DRh1 0 0 0.5 0.9 1.1 ‐1.5 DRh2 0 ‐1 ‐0.5 0.5 1.1 ‐1.5 DRh3 0 ‐0.5 0 0.4 0.6 ‐1.5 DRh4 0 ‐1.5 ‐1 0 0.6 ‐1.5 DRm1 0 ‐1 ‐0.5 ‐0.2 0 ‐1.5 DRm2 0 ‐1.5 ‐1.1 ‐0.4 0 ‐1.5DRm2 0 1.5 1.1 0.4 0 1.5 DRm3 0 ‐1.5 ‐1.5 ‐1 0 ‐1.5 DRnull 0 ‐1.5 ‐1.5 ‐1.5 ‐1.5 ‐1.5
  • 13. True Underlying Safety Dose‐Response Curves for simulation study  (values are difference in AE rates between active control and Test Drug)(values are difference in AE rates between active control and Test Drug) Safety DR Curves y AC D1 D2 D3 D4 Pbo DRh1 0 ‐0.05 0.1 0.17 0.21 ‐0.3 DRh2 0 ‐0.29 ‐0.1 0.1 0.21 ‐0.3 DRm1 0 ‐0.15 ‐0.01 0.07 0.1 ‐0.3 DR 2 0 0 3 0 2 0 03 0 1 0 3DRm2 0 ‐0.3 ‐0.2 0.03 0.1 ‐0.3 DRm3 0 ‐0.3 ‐0.3 ‐0.05 0.1 ‐0.3 DRl1 0 ‐0.25 ‐0.2 ‐0.1 ‐0.05 ‐0.3DRl1 0 0.25 0.2 0.1 0.05 0.3 DRl2 0 ‐0.3 ‐0.3 ‐0.2 ‐0.05 ‐0.3
  • 14. True Underlying Safety Dose‐Response Curves for simulation study  (values are difference in AE rates between active control and Test Drug)(values are difference in AE rates between active control and Test Drug)
  • 15. True Underlying Utility DR Curves by combining all pairs of Efficacy and Safety  DR Curves via 2‐dimensional linear interpolation of Utility Function values U il DUtil.D R Eff. Tol. Mor. D1 D2 D3 D4 Pbo 1 DRh1 DRh1 20 30 20 23.4 19.55 0 2 DRh2 DRh1 20 10 0 13 19.55 0 Util.DR Eff. Tol. Mor. D1 D2 D3 D4 Pbo 15 DRm3 DRh2 20 19 0 0 0 0 16 DRnull DRh2 20 19 0 0 0 0 3 DRh3 DRh1 20 20 0 10.4 10.8 0 4 DRh4 DRh1 20 0 0 0 10.8 0 5 DRm1 DRh1 20 10 0 0 0 0 6 DRm2 DRh1 20 0 0 0 0 0 17 DRh1 DRm1 20 45 33.8 38 41 0 18 DRh2 DRm1 20 18.3 14.7 23.8 41 0 19 DRh3 DRm1 20 31.7 22 20.2 24 0 20 DRh4 DRm1 20 5 7.33 6 24 06 DRm2 DRh1 20 0 0 0 0 0 7 DRm3 DRh1 20 0 0 0 0 0 8 null DRh1 20 0 0 0 0 0 9 DRh1 DRh2 20 59 45 36 19.55 0 21 DRm1 DRm1 20 18.3 14.7 5.2 0 0 22 DRm2 DRm1 20 5 5.87 4.4 0 0 23 DRm3 DRm1 20 5 0 2 0 0 ll10 DRh2 DRh2 20 32.3 26.7 20 19.55 0 11 DRh3 DRh2 20 45.7 40 16 10.8 0 12 DRh4 DRh2 20 19 13.3 0 10.8 0 13 DRm1 DRh2 20 32.3 26.7 0 0 0 24 DRnull DRm1 20 5 0 0 0 0 25 DRh1 DRm2 20 60 57.5 40.6 41 0 26 DRh2 DRm2 20 33.3 36.7 28.8 41 0 27 DRh3 DRm2 20 46.7 50 25.8 24 0 14 DRm2 DRh2 20 19 10.7 0 0 0 28 DRh4 DRm2 20 20 23.3 14 24 0
  • 16. True Underlying Utility DR Curves by combining all pairs of Efficacy and Safety  DR Curves via 2‐dimensional linear interpolation of Utility Function values Util.DR Eff. Tol. Acntl D1 D2 D3 D4 Pbo 29 DRm1 DRm2 20 33.3 36.7 12.1 0 0 30 DRm2 DRm2 20 20 20.7 10.3 0 0 Util.DR Eff. Tol. Acntl D1 D2 D3 D4 Pbo 43 DRh3 DRl1 20 41.7 50 44 40.5 0 44 DRh4 DRl1 20 15 23.3 40 40.5 0 l 31 DRm3 DRm2 20 20 10 4.67 0 0 32 DRnull DRm2 20 20 10 0 0 0 33 DRh1 DRm3 20 60 70 45.8 41 0 45 DRm1 DRl1 20 28.3 36.7 34.7 30 0 46 DRm2 DRl1 20 15 20.7 29.3 30 0 47 DRm3 DRl1 20 15 10 13.3 30 0 48 DR ll DRl1 20 15 10 0 0 0 34 DRh2 DRm3 20 33.3 46.7 38.8 41 0 35 DRh3 DRm3 20 46.7 60 37 24 0 36 DRh4 DRm3 20 20 33.3 30 24 0 48 DRnull DRl1 20 15 10 0 0 0 49 DRh1 DRl2 20 60 70 63.5 50.75 0 50 DRh2 DRl2 20 33.3 46.7 57.5 50.75 0 51 DRh3 DRl2 20 46.7 60 56 40.5 0 37 DRm1 DRm3 20 33.3 46.7 26 0 0 38 DRm2 DRm3 20 20 30.7 22 0 0 39 DRm3 DRm3 20 20 20 10 0 0 52 DRh4 DRl2 20 20 33.3 50 40.5 0 53 DRm1 DRl2 20 33.3 46.7 44.7 30 0 54 DRm2 DRl2 20 20 30.7 39.3 30 0 l40 DRnull DRm3 20 20 20 0 0 0 41 DRh1 DRl1 20 55 57.5 49 50.75 0 42 DRh2 DRl1 20 28.3 36.7 45 50.75 0 55 DRm3 DRl2 20 20 20 23.3 30 0 56 DRnull DRl2 20 20 20 10 0 0
  • 17. True underlying utility functions for the simulation study (yellow highlighted value is maximum utility value for indicated DR curve Representative set of utility DR curves to simulate DR Curve pbo D1 D2 D3 D4 1 0 0 0 0 111 0 0 0 0 11 2 0 10 0 0 0 3 0 32 27 20 20 4 0 46 40 16 11 5 0 60 58 41 41 6 0 20 21 10 0 7 0 20 10 5 0 8 0 20 33 30 24 9 0 55 58 50 50 10 0 28 37 45 51 11 0 15 23 40 41 12 0 20 33 50 4112 0 20 33 50 41 13 0 20 31 39 30 14 0 20 20 23 30
  • 19. Simulation Specifications • Stage A N=25 on pbo 4 doses Test Drug active control• Stage A N=25 on pbo, 4 doses Test Drug, active control – Pause enrolment for Stage B starting dose selection • Stage B 10 cohorts N=25, maximizing design adaptationStage B 10 cohorts N 25, maximizing design adaptation  beginning with 4th Stage B cohort • Simulated 1000 times for each of 14 selected utility functions – Normally distributed means per utility function – Conservatively assumed SD of a 0‐100 uniform distribution NO t ti t 0 100 l i t b ti i– NO truncation to 0‐100 scale – again to be conservative in  order to preserve the assumed SD – Therefore, actual design performance may be even betterTherefore, actual design performance may be even better  than reported herein. • Custom SAS program
  • 20. Performance Characteristics Computed 1000 i l ti h f 14 tilit DRacross 1000 simulations per each of 14 utility DR curves • Average estimated target doseg g • Proportion of simulations in which the correct target dose was  estimated • Proportion of simulations in which the estimated target dose  was adjacent to the correct target dose • Average number of subjects assigned to each doseAverage number of subjects assigned to each dose
  • 21. Results Summary • For all 14 utility DR curves• For all 14 utility DR curves – ≥50% of simulations yielded correct estimates of target dose – percents ranged from 58‐98% – median was close to 90% – ≥91% of simulations yielded estimated target dose at or adjacent to  the true target – Thus, the maximizing design estimates the target dose well. • • Most subjects were allocated at or adjacent to the true target dosej j g – Equal allocation design would assign N=65/dose – For all 14 utility DR curve scenarios: • maximizing design assigned ≥68 subjects to target dose (range• maximizing design assigned  ≥68 subjects to target dose (range  was 68‐105) • range of N at dose farthest from target was 25‐62 d f d d• Hence, maximizing design is functioning as desired
  • 22. Performance characteristics of maximizing design (N=400) based on 1000 simulations of each utility DR curve T E ti t d % ti ti % ti ti % ti ti t DR# True  Target  Dose Estimated  Target Dose  Average % estimating  exactly at True  Target Dose % estimating  adjacent to True  Target Dose % estimating at or  adjacent to True  Target Dose 1 4 3.9 93 1 95 2 1 1.3 87 4 91 3 1 1.3 77 21 98 4 1 1.1 86 14 100 5 1 1.4 58 42 100 6 2 1.6 64 36 100 7 1 1.0 96 3 99 8 2 2.3 74 25 98 9 2 1 9 72 24 969 2 1.9 72 24 96 10 4 3.9 91 9 100 11 4 3.6 59 41 100 12 3 3 0 98 2 10012 3 3.0 98 2 100 13 3 3.0 93 7 100 14 4 3.7 86 6 92
  • 23. Average N’s assigned to each dose across 1000 simulations for  each utility DR curve (yellow highlighted cells indicate TRUE target dose)(yellow highlighted cells indicate TRUE  target dose) Average Number of Subjects Assigned to Each Dose DR# D1 D2 D3 D4 1 30 32 100 98 2 86 91 44 39 3 82 89 48 41 4 91 97 39 33 5 73 82 57 48 6 68 87 62 43 7 98 101 32 29 8 41 71 89 59 9 53 68 77 629 53 68 77 62 10 25 33 105 97 11 25 45 105 85 12 25 63 105 6712 25 63 105 67 13 28 64 102 66 14 31 37 99 93
  • 24. Overall Summary • Phase 2 trial of Test Drug versus placebo and active control• Phase 2 trial of Test Drug versus placebo and active control • Objectives: PoC + estimate dose regimen with optimal balance between  maximum  efficacy and minimum intolerance • Maximizing adaptive dose‐finding design (Ivanova, 2009) chosen to yield g p g g ( ) y better quality information – fewer patients assigned to dose regimens which are ineffective or  intolerable • True potential efficacy and tolerability dose response (DR) curves were• True potential efficacy and tolerability dose‐response (DR) curves were  constructed to span the range of potential DR curves for Test Drug • Clinical utility function defined to combine all of the efficacy and  tolerability dose‐response curves • Simulation study evaluated performance characteristics • Results indicate the maximizing design  – Has high probability to estimate the correct or nearest to correct dose  with maximum clinical utility (i e “target dose”)with maximum clinical utility (i.e.,  target dose )  – Maximizes assignment of subjects to the target dose – Minimizes assignment of subject to doses remote from target dose
  • 26. Assumptions for Adaptive Design K E d i t 0 3 i t Lik t S l Gl b l A t f R t• Key Endpoint: 0‐3 point Likert Scale Global Assessment of Response to  Therapy (0=none; 1=some; 2=good; 3=excellent) – Since sample size is “large”, can use continuous endpoint stat methods  (i l di t ib ti )(i.e., assume normal distribution) • Typical for global assessments of response to therapy in arthritis and  pain using Likert scale responses similar to above – Prior data: mean difference between active & placebo 2.2 vs 1.6 (SD~0.9) • Suggests N=41/treatment group for 80% power (alpha=0.05, 1‐sided) • Traditional Design would have 2 or 3 dose‐combinations plus placebo (N=123  to 164) • Investigate Adaptive Dose‐finding Phase 2 trial design with Total N=135 – 3 doses of 1st drug + 3 doses of 2nd drug (9 dose‐combinations) + placebo3 doses of 1 drug   3 doses of 2 drug (9 dose combinations)   placebo – Ivanova(2012) Bayesian Isotonic 2‐dimensional design software (CytelSim – in‐house tool) updated to accommodate 3x3 dose‐combinations
  • 27. Overview of Adaptive Design I iti l C h t N 46 (10 36 l b d 4/d bi ti )• Initial Cohort N=46 (10:36, placebo:drug, 4/dose‐combination) • 3 additional cohorts, each N=30 (7:23 pbo:drug), with doses assigned  adaptively • Extension of Adaptive Dose‐Finding Design (Ivanova, 2012) – Optimizes dose‐assignments for Target Responses 0.5 and 1.0 (arbitrarily  chosen, can be modified) different from placebo – Assumes non‐decreasing response with increasing dose of each drug  within each dose‐level of the other drug – Models the dose‐response relationship via isotonic regression • Improves statistical efficiency compared to raw means
  • 28. Isotonic Regression • Nonparametric (robust) shape ExampleNonparametric (robust) shape  constrained fit (least square error  fit subject to order restriction) • “Borrow” strength cross doses 0.4 observed proportions isotonic fit Example • Typically isotonic regression   improve probability of right  selection of the target dose  0.20.3 tyofToxicity • Better describe dose‐response  relation • Modified for 2‐dimensions 0.00.1 Probabilit 1 2 3 4 5 6 7 0 Dose 28
  • 29. Ivanova(2012) Bayesian Isotonic  Adaptive Dose‐Finding Design (3x3)p g g ( ) • Compute Bayesian isotonic regression means from previous  cohort(s) – Assign patients to dose‐combinations in cohorts 2,3,4  using Bayesian posterior distribution proportions of  simulations that each dose is closest to target levels of  response • Half the patients to lower target, half to upper target • E g if doses 1 2 3 are closest to target dose in 25 50E.g., if doses 1,2,3 are closest to target dose in 25, 50,  and 25% of the Bayesian posterior distribution samples,  then randomization ratios are 1:2:1  • After 4 completed cohorts combine all data• After 4 completed cohorts, combine all data – Fit isotonic regression means, test for difference from  placebo, estimate target doses, etc. 
  • 30. Assess usefulness of Adaptive Dose‐Finding Design:  Compare Performance Characteristics Si l i l f h f h 2 i l d• Simulation results for each of the 2 potential dose‐response  scenarios are summarized by the following performance  characteristics, compared between adaptive and traditional non‐ adaptive designs: – Power to yield statistically significant (alpha=0.05, 1‐sided)  difference from placebodifference from placebo – Average assigned sample size per dose – Probability of identifying the correct target doseProbability of identifying the correct target dose • Multiple dose‐response scenarios chosen as examples of TRUE  underlying DR curves to assess performance characteristics
  • 31. Assumed True Underlying Dose‐Response Curves for Simulations • “R” designates one drug • “d” designates 2nd drug "good" response (SD=0.9) b 1 6 d1 d2 d3• R0d0 is placebo • R2d3 designates 2nd highest dose  of Drug R, 3rd highest dose of  pbo=1.6 d1 d2 d3 R1 1.6 2.1 2.3 R2 1.8 2.3 2.4g , g Drug d, etc. • Pink Highlighted Cells indicate  doses with Target Levels of  R3 2.1 2.3 2.6 "zero" response (SD=0.9)g Response (0.5 or 1.0 different  from placebo) zero  response (SD 0.9) pbo=1.6 d1 d2 d3 R1 1.6 1.6 1.6 R2 1 6 1 6 1 6R2 1.6 1.6 1.6 R3 1.6 1.6 1.6
  • 32. Additional Assumed True Underlying Dose‐Response Curves  (Pink Highlighted Cells indicate doses with Target Levels of Response: 0.5 or 1.0  different from placebo)different from placebo) “decreasing DR” (SD=0.9) pbo=1.6 D1 d2 D3 “constant2.1” (SD=0.9) pbo=1.6 d1 d2 d3 R1 2.6 2.35 2.1 R2 2.35 2.1 1.85 R3 2 1 1 85 1 6 R1 2.1 2.1 2.1 R2 2.1 2.1 2.1 R3 2 1 2 1 2 1 R3 2.1 1.85 1.6 “U‐shaped DR” (SD=0.9) R3 2.1 2.1 2.1 “constant2.6” (SD=0.9) pbo=1.6 D1 d2 d3 R1 1.6 1.85 2.1 R2 1.85 2.6 1.85 pbo=1.6 d1 d2 d3 R1 2.6 2.6 2.6 R2 2.6 2.6 2.6 R3 2.1 1.85 1.6R3 2.6 2.6 2.6
  • 33. Additional Assumed True Underlying Dose‐Response Curves  (Pink Highlighted Cells indicate doses with Target Levels of Response: 0.5 or 1.0  different from placebo) “linear low DR” (SD=0.9) pbo=1.6 D1 d2 d3 “linear DR” (SD=0.9) pbo=1.6 d1 d2 d3 different from placebo) R1 1.6 1.7 1.8 R2 1.7 1.8 2.1 R3 1 8 2 1 2 6 R1 1.6 1.85 2.1 R2 1.85 2.1 2.35 R3 2 1 2 35 2 6 R3 1.8 2.1 2.6 “asymmetric DR” (SD=0.9) R3 2.1 2.35 2.6 “linear plateau DR” (SD=0.9) pbo=1.6 d1 d2 D3 R1 1.85 2.0 2.5 R2 1.9 2.1 2.6 pbo=1.6 d1 d2 d3 R1 1.8 2.1 2.6 R2 2.1 2.6 2.6 R3 1.9 2.1 2.6R3 2.6 2.6 2.6
  • 34. Additional Assumed True Underlying Dose‐Response Curves  (Pink Highlighted Cells indicate doses with Target Levels of Response: 0.5 or 1.0  different from placebo) Only 1active2.6 (SD=0.9) pbo=1.6 d1 d2 d3 Step Function (SD=0.9) pbo=1.6 d1 d2 d3 different from placebo) R1 1.6 1.6 1.6 R2 2.2 2.2 2.2 R3 2 6 2 6 2 6 R1 1.6 1.6 1.6 R2 1.6 1.6 2.6 R3 1 6 2 6 2 6 R3 2.6 2.6 2.6 DR4 (SD=0.9) R3 1.6 2.6 2.6 Only1 active2.8 (SD=0.9) pbo=1.6 d1 d2 d3 R1 R2 pbo=1.6 d1 d2 d3 R1 1.6 1.6 1.6 R2 2.2 2.2 2.2 R3R3 2.8 2.8 2.8
  • 35. Assumed True Underlying Dose‐Response Curves for Simulations • “R” designates one drug;    “d” designates 2nd drug;   R0d0 is placebo • R2d3 designates middle dose (2) of Drug R, highest dose (3) of Drug d • Pink Highlighted Cells indicate doses with Target Levels of Response (0 5 orPink Highlighted Cells indicate doses with Target Levels of Response (0.5 or  1.0 different from placebo) 3x3 format3x3 format pbo=1.6 d1 d2 d3 R1 1.6 2.1 2.3 R2 1 8 2 3 2 4R2 1.8 2.3 2.4 R3 2.1 2.3 2.6 Linear Format R0d0 R1d1 R1d2 R1d3 R2d1 R2d2 R2d3 R3d1 R3d2 R3d3 Increasing DR 1.6 1.6 2.1 2.3 1.8 2.3 2.4 2.1 2.3 2.6g
  • 36. Assumed True Underlying Dose‐Response Curves for Simulations • “R” designates one drug;    “d” designates 2nd drug;   R0d0 is placebo • R2d3 designates middle dose (2) of Drug R, highest dose (3) of Drug d • Pink Highlighted Cells indicate doses with Target Levels of Response (0 5 orPink Highlighted Cells indicate doses with Target Levels of Response (0.5 or  1.0 different from placebo) R0d0 R1d1 R1d2 R1d3 R2d1 R2d2 R2d3 R3d1 R3d2 R3d3 increasing 1.6 1.6 2.1 2.3 1.8 2.3 2.4 2.1 2.3 2.6increasing 1.6 1.6 2.1 2.3 1.8 2.3 2.4 2.1 2.3 2.6 all2.1 1.6 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 all2.6 1.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 2.6 null 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6 1 6null 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 decreasing DR 1.6 2.6 2.35 2.1 2.35 2.1 1.85 2.1 1.85 1.6 u-shaped DR 1.6 1.6 1.85 2.1 1.85 2.6 1.85 2.1 1.85 1.6 linear DR 1.6 1.6 1.85 2.1 1.85 2.1 2.35 2.1 2.35 2.6 linear low DR 1.6 1.6 1.7 1.8 1.7 1.8 2.1 1.8 2.1 2.6 linear plateau 1.6 1.8 2.1 2.6 2.1 2.6 2.6 2.6 2.6 2.6 DR asymmetric DR 1.6 1.85 2 2.5 1.9 2.1 2.6 1.9 2.1 2.6 Step Function 1.6 1.6 1.6 1.6 1.6 1.6 2.6 1.6 2.6 2.6
  • 37. Number of patients assigned to each dose‐combination Average N per Dose‐Combination Group TRUE DR Curve R0d0 R1d1 R1d2 R1d3 R2d1 R2d2 R2d3 R3d1 R3d2 R3d3 increasing 31 10 13 13 11 11 11 12 12 13 all2.1 31 13 10 11 9 9 10 10 10 22 all2.6 31 24 11 10 11 9 9 10 9 12 null 31 8 8 10 8 8 11 9 10 33 decreasing DR 31 16 8 9 8 8 9 8 8 29decreasing DR 31 16 8 9 8 8 9 8 8 29 u-shaped DR 31 9 11 11 10 10 9 9 8 27 linear DR 31 10 11 13 10 11 12 12 12 14 linear low DR 31 9 9 12 9 11 14 11 15 16 Lin.plateauDR 31 13 14 13 13 11 9 11 9 11 asymmetricDR 31 11 11 14 10 11 11 11 13 14 With this sample size, algorithm allocates fewer patients away from doses with target  levels of response asymmetricDR 31 11 11 14 10 11 11 11 13 14 Step Function 31 8 9 13 9 13 15 13 14 11 levels of response In some cases, the isotonic smoothing results in increased allocation at some of the  higher dose combinations In general, dose‐assignments are improved from equal allocation
  • 38. Number of patients assigned to each dose‐combination Average N per Dose‐Combination Group TRUE DR Curve R0d0 R1d1 R1d2 R1d3 R2d1 R2d2 R2d3 R3d1 R3d2 R3d3 increasing 31 10 13 13 11 11 11 12 12 13 all2.1 31 13 10 11 9 9 10 10 10 22 all2.6 31 24 11 10 11 9 9 10 9 12 null 31 8 8 10 8 8 11 9 10 33 Only 1active2 6 31 9 9 13 13 12 13 13 10 12Only 1active2.6 31 9 9 13 13 12 13 13 10 12 Only 1active2.8 31 9 10 13 14 12 15 13 9 10 linear DR 31 10 11 13 10 11 12 12 12 14 linear low DR 31 9 9 12 9 11 14 11 15 16 Lin.plateauDR 31 13 14 13 13 11 9 11 9 11 asymmetricDR 31 11 11 14 10 11 11 11 13 14 With this sample size, algorithm allocates fewer patients away from doses with target  levels of response asymmetricDR 31 11 11 14 10 11 11 11 13 14 Step Function 31 8 9 13 9 13 15 13 14 11 levels of response In some cases, the isotonic smoothing results in increased allocation at some of the  higher dose combinations In general, dose‐assignments are improved from equal allocation
  • 39. Performance Characteristics Power (%) % at lower TGT* %at/near lower TGT % at upper TGT % at/near upper TGT(%) lower TGT* lower TGT upper TGT upper TGT increasing 79 50 1 38 84 all2.1 66 19 47 92 98 all2 6 98 94 99 23 44all2.6 98 94 99 23 44 null 5.0 93 98 99 100 decreasing DR 21 24 100 04 13 h d DR 8 20 60 4 100u-shaped DR 8 20 60 4 100 linear DR 78 65 100 41 93 linear low DR 74 48 95 61 99 linear plateau DR 77 74 100 95 100 asymmetric DR 79 40 100 61 99 Step Function 66 86 100 98 100 • Relatively high power for the monotonic dose‐response configurations p 66 86 00 98 00 * TGT = lowest dose combination with target level of response • Moderate‐to‐high probability of estimating correct dose‐combination • Very low probability of identifying dose‐combination NOT at or near Target
  • 40. Performance Characteristics Power (%) % at lower TGT* %at/near lower TGT % at upper TGT % at/near upper TGT(%) lower TGT* lower TGT upper TGT upper TGT increasing 79 50 1 38 84 all2.1 66 19 47 92 98 all2 6 98 94 99 23 44all2.6 98 94 99 23 44 null 5.0 93 98 99 100 Only 1active2.6 73 74 100 72 100 Only 1active2.8 72 76 100 57 100 linear DR 78 65 100 41 93 linear low DR 74 48 95 61 99 linear plateau DR 77 74 100 95 100 asymmetric DR 79 40 100 61 99 Step Function 66 86 100 98 100 • Relatively high power for the monotonic dose‐response configurations Step Function 66 86 100 98 100 * TGT = lowest dose combination with target level of response • Moderate‐to‐high probability of estimating correct dose‐combination • Very low probability of identifying dose‐combination NOT at or near Target
  • 41. Remarks & Interpretations Ad ti D i• Adaptive Design: – Permits assessment of more doses than traditional design – Retains adequate power – Tends to assign more patients towards target doses – Has high probability of estimating “at” or “adjacent” to doses with  TRUE target levels of response – AD permits early stopping if little or no drug effect (TBD)
  • 42. Next Steps • Identify design logistics (Enrolment rate, timing of end point observation, y g g ( , g p , cohort sizes, number of adaptations, early stopping rules, other??) – To be addressed in draft protocol synopsis needed by end of summer • Additional simulations to assess design improvements (after review of aboveAdditional simulations to assess design improvements (after review of above  simulation summary): – size of initial cohort  total sample size– total sample size – early stopping for futility
  • 43. C S d 3Case Study 3 Adaptive Phase 2 Dose‐Finding Design for Proof‐of‐Concept & Dose‐Exploration via Linear Clinical Utility Function Jim Bolognese, Cytel Inc. EAST UGM 22Oct201422Oct2014 bolognese@cytel.com 43
  • 44. OUTLINEOUTLINE • Adaptive design based on linear function ofAdaptive design based on linear function of  efficacy + tolerability for clinical utility • Simulation results of two design choices• Simulation results of two design choices  document performance characteristics of each  designdesign  44
  • 45. Overall Summary • Phase 2 trial of test drug versus placebog p • Objectives: PoC + estimate dose regimen with optimal balance between  maximum  efficacy and minimum intolerance • Maximizing adaptive dose‐finding design yields better quality informationMaximizing adaptive dose finding design yields better quality information – fewer patients assigned to dose regimens which are ineffective or  intolerable – IVANOVA (2009)IVANOVA (2009) – Normal Dynamic Linear Model (NDLM, COMPASS User Manual, Cytel Inc.)  • True potential efficacy and tolerability dose‐response (DR) curves were  constructed to span the range of potential DR curvesconstructed to span the range of potential DR curves • Linear clinical utility function combines efficacy and tolerability dose‐ response curves • Simulation study evaluated performance characteristics• Simulation study evaluated performance characteristics • Results indicate the maximizing design  – Has high probability to estimate the correct or nearest to correct dose  ith i li i l tilit (i “t t d ”)with maximum clinical utility (i.e., “target dose”)  – Maximizes assignment of subjects at or adjacent to the target dose – Minimizes assignment of subject to doses remote from target dose 45
  • 46. Clinical Utility Function Definition CU ( ffi l b ) (BP ff t l b )• CU = (efficacy vs placebo) – (BP effect vs placebo) – Efficacy target difference from placebo = 4 – BP target difference from placebo < 10mmHg – CU = w1*(EFF drug – EFF placebo)*(10/4) – w2*(∆BP drug – ∆BP placebo) • Where w1=1.5 and w2=1, i.e., Efficacy effect is weighted 50% moreWhere w1 1.5 and w2 1, i.e., Efficacy effect is weighted 50% more  than BP effect – Examples • 1 5*(4 – 4)*(10/4) – (10 –10) = 0• 1.5 (4 – 4) (10/4) – (10 –10) = 0 • 1.5*(4 – 4)*(10/4) – (10 –0) = ‐10 • 1.5*(4 – 0)*(10/4) – (10 –10) = +15 • 1.5*(4 – 0)*(10/4) – (10 –0) = +5 – Refer to accompanying spreadsheet for more detail and more  examples 46
  • 47. Efficacy and Tolerability TRUE DR Curves Efficacy response scenario placebo dose1 dose2 dose3 dose4 dose5 1:null 0 0 0 0 0 0 2:modest 0 0 1 2 3 4 3 d t 0 1 2 4 5 53:moderate 0 1 2 4 5 5 4:robust 0 1 4 5 5 5 BP response 1:null 0 0 0 0 0 01:null 0 0 0 0 0 0 2:modest 0 0 5 10 15 20 3:moderate 0 5 10 20 30 40 47 3:moderate 0 5 10 20 30 40 4:robust 0 5 20 30 40 50
  • 48. TRUE Clinical Utility DR Curves (SD=38) Scenario Combination Clinical Utility Values* Efficacy BP placebo dose1 dose2 dose3 dose4 dose5 1:null 1:null 0 0 0 0 0 0 1:null 2:modest 0 0 ‐5 ‐10 ‐15 ‐20 1:null 3:moderate 0 ‐5 ‐10 ‐20 ‐30 ‐401:null 3:moderate 0 ‐5 ‐10 ‐20 ‐30 ‐40 1:null 4:robust 0 ‐5 ‐20 ‐30 ‐40 ‐50 2:modest 1:null 0 0 3.75 7.5 11.25 15 2:modest 2:modest 0 0 ‐1.25 ‐2.5 ‐3.75 ‐5 2:modest 3:moderate 0 ‐5 ‐6.25 ‐12.5 ‐18.75 ‐25 2:modest 4:robust 0 ‐5 ‐16.25 ‐22.5 ‐28.75 ‐35 3:moderate 1:null 0 3.75 7.5 15 18.75 18.75 3:moderate 2:modest 0 3.75 2.5 5 3.75 ‐1.25 3:moderate 3:moderate 0 ‐1 25 ‐2 5 ‐5 ‐11 25 ‐21 253:moderate 3:moderate 0 ‐1.25 ‐2.5 ‐5 ‐11.25 ‐21.25 3:moderate 4:robust 0 ‐1.25 ‐12.5 ‐15 ‐21.25 ‐31.25 4:robust 1:null 0 3.75 15 18.75 18.75 18.75 48 4:robust 2:modest 0 3.75 10 8.75 3.75 ‐1.25 4:robust 3:moderate 0 ‐1.25 5 ‐1.25 ‐11.25 ‐21.25 4:robust 4:robust 0 ‐1.25 ‐5 ‐11.25 ‐21.25 ‐31.25
  • 49. Assumptions for Adaptive Design for Clinical Utility 5 d f d (4 8 12 16 20 ) l l b• 5 doses of  test drug (4,8,12,16,20mg) plus placebo – Total N=192 • 1st cohort N=24 (4:4:4:4:4:4)• 1 cohort  N=24 (4:4:4:4:4:4) • 10 cohorts N=14, 7 on each of 2 doses adaptively assigned  per maximizing design – Adaptive Design permits early stopping for futility if  Conditional Power < 10% after 1st 60 patients; not considered  in initial simulationsin initial simulations • Response Lag 2 weeks to permit 1 week observation and 1 week  for collection and analysis of data to feed adaptation – Assumed 13/week enrolment over ~15 weeks to achieve  N=192 49
  • 50. Results of Simulated Maximizing Adaptive Design to  Id tif D ith O ti l Cli i l UtilitIdentify Dose with Optimal Clinical Utility • In general, the adaptive design migrates the assignment of  i dj h d i h i li i lpatients at or adjacent to the dose with maximum clinical  utility • The design with a 2‐week lag in response works reasonablyThe design with a 2 week lag in response works reasonably  well at total N=192 for many circumstances, but there are  some clinical utility function scenarios for which it does not  (see e g scenario #12)(see, e.g., scenario #12) • Increasing the sample size to nearly double overcomes the  deficiency in the 2‐week lag.y g 50
  • 51. Average sample size assigned by the adaptive design to each  dose group (NOTE: non‐adaptive design would assign  approximately 32 per dose group)approximately 32 per dose group) Scenario Combination average sample size assigned by adaptive design  Efficacy BP pbo D1 D2 D3 D4 D5 1:null 1:null 30 32 32 31 30 361:null 1:null 30 32 32 31 30 36 1:null 2:modest 30 57 38 30 18 17 1:null 3:moderate 30 78 34 21 14 13 1:null 4:robust 30 111 21 11 9 8 2:modest 1:null 30 13 21 37 39 50 2:modest 2:modest 30 23 31 49 31 25 2:modest 3:moderate 30 37 36 40 25 21 2:modest 4:robust 30 82 34 23 12 102:modest 4:robust 30 82 34 23 12 10 3:moderate 1:null 30 9 11 17 33 89 3:moderate 2:modest 30 15 19 30 37 59 3:moderate 3:moderate 30 22 23 28 34 53 3:moderate 4:robust 30 68 31 23 18 18 4:robust 1:null 30 9 13 25 49 64 4:robust 2:modest 30 11 23 40 47 39 4:robust 3:moderate 30 15 28 38 43 36 51 4:robust 3:moderate 30 15 28 38 43 36 4:robust 4:robust 30 45 45 33 22 14 yellow highlighted cells indicate dose with TRUE underlying maximum clinical utility
  • 52. performance characteristics: Adaptive vs. NON‐adaptive design NDLM Adaptive Design NON‐Adaptive Design Scenario Combination TRUE  target  dose Average  Estimated  Target Dose Percent of Simulations  Estimating: Average  Estimated  Target Dose Percent of Simulations  Estimating: Efficacy BP at Target at/near Tgt at Target at/near Tgt ll ll1:null 1:null 12 11.6 18 50 11.9 16 28 1:null 2:modest 4 5.5 75 90 5.9 69 75 1:null 3:moderate 4 4.1 98 100 4.3 94 98 1:null 4:robust 4 4.0 100 100 4.0 100 100 2:modest 1:null 12 16.1 28 60 16.4 24 40 2:modest 2:modest 12 11.7 57 88 12.0 49 61 2:modest 3:moderate 12 8.3 29 57 8.8 29 38 2:modest 4:robust 4 4.1 97 100 4.2 96 100 3:moderate 1:null 20 19.5 90 99 19.4 86 100 3:moderate 2:modest 20 17.5 58 83 17.6 60 77 3:moderate 3:moderate 20 16.6 56 76 16.4 54 70 3:moderate 4:robust 4 4.7 90 95 5.0 85 90 4:robust 1:null 16 18.2 37 100 18.4 30 48 4:robust 2:modest 16 15.4 46 96 15.6 42 58 4:robust 3:moderate 16 14.7 40 87 14.8 38 53 4:robust 4:robust 4 7.7 38 77 7.7 38 46 52
  • 53. performance characteristics: Adaptive vs. NON‐adaptive design ----------Maximizing Design------ -------------NDLM Design----------- Est Est utility true max pct pct pct max pct pct pct DR max utility correct est correct utility correct est correct curve utility dose estimates adjacent adjacent dose estimates adjacent adjacent 1 3(12) 2.7 23 42 65 2.9 18 32 50 2 1( 4) 2.1 36 31 67 1.4 75 14 90 3 1( 4) 1.8 52 28 80 1.0 98 2 100 4 1( 4) 1.3 83 10 92 1.0 100 0 100 5 5(20) 3.2 18 26 44 4.0 28 32 60 6 3(12) 2.7 44 37 81 2.9 57 30 88 7 3(12) 2.4 39 34 73 2.1 29 28 57 8 1( 4) 1.7 55 23 78 1.0 97 3 100 9 5(20) 4.3 68 13 81 4.9 90 9 99 10 5(20) 3.4 31 18 49 4.4 58 24 83 11 5(20) 3.1 24 19 43 4.1 56 20 76 12 1( 4) 2.0 46 27 73 1.2 90 5 95 13 5(20) 3.9 31 44 75 4.5 37 63 100 14 4(16) 3.2 40 35 75 3.8 46 50 96 15 4(16) 3.0 36 31 67 3.7 40 47 87 16 2( 8) 2.2 38 51 88 1.9 38 38 77 53
  • 54. Average Sample Sizes Assigned: Adaptive vs. NON‐adaptive design DR ---Maximizing Design---- correct ------NDLM Design---------DR Maximizing Design correct NDLM Design curve D1 D2 D3 D4 D5 Dmax* dose Dmax* D1 D2 D3 D4 D5 1 11 17 25 63 47 25 3 31 32 32 31 30 36 2 19 27 29 53 36 19 1 57 57 38 30 18 17 3 27 34 25 46 31 27 1 78 78 34 21 14 133 27 34 25 46 31 27 1 78 78 34 21 14 13 4 50 56 17 24 16 50 1 111 111 21 11 9 8 5 6 12 26 68 50 50 5 50 13 21 37 39 50 6 10 20 33 60 40 33 3 49 23 31 49 31 25 7 12 22 31 58 40 31 3 40 37 36 40 25 21 8 32 41 26 39 25 32 1 82 82 34 23 12 10 9 5 7 15 73 63 63 5 89 9 11 17 33 89 10 6 10 21 70 56 56 5 59 15 19 30 37 5910 6 10 21 70 56 56 5 59 15 19 30 37 59 11 9 13 21 67 52 52 5 53 22 23 28 34 53 12 21 27 23 53 38 21 1 68 68 31 23 18 18 13 4 7 26 73 53 53 5 64 9 13 25 49 64 14 6 12 32 68 45 68 4 47 11 23 40 47 39 15 7 13 32 67 44 67 4 43 15 28 38 43 36 16 16 25 33 55 34 25 2 45 45 45 33 22 14 BOLD underlined values indicate doses with TRUE MAX Clin.Utility 54 y *Dmax indicates N assigned to dose with maximum clinical utility
  • 55. Overall Summary • Phase 2 trial of test drug versus placebog p • Objectives: PoC + estimate dose regimen with optimal balance between  maximum  efficacy and minimum intolerance • Maximizing adaptive dose‐finding design yields better quality informationMaximizing adaptive dose finding design yields better quality information – fewer patients assigned to dose regimens which are ineffective or  intolerable – IVANOVA (2009)IVANOVA (2009) – Normal Dynamic Linear Model (NDLM, COMPASS User Manual, Cytel Inc.)  • True potential efficacy and tolerability dose‐response (DR) curves were  constructed to span the range of potential DR curvesconstructed to span the range of potential DR curves • Linear clinical utility function combines efficacy and tolerability dose‐ response curves • Simulation study evaluated performance characteristics• Simulation study evaluated performance characteristics • Results indicate the maximizing design  – Has high probability to estimate the correct or nearest to correct dose  ith i li i l tilit (i “t t d ”)with maximum clinical utility (i.e., “target dose”)  – Maximizes assignment of subjects at or adjacent to the target dose – Minimizes assignment of subject to doses remote from target dose 55
  • 56. Remarks & Potential Next Steps for Consideration • Maximizing Design via NDLM seems viable • Additional simulations could be conducted to assess if further  improvements can be made to: M dif l t t t 4/ k & l t 3 k– Modify enrolment rate to 4/week & lag to 3 weeks – Sample Size (size of initial cohort,  total N) – Utility Function Refinement ??Utility Function Refinement ?? 56
  • 57. References • Ivanova A, Liu K, Snyder E, Snavely D.  An adaptive design for  identifying the dose with the best efficacy/tolerability profile  with application to a crossover dose finding study Statistwith application to a crossover dose‐finding study.  Statist.  Med. 2009; 28:2941‐2951 • COMPASS V1.1 Users Manual, Cytel Inc., Cambridge, MA 2012 • Ivanova A, Xiao C, Tymofyeyev Y.  Two‐stage designs for Phase  2 dose‐finding trials.  Statist. Med. 2012; 31:2872–2881