SlideShare une entreprise Scribd logo
1  sur  6
Télécharger pour lire hors ligne
MATEMÁTICAS – FIME – E2015
C CALCULO DIFERENCIAL
𝐷𝑥(𝑢)𝑛
= 𝑛(𝑢)𝑛−1
𝑑𝑢
𝐷𝑥[𝑢 ∗ 𝑣] = 𝑢𝐷𝑥𝑣 + 𝑣𝐷𝑥𝑢
𝐷𝑥 [
𝑢
𝑣
] =
𝑣𝐷𝑥𝑢−𝑢𝐷𝑥𝑣
𝑣2
𝐷𝑥[𝑙𝑛𝑢] =
1
𝑢
𝐷𝑥𝑢
𝐷𝑥 [𝐿𝑜𝑔𝑎𝑢] =
1
𝑢𝑙𝑛𝑎
𝐷𝑥𝑢
𝐷𝑥[𝑒𝑢] = 𝑒𝑢
𝐷𝑥𝑢
𝐷𝑥[𝑎𝑢] = 𝑎𝑢
ln𝑎𝐷𝑥𝑢
𝐷𝑥[𝑆𝑒𝑛𝑢] = 𝐶𝑜𝑠𝑢𝐷𝑥𝑢
𝐷𝑥[𝐶𝑜𝑠𝑢] = −𝑆𝑒𝑛𝑢𝐷𝑥𝑢
𝐷𝑥[𝑇𝑎𝑛𝑢] = 𝑆𝑒𝑐2
𝑢𝐷𝑥𝑢
𝐷𝑥[𝐶𝑜𝑡𝑢] = −𝐶𝑠𝑐2
𝑢𝐷𝑥𝑢
𝐷𝑥[𝑆𝑒𝑐𝑢] = 𝑆𝑒𝑐𝑢𝑇𝑎𝑛𝑢𝐷𝑥𝑢
𝐷𝑥[𝐶𝑠𝑐𝑢] = −𝐶𝑠𝑐𝑢𝐶𝑜𝑡𝑢𝐷𝑥𝑢
𝐷𝑥[𝑆𝑒𝑛ℎ𝑢] = 𝐶𝑜𝑠ℎ(𝑢)𝐷𝑢
𝐷𝑥[𝐶𝑜𝑠ℎ𝑢] = 𝑆𝑒𝑛ℎ(𝑢)𝐷𝑢
𝐷𝑥[𝑇𝑎𝑛ℎ𝑢] = 𝑆𝑒𝑐ℎ2
(𝑢)𝐷𝑢
𝐷𝑥[𝐶𝑜𝑡ℎ𝑢] = −𝐶𝑠𝑐ℎ2
(𝑢)𝐷𝑢
𝐷𝑥[𝑆𝑒𝑐ℎ𝑢] = −𝑆𝑒𝑐ℎ(𝑢)𝑇𝑎𝑛ℎ(𝑢)𝐷𝑢
𝐷𝑥[𝐶𝑠𝑐ℎ𝑢] = −𝐶𝑠𝑐ℎ(𝑢)𝐶𝑜𝑡ℎ(𝑢)𝐷𝑢
𝐷𝑥[ 𝐴𝑟𝑐𝑆𝑒𝑛𝑢] =
𝐷𝑥𝑢
√1−𝑢2
𝐷𝑥[ 𝐴𝑟𝑐𝐶𝑜𝑠𝑢] =
−𝐷𝑥𝑢
√1−𝑢2
𝐷𝑥[ 𝐴𝑟𝑐𝑇𝑎𝑛𝑢] =
𝐷𝑥𝑢
1+ 𝑢2
𝐷𝑥[ 𝐴𝑟𝑐𝐶𝑜𝑡𝑢] =
−𝐷𝑥𝑢
1+ 𝑢2
𝐷𝑥[ 𝐴𝑟𝑐𝑆𝑒𝑐𝑢] =
𝐷𝑥𝑢
|𝑢|√𝑢2−1
𝐷𝑥[ 𝐴𝑟𝑐𝐶𝑠𝑐𝑢] =
−𝐷𝑥𝑢
|𝑢|√𝑢2−1
𝐷𝑥[ 𝑆𝑒𝑛ℎ−1
𝑢] =
𝐷𝑥𝑢
√𝑢2+ 1
𝐷𝑥[ 𝐶𝑜𝑠ℎ−1
𝑢] =
𝐷𝑥𝑢
√𝑢2− 1
𝐷𝑥[ 𝑇𝑎𝑛ℎ−1
𝑢] =
𝐷𝑥𝑢
1 − 𝑢2
𝐷𝑥[ 𝐶𝑜𝑡ℎ−1
𝑢] =
𝐷𝑥𝑢
1 − 𝑢2
𝐷𝑥[ 𝑆𝑒𝑐ℎ−1
𝑢] =
−𝐷𝑥𝑢
𝑢 √1−𝑢2
𝐷𝑥[ 𝐶𝑠𝑐ℎ−1
𝑢] =
−𝐷𝑥𝑢
|𝑢|√1−𝑢2
REGLAS BASICAS DE LA INTEGRACION
∫[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥) ± ∫ 𝑔(𝑥)𝑑𝑥
∫ 𝑑𝑥 = 𝑥 + 𝐶
∫ 𝑥𝑛
𝑑𝑥 =
𝑥𝑛+1
𝑛+1
+ 𝐶
∫ 𝐾𝑓(𝑥)𝑑𝑥 = 𝐾 ∫ 𝑓(𝑥)𝑑𝑥 𝐊 = 𝐜𝐭𝐞
CAMBIO DE VARIABLE
∫ 𝑒𝑢
𝑑𝑢 = 𝑒𝑢
+ 𝐶
∫ 𝑎𝑢
𝑑𝑢 =
𝑎𝑢
ln 𝑎
+ 𝐶
∫ 𝑢𝑛
𝑑𝑢 =
𝑢𝑛+1
𝑛+1
+ 𝐶 𝐧 ≠ −𝟏
En donde u es una función
polinomial o trascendental
𝒆 = 𝑪𝒕𝒆. 𝒅𝒆 𝑬𝒖𝒍𝒆𝒓 = 𝟐. 𝟕𝟏𝟖
𝑃𝑟𝑜𝑝𝑖𝑒𝑑𝑎𝑑: 𝑒 𝑙𝑛𝑥
= 𝑥
FUNCION LOGARITMICA
𝐿𝑛 1 = 0
∫
𝑑𝑢
𝑢
= 𝑙𝑛|𝑢| + 𝐶
Propiedades:
Ln (pq) = Ln p + Ln q
Ln e=1
Ln(
𝑝
𝑞
) = 𝐿𝑛(𝑝) − 𝐿𝑛(𝑞)
Ln 𝑝𝑟
= 𝑟 𝐿𝑛 𝑝
FUNCIONES EXPONENCIALES
FUNCIONES TRIGONOMÉTRICAS
∫ 𝑆𝑒𝑛(𝑢)𝑑𝑢 = −𝐶𝑜𝑠(𝑢) + 𝐶
∫ 𝐶𝑜𝑠(𝑢)𝑑𝑢 = 𝑆𝑒𝑛(𝑢) + 𝐶
∫ 𝑇𝑎𝑛(𝑢)𝑑𝑢 = ln|𝑆𝑒𝑐(𝑢)| + 𝐶
= −ln|𝐶𝑜𝑠(𝑢)| + 𝐶
∫ 𝐶𝑜𝑡(𝑢)𝑑𝑢 = −ln|𝐶𝑠𝑐(𝑢)| + 𝐶
= ln|𝑆𝑒𝑛(𝑢)| + 𝐶
∫ 𝑆𝑒𝑐(𝑢)𝑑𝑢 = ln|𝑆𝑒𝑐(𝑢) + 𝑇𝑎𝑛(𝑢)| + 𝐶
∫ 𝐶𝑠𝑐(𝑢)𝑑𝑢 = ln|𝐶𝑠𝑐(𝑢) − 𝐶𝑜𝑡 (𝑢)| + 𝐶
∫ 𝑆𝑒𝑐2(𝑢)𝑑𝑢 = 𝑇𝑎𝑛(𝑢) + 𝐶
∫ 𝐶𝑠𝑐2(𝑢)𝑑𝑢 = − 𝐶𝑜𝑡(𝑢) + 𝐶
∫ 𝑆𝑒𝑐(𝑢)𝑇𝑎𝑛(𝑢)𝑑𝑢 = 𝑆𝑒𝑐(𝑢) + 𝐶
∫ 𝐶𝑠𝑐(𝑢)𝐶𝑜𝑡(𝑢)𝑑𝑢 = −𝐶𝑠𝑐(𝑢) + 𝐶
FUNCIONES HIPERBÓLICAS
∫ 𝑆𝑒𝑛ℎ(𝑢)𝑑𝑢 = 𝐶𝑜𝑠ℎ(𝑢) + 𝐶
∫ 𝐶𝑜𝑠ℎ(𝑢)𝑑𝑢 = 𝑆𝑒𝑛ℎ(𝑢) + 𝐶
∫ 𝑇𝑎𝑛ℎ(𝑢)𝑑𝑢 = 𝑙𝑛|𝐶𝑜𝑠ℎ 𝑢| + 𝐶
∫ 𝐶𝑜𝑡ℎ(𝑢)𝑑𝑢 = 𝑙𝑛|𝑆𝑒𝑛ℎ 𝑢| + 𝐶
∫ 𝑆𝑒𝑐ℎ2(𝑢)𝑑𝑢 = 𝑇𝑎𝑛ℎ(𝑢) + 𝐶
∫ 𝐶𝑠𝑐ℎ2(𝑢)𝑑𝑢 = − 𝐶𝑜𝑡ℎ(𝑢) + 𝐶
∫ 𝑆𝑒𝑐ℎ(𝑢)𝑇𝑎𝑛ℎ(𝑢)𝑑𝑢 = −𝑆𝑒𝑐ℎ(𝑢) + 𝐶
∫ 𝐶𝑠𝑐ℎ(𝑢)𝐶𝑜𝑡ℎ(𝑢)𝑑𝑢 = −𝐶𝑠𝑐ℎ(𝑢) + 𝐶
FUNCIONES TRIGONOMÉTRICAS INVERSAS
∫
𝑑𝑢
√𝑎2− 𝑢2
= 𝑆𝑒𝑛−1
(
𝑢
𝑎
) + 𝐶
∫
𝑑𝑢
𝑎2+ 𝑢2 =
1
𝑎
𝑇𝑎𝑛−1
(
𝑢
𝑎
) + 𝐶
∫
𝑑𝑢
𝑢 √𝑢2− 𝑎2
=
1
𝑎
𝑆𝑒𝑐−1
(
𝑢
𝑎
) + 𝐶
FUNCIONES HIPERBOLICAS INVERSAS
∫
𝑑𝑢
√𝑎2+ 𝑢2
= 𝑆𝑒𝑛ℎ−1
(
𝑢
𝑎
) + 𝐶
∫
𝑑𝑢
√𝑢2− 𝑎2
= 𝐶𝑜𝑠ℎ−1
(
𝑢
𝑎
) + 𝐶
∫
𝑑𝑢
𝑢 √𝑎2+ 𝑢2
=
−1
𝑎
𝐶𝑠𝑐ℎ−1
(
𝑢
𝑎
) + 𝐶
∫
𝑑𝑢
𝑢 √𝑎2− 𝑢2
=
−1
𝑎
𝑆𝑒𝑐ℎ−1
(
𝑢
𝑎
) + 𝐶
∫
𝑑𝑢
𝑎2− 𝑢2
=
1
𝑎
𝑇𝑎𝑛ℎ−1
(
𝑢
𝑎
) + 𝐶
∫
𝑑𝑢
√𝑢2± 𝑎2
= ln (𝑢 + √𝑢2 ± 𝑎2) + 𝐶
∫
𝑑𝑢
𝑎2− 𝑢2
=
1
2𝑎
𝑙𝑛 |
𝑎+𝑢
𝑎−𝑢
| + 𝐶
∫
𝑑𝑢
𝑢 √𝑎2± 𝑢2
= −
1
𝑎
𝑙𝑛 (
𝑎+√𝑎2± 𝑢2
|𝑢|
) + 𝐶
Forma equivalente de las integrales que dan como resultado
HIPERBÓLICAS INVERSAS
SUSTITUCIÓN TRIGONOMÉTRICA
Forma Sustitución la raíz se sustituye por:
√𝑎2 − 𝑢2 u= aSen𝜃 aCos𝜃
√𝑎2 + 𝑢2 u= aTan𝜃 aSec𝜃
√𝑢2 − 𝑎2 u= aSec𝜃 aTan𝜃
 
 
 
 
INTEGRAL POR PARTES
∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢
CASOS TRIGONOMÉTRICOS
∫ 𝑆𝑒𝑛𝑛(𝑢)𝑑𝑢; ∫ 𝐶𝑜𝑠𝑛(𝑢)𝑑𝑢
CASO I.
En donde n es entero impar positivo
Expresar:
𝑆𝑒𝑛𝑛(𝑢) = 𝑆𝑒𝑛𝑛−1(𝑢) 𝑆𝑒𝑛 (𝑢)
Usar: 𝑺𝒆𝒏𝟐(𝒖) = 𝟏 − 𝑪𝒐𝒔𝟐(𝒖)
𝐶𝑜𝑠𝑛(𝑢) = 𝐶𝑜𝑠𝑛−1(𝑢) 𝐶𝑜𝑠(𝑢)
Usar: 𝑪𝒐𝒔𝟐(𝒖) = 𝟏 − 𝑺𝒆𝒏𝟐(𝒖)
CASO II :
∫ 𝑆𝑒𝑛𝑛(𝑢) 𝐶𝑜𝑠𝑚(𝑢)𝑑𝑢 ;
En donde al menos un exponente es entero impar
positivo, utilizar:
𝑺𝒆𝒏𝟐(𝒖) + 𝑪𝒐𝒔𝟐(𝒖) = 𝟏
de manera similar al CASO I
NOTA: Si los dos exponentes son enteros impares
positivos se cambia el impar menor
𝐴𝑥 + 𝐵
𝑎𝑥2 + 𝑏𝑥 + 𝑐
CASO III. Factores cuadráticos distintos.
A cada factor cuadrático (𝑎𝑥2
+ 𝑏𝑥 + 𝑐) le
corresponde una fracción de la forma
𝐴1𝑥 + 𝐵1
𝑎𝑥2 + 𝑏𝑥 + 𝑐
+ ⋯ +
𝐴𝑘𝑥 + 𝐵𝑘
(𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑘
CASO IV. Factores cuadráticos repetidos.
A cada factor cuadrático repetido (𝑎𝑥2
+ 𝑏𝑥 + 𝑐)𝑘
le
corresponde la suma de k fracciones parciales de la
forma:
TEOREMAS DE SUMATORIAS
Sean m y n enteros positivos, c= constante
1. ∑ 𝒄 𝒇(𝒊) = 𝒄 ∑ 𝒇(𝒊)
𝒏
𝒊=𝟏
𝒏
𝒊=𝟏
2. ∑ [𝒇(𝒊) ± 𝒈(𝒊)] = ∑ 𝒇(𝒊) ± ∑ 𝒈(𝒊)
𝒏
𝒊=𝟏
𝒏
𝒊=𝟏
𝒏
𝒊=𝟏
3. ∑ 𝒇(𝒊) = ∑ 𝒇(𝒊) + ∑ 𝒇(𝒊) 𝒎 < 𝒏
𝒏
𝒊=𝒎+𝟏
𝒎
𝒊=𝟏
𝒏
𝒊=𝟏
4. ∑ 𝒄 = 𝒏𝒄
𝒏
𝒊=𝟏
5. ∑ 𝒊
𝒏
𝒊=𝟏 =
𝒏(𝒏+𝟏)
𝟐
6. ∑ 𝒊𝟐
=
𝒏(𝒏+𝟏)(𝟐𝒏+𝟏)
𝟔
𝒏
𝒊=𝟏
7. ∑ 𝒊𝟑
= [
𝒏(𝒏+𝟏)
𝟐
]
𝟐
𝒏
𝒊=𝟏
SUMA DE RIEMANN
∫ 𝑓(𝑥)𝑑𝑥 = lim𝑛→∞ ∑ 𝑓(𝑐𝑖)∆𝑥
𝑛
𝑖=1
𝑏
𝑎
∆𝑥 =
𝑏−𝑎
𝑛
, 𝑐𝑖 = 𝑎 + 𝑖 ∗ ∆𝑥
FRACCIONES PARCIALES
𝐴
𝑎𝑥 + 𝑏
CASO I: Factores lineales distintos.
A cada factor lineal (ax + b) le corresponde una
fracción de la forma:
𝐴1
𝑎𝑥 + 𝑏
+
𝐴2
(𝑎𝑥 + 𝑏)2
+ ⋯ +
𝐴𝑘
(𝑎𝑥 + 𝑏)𝑘
CASO II: Factores lineales repetidos.
A cada factor lineal repetido (ax + b)𝑘
. Le
corresponde la suma de k fracciones parciales de
la forma:
Tipo de Integral Condición Identidad útil
1 ∫ 𝑆𝑒𝑛𝑛
𝑢 𝑑𝑢, ∫ 𝐶𝑜𝑠𝑛
𝑢 𝑑𝑢,
donde n es un
entero impar
positivo
𝑆𝑒𝑛2
𝑢 + 𝐶𝑜𝑠2
𝑢 = 1
2 ∫ 𝑆𝑒𝑛𝑛
𝑢 𝐶𝑜𝑠𝑚
𝑢 𝑑𝑢,
donde n o m
es un entero
impar positivo
𝑆𝑒𝑛2
𝑢 + 𝐶𝑜𝑠2
𝑢 = 1
3
∫ 𝑆𝑒𝑛𝑛
𝑢 𝑑𝑢,
∫ 𝐶𝑜𝑠𝑛
𝑢 𝑑𝑢,
∫ 𝑆𝑒𝑛𝑛
𝑢 𝐶𝑜𝑠𝑚
𝑢 𝑑𝑢,
donde n y m
son enteros
pares positivos
𝑆𝑒𝑛2
𝑢 =
1−𝐶𝑜𝑠 2𝑢
2
𝐶𝑜𝑠2
𝑢 =
1+𝐶𝑜𝑠 2𝑢
2
𝑆𝑒𝑛 𝑢 𝐶𝑜𝑠 𝑢 =
1
2
𝑆𝑒𝑛 2𝑢
4
∫ 𝑆𝑒𝑛 (𝑚𝑢) 𝐶𝑜𝑠(𝑛𝑢)𝑑𝑢
∫ 𝑆𝑒𝑛 (𝑚𝑢) 𝑆𝑒𝑛(𝑛𝑢)𝑑𝑢
∫ 𝐶𝑜𝑠 (𝑚𝑢) 𝐶𝑜𝑠(𝑛𝑢)𝑑𝑢
donde n y m
son cualquier
número
𝑆𝑒𝑛 𝐴 𝐶𝑜𝑠 𝐵 =
1
2
[𝑆𝑒𝑛 (𝐴 − 𝐵) + 𝑆𝑒𝑛 (𝐴 + 𝐵)]
𝑆𝑒𝑛 𝐴 𝑆𝑒𝑛 𝐵 =
1
2
[ 𝐶𝑜𝑠 (𝐴 − 𝐵) − 𝐶𝑜𝑠 (𝐴 + 𝐵)]
𝐶𝑜𝑠 𝐴 𝐶𝑜𝑠 𝐵 =
1
2
[ 𝐶𝑜𝑠 (𝐴 − 𝐵) + 𝐶𝑜𝑠 (𝐴 + 𝐵)]
5
∫ 𝑇𝑎𝑛𝑛
𝑢 𝑑𝑢,
∫ 𝐶𝑜𝑡𝑛
𝑢 𝑑𝑢
donde n es
cualquier
número
entero
1 + 𝑇𝑎𝑛2
𝑢 = 𝑆𝑒𝑐2
𝑢
6
∫ 𝑆𝑒𝑐𝑛
𝑢 𝑑𝑢,
∫ 𝐶𝑠𝑐𝑛
𝑢 𝑑𝑢
donde n es un
entero par
positivo
1 + 𝑇𝑎𝑛2
𝑢 = 𝑆𝑒𝑐2
𝑢
1 + 𝐶𝑜𝑡2
𝑢 = 𝐶𝑠𝑐2
𝑢
7
∫ 𝑇𝑎𝑛𝑚
𝑢 𝑆𝑒𝑐𝑛
𝑢 𝑑𝑢
∫ 𝐶𝑜𝑡𝑚
𝑢 𝐶𝑠𝑐𝑛
𝑢 𝑑𝑢
donde n es un
entero par
positivo
1 + 𝑇𝑎𝑛2
𝑢 = 𝑆𝑒𝑐2
𝑢
1 + 𝐶𝑜𝑡2
𝑢 = 𝐶𝑠𝑐2
𝑢
8
∫ 𝑇𝑎𝑛𝑚
𝑢 𝑆𝑒𝑐𝑛
𝑢 𝑑𝑢
∫ 𝐶𝑜𝑡𝑚
𝑢 𝐶𝑠𝑐𝑛
𝑢 𝑑𝑢
donde m es
un entero
impar positivo
1 + 𝑇𝑎𝑛2
𝑢 = 𝑆𝑒𝑐2
𝑢
1 + 𝐶𝑜𝑡2
𝑢 = 𝐶𝑠𝑐2
𝑢
CASOS TRIGONOMETRICOS APLICACIONES DE LA INTEGRAL DEFINIDA
𝐴 = ∫ [(𝐹𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒 𝑎𝑟𝑟𝑖𝑏𝑎) − (𝑓𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒 𝑎𝑏𝑎𝑗𝑜)]𝑑𝑥
𝑏
𝑎
𝐴 = ∫ [(𝐹𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒𝑟𝑒𝑐ℎ𝑎) − (𝑓𝑢𝑛𝑐𝑖ó𝑛 𝑖𝑧𝑞𝑢𝑖𝑒𝑟𝑑𝑎)]𝑑𝑦
𝑏
𝑎
ÁREA:
𝑉 = 2𝜋 ∫ 𝑟(𝑦)ℎ(𝑦)𝑑𝑦
𝑏
𝑎
𝑉 = 2𝜋 ∫ 𝑟(𝑥)ℎ(𝑥)𝑑𝑥
𝑏
𝑎
VOLUMEN / METODO DE CAPAS O CORTEZA
Cuando el eje de revolución es horizontal
Cuando el eje de revolución es vertical
VOLUMEN / METODO DEL DISCO O ARANDELA
V= 𝜋 ∫ [(𝑅2(𝑥) − 𝑟2
(𝑥)]𝑑𝑥
𝑏
𝑎
V= 𝜋 ∫ [(𝑅2(𝑦) − 𝑟2
(𝑦)]𝑑𝑦
𝑏
𝑎
LONGITUD DE ARCO
𝑆 = ∫ √1 + [𝑓´(𝑥)]2 𝑑𝑥
𝑏
𝑎
𝑆 = ∫ √1 + [𝑔´(𝑦)]2 𝑑𝑦
𝑑
𝑐
TRABAJO
𝑾 = ∫ 𝑭(𝒙)𝒅𝒙
𝒃
𝒂
CALCULO DE INTEGRALES DOBLES
∬ 𝑓(𝑥, 𝑦)𝑑𝐴
𝑅
= ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥
𝑔2(𝑥)
𝑔1(𝑥)
𝑏
𝑎 ∬ 𝑓(𝑥, 𝑦)𝑑𝐴
𝑅
= ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑔2(𝑦)
𝑔1(𝑦)
𝑏
𝑎
IDENTIDADES TRIGONOMÉTRICAS
INVERSAS
𝑆𝑒𝑛(𝑢) =
1
𝐶𝑠𝑐(𝑢)
Csc(𝑢) =
1
𝑆𝑒𝑛(𝑢)
𝐶𝑜𝑠(𝑢) =
1
𝑆𝑒𝑐(𝑢)
𝑆𝑒𝑐(𝑢) =
1
𝐶𝑜𝑠(𝑢)
𝑇𝑎𝑛(𝑢) =
1
𝐶𝑜𝑡(𝑢)
𝐶𝑜𝑡(𝑢) =
1
𝑇𝑎𝑛(𝑢)
FORMA DE COCIENTE
𝑇𝑎𝑛(𝑢) =
𝑆𝑒𝑛(𝑢)
𝐶𝑜𝑠(𝑢)
𝐶𝑜𝑡(𝑢) =
𝐶𝑜𝑠(𝑢)
𝑆𝑒𝑛(𝑢)
PITAGÓRICAS
𝑆𝑒𝑛2(𝑢) = 1 − 𝐶𝑜𝑠2
(𝑢)
𝐶𝑜𝑠2(𝑢) = 1 − 𝑆𝑒𝑛2
(𝑢)
𝑆𝑒𝑐2(𝑢) = 1 + 𝑇𝑎𝑛2
(𝑢)
𝑇𝑎𝑛2(𝑢) = 𝑆𝑒𝑐2(𝑢) − 1
𝐶𝑠𝑐2(𝑢) = 1 + 𝐶𝑜𝑡2
(𝑢)
𝐶𝑜𝑡2(𝑢) = 𝐶𝑠𝑐2(𝑢) − 1
ANGULO DOBLE
Sen2u= 2Sen(u)Cos(u)
Cos2u = 𝐶𝑜𝑠2(𝑢) − 𝑆𝑒𝑛2(𝑢)
𝑆𝑒𝑛2(𝑢) =
1−cos(2𝑢)
2
𝐶𝑜𝑠2(𝑢) =
1+cos(2𝑢)
2
IDENTIDADES HIPERBÓLICAS
𝑐𝑜𝑠ℎ2(𝑢) − 𝑠𝑒𝑛ℎ2(𝑢) = 1
𝑠𝑒𝑐ℎ2(𝑢) + 𝑡𝑎𝑛ℎ2(𝑢) = 1
𝑐𝑜𝑡ℎ2(𝑢) − 𝑐𝑠𝑐ℎ2(𝑢) = 1
𝑠𝑒𝑛ℎ(2𝑢) = 2𝑠𝑒𝑛ℎ(𝑢)cosh(𝑢)
cosh(2𝑢) = 𝑐𝑜𝑠ℎ2(𝑢) +
𝑠𝑒𝑛ℎ2(𝑢)
𝑡𝑎𝑛ℎ(2𝑢) =
2tanh(𝑢)
1+𝑡𝑎𝑛ℎ2(𝑢)
𝑠𝑒𝑛ℎ2(𝑢) =
𝑐𝑜𝑠ℎ(2𝑢)−1
2
𝑐𝑜𝑠ℎ2(𝑢) =
𝑐𝑜𝑠ℎ(2𝑢)+1
2
𝑠𝑒𝑛ℎ 𝑥 =
𝑒𝑥−𝑒−𝑥
2
𝐶𝑜𝑠ℎ 𝑥 =
𝑒𝑥+𝑒−𝑥
2
𝑇𝑎𝑛ℎ 𝑥 =
𝑠𝑒𝑛ℎ𝑥
𝑐𝑜𝑠ℎ𝑥
𝐶𝑜𝑡ℎ 𝑥 =
𝑐𝑜𝑠ℎ𝑥
𝑠𝑒𝑛ℎ𝑥
𝑆𝑒𝑛ℎ 𝑥𝐶𝑠𝑐ℎ𝑥 = 1
𝐶𝑜𝑠ℎ 𝑥𝑆𝑒𝑐ℎ𝑥 = 1
𝑇𝑎𝑛ℎ 𝑥𝐶𝑜𝑡ℎ𝑥 = 1
FUNCIONES TRIGONOMÉTRICAS
𝑆𝑒𝑛𝜃 =
𝐶.𝑂.
𝐻𝑖𝑝
𝐶𝑜𝑡𝜃 =
𝐶.𝐴.
𝐶.𝑂.
𝐶𝑜𝑠𝜃 =
𝐶.𝐴.
𝐻𝑖𝑝
𝑆𝑒𝑐𝜃 =
𝐻𝑖𝑝.
𝐶.𝐴.
𝑇𝑎𝑛𝜃 =
𝐶.𝑂.
𝐶.𝐴.
𝐶𝑠𝑐𝜃 =
𝐻𝑖𝑝.
𝐶.𝑂.
𝑆𝑒𝑛(−𝐴) = −𝑠𝑒𝑛(𝐴)
𝐶𝑜𝑠(−𝐵) = cos(𝐵)
𝑠𝑒𝑛(0) = 0
𝑠𝑒𝑛(𝜋) = 0
𝑠𝑒𝑛(2𝜋) = 0
𝑠𝑒𝑛(𝑛𝜋) = 0
𝑠𝑒𝑛 [(2𝑛 ± 1)
𝜋
2
] = −(−1)𝑛
= (−1)𝑛+1
𝑠𝑒𝑛 [(1 ± 2𝑛)
𝜋
2
] = −(−1)𝑛
= (−1)𝑛+1
𝑐𝑜𝑠(0) = 1
𝑐𝑜𝑠(𝜋) = −1
𝑐𝑜𝑠(2𝜋) = 1
𝑐𝑜𝑠(2𝑛𝜋) = 1
𝑐𝑜𝑠 [(2𝑛 ± 1)
𝜋
2
] = 𝑐𝑜𝑠 [(1 ± 2𝑛)
𝜋
2
] = 0
𝑐𝑜𝑠(−𝑛𝜋) = 𝑐𝑜𝑠(𝑛𝜋) = (−1)𝑛
𝑠𝑒𝑛 [(1 ± 4𝑛)
𝜋
2
] = 1
𝐶𝑜𝑠 [(1 ± 4𝑛)
𝜋
2
] = 0
VALORES IMPORTANTES DEL SENO Y COSENO
𝑠𝑒𝑛 (
𝜋
2
) = 1
𝑠𝑒𝑛 (
3
2
𝜋) = −1
𝑠𝑒𝑛(−𝑛𝜋) = −𝑠𝑒𝑛(𝑛𝜋) = 0
𝑐𝑜𝑠 (
𝜋
2
) = 0
𝑐𝑜𝑠 (
3
2
𝜋) = 0
𝑐𝑜𝑠(2𝑛 − 1)𝜋 = −1
𝑆𝑒𝑛(2𝑛 − 1)𝜋 = 0
𝑐𝑜𝑠(𝑛𝜋) = (−1)𝑛
𝑐𝑜𝑠(1 ± 𝑛)𝜋 = −(−1)𝑛
𝑒±𝑗𝑡
= cos(𝑡) ± 𝑗 𝑠𝑒𝑛(𝑡)
𝑆𝑒𝑛 (𝑡) =
1
2𝑗
(𝑒𝑗𝑡
− 𝑒−𝑗𝑡
)
𝐶𝑜𝑠 (𝑡) =
1
2
(𝑒𝑗𝑡
+ 𝑒−𝑗𝑡
)
𝑎𝑚
𝑎𝑛
= 𝑎𝑚+𝑛
(
𝑎
𝑏
)
𝑚
=
𝑎𝑚
𝑏𝑚
(𝑎𝑚
)𝑛
= 𝑎𝑚𝑛
𝑎−𝑛
=
1
𝑎𝑛
(𝑎𝑏)𝑚
= 𝑎𝑚
𝑏𝑚
𝑎
𝑝
𝑞 = √𝑎𝑝
𝑞
𝑎𝑚
𝑎𝑛 = 𝑎𝑚−𝑛
𝑚 > 𝑛 𝑎0
= 1
𝑎𝑚
𝑎𝑛 =
1
𝑎𝑛−𝑚 𝑚 < 𝑛
LEYES DE EXPONENTES
TABLA DE TRANSFORMADAS ELEMENTALES
f(t) F(s)
1
C
𝑪
𝒔
, 𝒔 > 0
2
t
𝟏
𝒔𝟐
, 𝒔 > 0
3
𝒕𝒏 𝒏!
𝒔𝒏+𝟏
, 𝒔 > 0
4
𝒆𝒂𝒕 𝟏
𝒔 − 𝒂
, 𝒔 > 𝑎
5
𝑺𝒆𝒏 𝒂𝒕
𝒂
𝒔𝟐 + 𝒂𝟐
, 𝒔 > 0
6
Cos at
𝒔
𝒔𝟐 + 𝒂𝟐
, 𝒔 > 0
7
Senh at
𝒂
𝒔𝟐 − 𝒂𝟐
, 𝒔 > |𝑎|
8
Cosh at
𝒔
𝒔𝟐 − 𝒂𝟐
, 𝒔 > |𝑎|
9
𝒕𝒏
𝒆𝒂𝒕
𝒏!
(𝒔 − 𝒂)𝒏+𝟏
10
𝒆𝒃𝒕
𝑺𝒆𝒏 𝒂𝒕
𝒂
(𝒔 − 𝒃)𝟐 + 𝒂𝟐
11
𝒆𝒃𝒕
𝑪𝒐𝒔 𝒂𝒕
𝒔 − 𝒃
(𝒔 − 𝒃)𝟐 + 𝒂𝟐
12
𝒆𝒃𝒕
𝑺𝒆𝒏𝒉 𝒂𝒕
𝒂
(𝒔 − 𝒃)𝟐 − 𝒂𝟐
13
𝒆𝒃𝒕
𝑪𝒐𝒔𝒉 𝒂𝒕
𝒔 − 𝒃
(𝒔 − 𝒃)𝟐 − 𝒂𝟐
TRANSFORMADAS DE LAPLACE
TABLA DE TRANSFORMADAS INVERSAS
ELEMENTALES
F(s) f(t)
1 𝑪
𝒔
C
2 𝟏
𝒔𝟐
t
3 𝟏
𝒔𝒏+𝟏
𝒕𝒏
𝒏!
4 𝟏
𝒔 − 𝒂
𝒆𝒂𝒕
5 𝟏
𝒔𝟐 + 𝒂𝟐
𝑺𝒆𝒏 𝒂𝒕
𝒂
6 𝒔
𝒔𝟐 + 𝒂𝟐 Cos at
7 𝟏
𝒔𝟐 − 𝒂𝟐
𝑺𝒆𝒏𝒉 𝒂𝒕
𝒂
8 𝒔
𝒔𝟐 − 𝒂𝟐 Cosh at
9 𝟏
(𝒔 − 𝒂)𝒏+𝟏
𝒕𝒏
𝒆𝒂𝒕
𝒏!
10 𝟏
(𝒔 − 𝒃)𝟐 + 𝒂𝟐
𝒆𝒃𝒕
𝑺𝒆𝒏 𝒂𝒕
𝒂
11 𝒔 − 𝒃
(𝒔 − 𝒃)𝟐 + 𝒂𝟐 𝒆𝒃𝒕
𝑪𝒐𝒔 𝒂𝒕
12 𝟏
(𝒔 − 𝒃)𝟐 − 𝒂𝟐
𝒆𝒃𝒕
𝑺𝒆𝒏𝒉 𝒂𝒕
𝒂
13 𝒔 − 𝒃
(𝒔 − 𝒃)𝟐 − 𝒂𝟐 𝒆𝒃𝒕
𝑪𝒐𝒔𝒉 𝒂𝒕
ℒ{𝑓(𝑛)
(𝑡)} = 𝑠𝑛
𝐹(𝑠) − 𝑠𝑛−1
𝐹(0) − 𝑠𝑛−2
𝐹′(0)
− ⋯ − 𝑠𝐹(𝑛−2)
(0) − 𝐹(𝑛−1)
(0)
ℒ {∫ 𝑓(𝑡)𝑑𝑡
𝑡
0
} =
𝐹(𝑠)
𝑠
ℒ{𝑡𝑛
𝑓(𝑡)} = (−1)𝑛
𝐹𝑛
(𝑠)
ℒ−1{𝐹(𝑠 − 𝑎)} = 𝑒𝑎𝑡
𝑓(𝑡)
ℒ−1
{𝐹𝑛
(𝑠)} = (−1)𝑛
𝑡𝑛
𝑓(𝑡)
ℒ−1
{
𝐹(𝑠)
𝑠𝑛
} = ∫ … ∫ 𝑓(𝑡)𝑑𝑡 … 𝑑𝑡
𝑡
0
𝑡
0
ℒ−1{𝐹(𝑠)𝐺(𝑠)} = ∫ 𝑓(𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢
𝑡
0
= ∫ 𝑔(𝑢)𝑓(𝑡 − 𝑢)𝑑𝑢
𝑡
0
Transformada de la derivada
Transformada de la Integral
Multiplicación por 𝐭𝐧
Primera Propiedad de Traslación
Transformada Inversa de la Derivada
División por s
Teorema de Convolución o Transformada
Inversa del Producto
Si ℒ−1{𝐹(𝑠)} = 𝑓(𝑡) 𝑦 ℒ−1{𝐺(𝑠)} = 𝑔(𝑡),
entonces:
𝑓(𝑡) =
1
2
𝑎0 + ∑[𝑎𝑛 cos(𝑛𝜔0𝑡) + 𝑏𝑛 sen(𝑛𝜔0𝑡)]
∞
𝑛=1
Fórmula General 𝑎0 =
2
𝑇
∫ f(t) 𝑑𝑡
𝑇
2
⁄
−𝑇
2
⁄
𝑎𝑛 =
2
𝑇
∫ f(t)cos(𝑛𝜔0𝑡)𝑑𝑡
𝑇
2
⁄
−𝑇
2
⁄
𝑏𝑛 =
2
𝑇
∫ f(t)sen(𝑛𝜔0𝑡)𝑑𝑡
𝑇
2
⁄
−𝑇
2
⁄
Simetría Par 𝑎0 =
4
𝑇
∫ f(t) 𝑑𝑡
𝑇
2
⁄
0
𝑎𝑛 =
4
𝑇
∫ f(t)cos(𝑛𝜔0𝑡)𝑑𝑡
𝑇
2
⁄
0
𝑏𝑛 = 0
Simetría Impar 𝑎0 = 0 𝑎𝑛 = 0 𝑏𝑛 =
4
𝑇
∫ f(t)sen(𝑛𝜔0𝑡)𝑑𝑡
𝑇
2
⁄
0
Simetría de Media Onda 𝑎0 = 0 𝑎2𝑛−1 =
4
𝑇
∫ f(t)cos[(2𝑛 − 1)(𝜔0𝑡)]𝑑𝑡
𝑇
2
⁄
0
𝑏2𝑛−1 =
4
𝑇
∫ f(t)sen[(2𝑛 − 1)(𝜔0𝑡)]𝑑𝑡
𝑇
2
⁄
0
Simetría de un cuarto de onda
Par
𝑎0 = 0 𝑎2𝑛−1 =
8
𝑇
∫ f(t)cos[(2𝑛 − 1)(𝜔0𝑡)]𝑑𝑡
𝑇
4
⁄
0
𝑏2𝑛−1 = 0
Simetría de un cuarto de onda
Impar
𝑎0 = 0 𝑎2𝑛−1 = 0
𝑏2𝑛−1 =
8
𝑇
∫ f(t)sen[(2𝑛 − 1)(𝜔0𝑡)]𝑑𝑡
𝑇
4
⁄
0
SERIES DE FOURIER
𝐶𝑛 =
1
𝑇
∫ 𝑓(𝑡)𝑒−𝑗𝑛𝑊𝑜𝑡
𝑑𝑡
𝑇
2
⁄
−𝑇
2
⁄
𝑓(𝑡) = ∑ 𝐶𝑛
∞
𝑛=−∞
𝑒𝑗𝑛𝑊𝑜𝑡
𝑗 = √−1
Serie De Fourier (FORMA COMPLEJA)
n= 0±1±2±3…
𝐶𝑛 =
1
2
(𝑎𝑛−𝑗𝑏𝑛)
𝐶0 =
1
2
𝑎0
Si se conoce 𝐚𝐧, 𝐚𝟎 y 𝐛𝐧
se obtiene:
𝑎𝑛 = 2𝑅𝑒[𝐶𝑛]
𝑏𝑛 = −2𝐼𝑚[𝐶𝑛]
𝑎0 = 2𝐶0
Si se conoce 𝐂𝐧, 𝐂𝟎 se obtiene:
𝜔𝑜 =
2𝜋
𝑇

Contenu connexe

Similaire à CalculoDiferencial

S14.derivadas y aplicaciones(2023-I)UNAC.pptx
S14.derivadas y aplicaciones(2023-I)UNAC.pptxS14.derivadas y aplicaciones(2023-I)UNAC.pptx
S14.derivadas y aplicaciones(2023-I)UNAC.pptxjeanhuarcaya4
 
Roger formulario1
Roger formulario1Roger formulario1
Roger formulario1tecoari
 
Ejercicios Resueltos de Calculo II
Ejercicios Resueltos de Calculo IIEjercicios Resueltos de Calculo II
Ejercicios Resueltos de Calculo IICarlos Aviles Galeas
 
Matematica daniel parra
Matematica daniel parraMatematica daniel parra
Matematica daniel parraDaniel Parra
 
Cheatsheet de Algebra sobre Propiedades de Signos, Fracciones, Exponentes, Ra...
Cheatsheet de Algebra sobre Propiedades de Signos, Fracciones, Exponentes, Ra...Cheatsheet de Algebra sobre Propiedades de Signos, Fracciones, Exponentes, Ra...
Cheatsheet de Algebra sobre Propiedades de Signos, Fracciones, Exponentes, Ra...Jose Perez
 
formulas de Potencia algebraica completo.
formulas de Potencia algebraica completo.formulas de Potencia algebraica completo.
formulas de Potencia algebraica completo.roger kasa
 
Potencia algebra folmula 1
Potencia algebra folmula 1Potencia algebra folmula 1
Potencia algebra folmula 1tecoarirap777
 
MAT-214 7ma clase.pdf
MAT-214  7ma clase.pdfMAT-214  7ma clase.pdf
MAT-214 7ma clase.pdfVLAZZXOf1
 
formulario de Matemática completa y mejorada
formulario de Matemática completa y mejorada formulario de Matemática completa y mejorada
formulario de Matemática completa y mejorada Roger CK
 
Actividad #5
Actividad #5Actividad #5
Actividad #5ldbb2290
 
Ajuste de poligonales precisas jjvt-CONTROL MICRO GEODESICO
Ajuste de poligonales precisas jjvt-CONTROL MICRO GEODESICOAjuste de poligonales precisas jjvt-CONTROL MICRO GEODESICO
Ajuste de poligonales precisas jjvt-CONTROL MICRO GEODESICOJaime Velastegui
 
Ecuaciones diferenciales aplicaciones
Ecuaciones diferenciales aplicacionesEcuaciones diferenciales aplicaciones
Ecuaciones diferenciales aplicacionesFreddy Quizhpi
 
Folletodeecuacionesdiferenciales1erparcial 101017161544-phpapp02
Folletodeecuacionesdiferenciales1erparcial 101017161544-phpapp02Folletodeecuacionesdiferenciales1erparcial 101017161544-phpapp02
Folletodeecuacionesdiferenciales1erparcial 101017161544-phpapp02Diego López
 
Demostraciones boussinesq(1885)
Demostraciones boussinesq(1885)Demostraciones boussinesq(1885)
Demostraciones boussinesq(1885)AlexCalsinCondori
 
Cálculo Integral UTN
Cálculo Integral UTNCálculo Integral UTN
Cálculo Integral UTN2030401
 

Similaire à CalculoDiferencial (20)

S14.derivadas y aplicaciones(2023-I)UNAC.pptx
S14.derivadas y aplicaciones(2023-I)UNAC.pptxS14.derivadas y aplicaciones(2023-I)UNAC.pptx
S14.derivadas y aplicaciones(2023-I)UNAC.pptx
 
Roger formulario1
Roger formulario1Roger formulario1
Roger formulario1
 
Ejercicios Resueltos de Calculo II
Ejercicios Resueltos de Calculo IIEjercicios Resueltos de Calculo II
Ejercicios Resueltos de Calculo II
 
Solucionario primer parcial
Solucionario primer parcial Solucionario primer parcial
Solucionario primer parcial
 
Matematica daniel parra
Matematica daniel parraMatematica daniel parra
Matematica daniel parra
 
Cheatsheet de Algebra sobre Propiedades de Signos, Fracciones, Exponentes, Ra...
Cheatsheet de Algebra sobre Propiedades de Signos, Fracciones, Exponentes, Ra...Cheatsheet de Algebra sobre Propiedades de Signos, Fracciones, Exponentes, Ra...
Cheatsheet de Algebra sobre Propiedades de Signos, Fracciones, Exponentes, Ra...
 
formulas de Potencia algebraica completo.
formulas de Potencia algebraica completo.formulas de Potencia algebraica completo.
formulas de Potencia algebraica completo.
 
Potencia algebra folmula 1
Potencia algebra folmula 1Potencia algebra folmula 1
Potencia algebra folmula 1
 
Ecuaciones diferenciales aplicadas a la cinetica quimica
Ecuaciones diferenciales aplicadas a  la cinetica quimicaEcuaciones diferenciales aplicadas a  la cinetica quimica
Ecuaciones diferenciales aplicadas a la cinetica quimica
 
MAT-214 7ma clase.pdf
MAT-214  7ma clase.pdfMAT-214  7ma clase.pdf
MAT-214 7ma clase.pdf
 
formulario de Matemática completa y mejorada
formulario de Matemática completa y mejorada formulario de Matemática completa y mejorada
formulario de Matemática completa y mejorada
 
Actividad #5
Actividad #5Actividad #5
Actividad #5
 
Ajuste de poligonales precisas jjvt-CONTROL MICRO GEODESICO
Ajuste de poligonales precisas jjvt-CONTROL MICRO GEODESICOAjuste de poligonales precisas jjvt-CONTROL MICRO GEODESICO
Ajuste de poligonales precisas jjvt-CONTROL MICRO GEODESICO
 
Ecuaciones diferenciales aplicaciones
Ecuaciones diferenciales aplicacionesEcuaciones diferenciales aplicaciones
Ecuaciones diferenciales aplicaciones
 
Folletodeecuacionesdiferenciales1erparcial 101017161544-phpapp02
Folletodeecuacionesdiferenciales1erparcial 101017161544-phpapp02Folletodeecuacionesdiferenciales1erparcial 101017161544-phpapp02
Folletodeecuacionesdiferenciales1erparcial 101017161544-phpapp02
 
Demostraciones boussinesq(1885)
Demostraciones boussinesq(1885)Demostraciones boussinesq(1885)
Demostraciones boussinesq(1885)
 
metodo de trapecio.pdf
metodo de trapecio.pdfmetodo de trapecio.pdf
metodo de trapecio.pdf
 
Cálculo Integral UTN
Cálculo Integral UTNCálculo Integral UTN
Cálculo Integral UTN
 
Pag 48 53
Pag 48 53Pag 48 53
Pag 48 53
 
INFORME MATEMATICA III.docx
INFORME MATEMATICA III.docxINFORME MATEMATICA III.docx
INFORME MATEMATICA III.docx
 

Dernier

IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...YobanaZevallosSantil1
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
Concurso José María Arguedas nacional.pptx
Concurso José María Arguedas nacional.pptxConcurso José María Arguedas nacional.pptx
Concurso José María Arguedas nacional.pptxkeithgiancarloroquef
 
Técnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesTécnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesRaquel Martín Contreras
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdfPresentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdfSarayLuciaSnchezFigu
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxYeseniaRivera50
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024gharce
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...fcastellanos3
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOMARIBEL DIAZ
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxRosabel UA
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxFabianValenciaJabo
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxLudy Ventocilla Napanga
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfssuser50d1252
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfssuser50d1252
 

Dernier (20)

IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO  YESSENIA 933623393 NUEV...
IV SES LUN 15 TUTO CUIDO MI MENTE CUIDANDO MI CUERPO YESSENIA 933623393 NUEV...
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
Concurso José María Arguedas nacional.pptx
Concurso José María Arguedas nacional.pptxConcurso José María Arguedas nacional.pptx
Concurso José María Arguedas nacional.pptx
 
Técnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materialesTécnicas de grabado y estampación : procesos y materiales
Técnicas de grabado y estampación : procesos y materiales
 
Aedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptxAedes aegypti + Intro to Coquies EE.pptx
Aedes aegypti + Intro to Coquies EE.pptx
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdfPresentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
Presentacion minimalista aesthetic simple beige_20240415_224856_0000.pdf
 
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptxPresentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
Presentación de Estrategias de Enseñanza-Aprendizaje Virtual.pptx
 
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
SISTEMA INMUNE FISIOLOGIA MEDICA UNSL 2024
 
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
Estas son las escuelas y colegios que tendrán modalidad no presencial este lu...
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADOPLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
PLAN DE TUTORIA- PARA NIVEL PRIMARIA CUARTO GRADO
 
DIA INTERNACIONAL DAS FLORESTAS .
DIA INTERNACIONAL DAS FLORESTAS         .DIA INTERNACIONAL DAS FLORESTAS         .
DIA INTERNACIONAL DAS FLORESTAS .
 
Presentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptxPresentación Bloque 3 Actividad 2 transversal.pptx
Presentación Bloque 3 Actividad 2 transversal.pptx
 
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docxEJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
EJEMPLO MODELO DE PLAN DE REFUERZO ESCOLAR.docx
 
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docxSIMULACROS Y SIMULACIONES DE SISMO 2024.docx
SIMULACROS Y SIMULACIONES DE SISMO 2024.docx
 
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
 
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdfFichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
Fichas de Matemática DE SEGUNDO DE SECUNDARIA.pdf
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 

CalculoDiferencial

  • 1. MATEMÁTICAS – FIME – E2015 C CALCULO DIFERENCIAL 𝐷𝑥(𝑢)𝑛 = 𝑛(𝑢)𝑛−1 𝑑𝑢 𝐷𝑥[𝑢 ∗ 𝑣] = 𝑢𝐷𝑥𝑣 + 𝑣𝐷𝑥𝑢 𝐷𝑥 [ 𝑢 𝑣 ] = 𝑣𝐷𝑥𝑢−𝑢𝐷𝑥𝑣 𝑣2 𝐷𝑥[𝑙𝑛𝑢] = 1 𝑢 𝐷𝑥𝑢 𝐷𝑥 [𝐿𝑜𝑔𝑎𝑢] = 1 𝑢𝑙𝑛𝑎 𝐷𝑥𝑢 𝐷𝑥[𝑒𝑢] = 𝑒𝑢 𝐷𝑥𝑢 𝐷𝑥[𝑎𝑢] = 𝑎𝑢 ln𝑎𝐷𝑥𝑢 𝐷𝑥[𝑆𝑒𝑛𝑢] = 𝐶𝑜𝑠𝑢𝐷𝑥𝑢 𝐷𝑥[𝐶𝑜𝑠𝑢] = −𝑆𝑒𝑛𝑢𝐷𝑥𝑢 𝐷𝑥[𝑇𝑎𝑛𝑢] = 𝑆𝑒𝑐2 𝑢𝐷𝑥𝑢 𝐷𝑥[𝐶𝑜𝑡𝑢] = −𝐶𝑠𝑐2 𝑢𝐷𝑥𝑢 𝐷𝑥[𝑆𝑒𝑐𝑢] = 𝑆𝑒𝑐𝑢𝑇𝑎𝑛𝑢𝐷𝑥𝑢 𝐷𝑥[𝐶𝑠𝑐𝑢] = −𝐶𝑠𝑐𝑢𝐶𝑜𝑡𝑢𝐷𝑥𝑢 𝐷𝑥[𝑆𝑒𝑛ℎ𝑢] = 𝐶𝑜𝑠ℎ(𝑢)𝐷𝑢 𝐷𝑥[𝐶𝑜𝑠ℎ𝑢] = 𝑆𝑒𝑛ℎ(𝑢)𝐷𝑢 𝐷𝑥[𝑇𝑎𝑛ℎ𝑢] = 𝑆𝑒𝑐ℎ2 (𝑢)𝐷𝑢 𝐷𝑥[𝐶𝑜𝑡ℎ𝑢] = −𝐶𝑠𝑐ℎ2 (𝑢)𝐷𝑢 𝐷𝑥[𝑆𝑒𝑐ℎ𝑢] = −𝑆𝑒𝑐ℎ(𝑢)𝑇𝑎𝑛ℎ(𝑢)𝐷𝑢 𝐷𝑥[𝐶𝑠𝑐ℎ𝑢] = −𝐶𝑠𝑐ℎ(𝑢)𝐶𝑜𝑡ℎ(𝑢)𝐷𝑢 𝐷𝑥[ 𝐴𝑟𝑐𝑆𝑒𝑛𝑢] = 𝐷𝑥𝑢 √1−𝑢2 𝐷𝑥[ 𝐴𝑟𝑐𝐶𝑜𝑠𝑢] = −𝐷𝑥𝑢 √1−𝑢2 𝐷𝑥[ 𝐴𝑟𝑐𝑇𝑎𝑛𝑢] = 𝐷𝑥𝑢 1+ 𝑢2 𝐷𝑥[ 𝐴𝑟𝑐𝐶𝑜𝑡𝑢] = −𝐷𝑥𝑢 1+ 𝑢2 𝐷𝑥[ 𝐴𝑟𝑐𝑆𝑒𝑐𝑢] = 𝐷𝑥𝑢 |𝑢|√𝑢2−1 𝐷𝑥[ 𝐴𝑟𝑐𝐶𝑠𝑐𝑢] = −𝐷𝑥𝑢 |𝑢|√𝑢2−1 𝐷𝑥[ 𝑆𝑒𝑛ℎ−1 𝑢] = 𝐷𝑥𝑢 √𝑢2+ 1 𝐷𝑥[ 𝐶𝑜𝑠ℎ−1 𝑢] = 𝐷𝑥𝑢 √𝑢2− 1 𝐷𝑥[ 𝑇𝑎𝑛ℎ−1 𝑢] = 𝐷𝑥𝑢 1 − 𝑢2 𝐷𝑥[ 𝐶𝑜𝑡ℎ−1 𝑢] = 𝐷𝑥𝑢 1 − 𝑢2 𝐷𝑥[ 𝑆𝑒𝑐ℎ−1 𝑢] = −𝐷𝑥𝑢 𝑢 √1−𝑢2 𝐷𝑥[ 𝐶𝑠𝑐ℎ−1 𝑢] = −𝐷𝑥𝑢 |𝑢|√1−𝑢2 REGLAS BASICAS DE LA INTEGRACION ∫[𝑓(𝑥) ± 𝑔(𝑥)]𝑑𝑥 = ∫ 𝑓(𝑥) ± ∫ 𝑔(𝑥)𝑑𝑥 ∫ 𝑑𝑥 = 𝑥 + 𝐶 ∫ 𝑥𝑛 𝑑𝑥 = 𝑥𝑛+1 𝑛+1 + 𝐶 ∫ 𝐾𝑓(𝑥)𝑑𝑥 = 𝐾 ∫ 𝑓(𝑥)𝑑𝑥 𝐊 = 𝐜𝐭𝐞 CAMBIO DE VARIABLE ∫ 𝑒𝑢 𝑑𝑢 = 𝑒𝑢 + 𝐶 ∫ 𝑎𝑢 𝑑𝑢 = 𝑎𝑢 ln 𝑎 + 𝐶 ∫ 𝑢𝑛 𝑑𝑢 = 𝑢𝑛+1 𝑛+1 + 𝐶 𝐧 ≠ −𝟏 En donde u es una función polinomial o trascendental 𝒆 = 𝑪𝒕𝒆. 𝒅𝒆 𝑬𝒖𝒍𝒆𝒓 = 𝟐. 𝟕𝟏𝟖 𝑃𝑟𝑜𝑝𝑖𝑒𝑑𝑎𝑑: 𝑒 𝑙𝑛𝑥 = 𝑥 FUNCION LOGARITMICA 𝐿𝑛 1 = 0 ∫ 𝑑𝑢 𝑢 = 𝑙𝑛|𝑢| + 𝐶 Propiedades: Ln (pq) = Ln p + Ln q Ln e=1 Ln( 𝑝 𝑞 ) = 𝐿𝑛(𝑝) − 𝐿𝑛(𝑞) Ln 𝑝𝑟 = 𝑟 𝐿𝑛 𝑝 FUNCIONES EXPONENCIALES FUNCIONES TRIGONOMÉTRICAS ∫ 𝑆𝑒𝑛(𝑢)𝑑𝑢 = −𝐶𝑜𝑠(𝑢) + 𝐶 ∫ 𝐶𝑜𝑠(𝑢)𝑑𝑢 = 𝑆𝑒𝑛(𝑢) + 𝐶 ∫ 𝑇𝑎𝑛(𝑢)𝑑𝑢 = ln|𝑆𝑒𝑐(𝑢)| + 𝐶 = −ln|𝐶𝑜𝑠(𝑢)| + 𝐶 ∫ 𝐶𝑜𝑡(𝑢)𝑑𝑢 = −ln|𝐶𝑠𝑐(𝑢)| + 𝐶 = ln|𝑆𝑒𝑛(𝑢)| + 𝐶 ∫ 𝑆𝑒𝑐(𝑢)𝑑𝑢 = ln|𝑆𝑒𝑐(𝑢) + 𝑇𝑎𝑛(𝑢)| + 𝐶 ∫ 𝐶𝑠𝑐(𝑢)𝑑𝑢 = ln|𝐶𝑠𝑐(𝑢) − 𝐶𝑜𝑡 (𝑢)| + 𝐶 ∫ 𝑆𝑒𝑐2(𝑢)𝑑𝑢 = 𝑇𝑎𝑛(𝑢) + 𝐶 ∫ 𝐶𝑠𝑐2(𝑢)𝑑𝑢 = − 𝐶𝑜𝑡(𝑢) + 𝐶 ∫ 𝑆𝑒𝑐(𝑢)𝑇𝑎𝑛(𝑢)𝑑𝑢 = 𝑆𝑒𝑐(𝑢) + 𝐶 ∫ 𝐶𝑠𝑐(𝑢)𝐶𝑜𝑡(𝑢)𝑑𝑢 = −𝐶𝑠𝑐(𝑢) + 𝐶
  • 2. FUNCIONES HIPERBÓLICAS ∫ 𝑆𝑒𝑛ℎ(𝑢)𝑑𝑢 = 𝐶𝑜𝑠ℎ(𝑢) + 𝐶 ∫ 𝐶𝑜𝑠ℎ(𝑢)𝑑𝑢 = 𝑆𝑒𝑛ℎ(𝑢) + 𝐶 ∫ 𝑇𝑎𝑛ℎ(𝑢)𝑑𝑢 = 𝑙𝑛|𝐶𝑜𝑠ℎ 𝑢| + 𝐶 ∫ 𝐶𝑜𝑡ℎ(𝑢)𝑑𝑢 = 𝑙𝑛|𝑆𝑒𝑛ℎ 𝑢| + 𝐶 ∫ 𝑆𝑒𝑐ℎ2(𝑢)𝑑𝑢 = 𝑇𝑎𝑛ℎ(𝑢) + 𝐶 ∫ 𝐶𝑠𝑐ℎ2(𝑢)𝑑𝑢 = − 𝐶𝑜𝑡ℎ(𝑢) + 𝐶 ∫ 𝑆𝑒𝑐ℎ(𝑢)𝑇𝑎𝑛ℎ(𝑢)𝑑𝑢 = −𝑆𝑒𝑐ℎ(𝑢) + 𝐶 ∫ 𝐶𝑠𝑐ℎ(𝑢)𝐶𝑜𝑡ℎ(𝑢)𝑑𝑢 = −𝐶𝑠𝑐ℎ(𝑢) + 𝐶 FUNCIONES TRIGONOMÉTRICAS INVERSAS ∫ 𝑑𝑢 √𝑎2− 𝑢2 = 𝑆𝑒𝑛−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 𝑎2+ 𝑢2 = 1 𝑎 𝑇𝑎𝑛−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 𝑢 √𝑢2− 𝑎2 = 1 𝑎 𝑆𝑒𝑐−1 ( 𝑢 𝑎 ) + 𝐶 FUNCIONES HIPERBOLICAS INVERSAS ∫ 𝑑𝑢 √𝑎2+ 𝑢2 = 𝑆𝑒𝑛ℎ−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 √𝑢2− 𝑎2 = 𝐶𝑜𝑠ℎ−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 𝑢 √𝑎2+ 𝑢2 = −1 𝑎 𝐶𝑠𝑐ℎ−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 𝑢 √𝑎2− 𝑢2 = −1 𝑎 𝑆𝑒𝑐ℎ−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 𝑎2− 𝑢2 = 1 𝑎 𝑇𝑎𝑛ℎ−1 ( 𝑢 𝑎 ) + 𝐶 ∫ 𝑑𝑢 √𝑢2± 𝑎2 = ln (𝑢 + √𝑢2 ± 𝑎2) + 𝐶 ∫ 𝑑𝑢 𝑎2− 𝑢2 = 1 2𝑎 𝑙𝑛 | 𝑎+𝑢 𝑎−𝑢 | + 𝐶 ∫ 𝑑𝑢 𝑢 √𝑎2± 𝑢2 = − 1 𝑎 𝑙𝑛 ( 𝑎+√𝑎2± 𝑢2 |𝑢| ) + 𝐶 Forma equivalente de las integrales que dan como resultado HIPERBÓLICAS INVERSAS SUSTITUCIÓN TRIGONOMÉTRICA Forma Sustitución la raíz se sustituye por: √𝑎2 − 𝑢2 u= aSen𝜃 aCos𝜃 √𝑎2 + 𝑢2 u= aTan𝜃 aSec𝜃 √𝑢2 − 𝑎2 u= aSec𝜃 aTan𝜃         INTEGRAL POR PARTES ∫ 𝑢𝑑𝑣 = 𝑢𝑣 − ∫ 𝑣𝑑𝑢 CASOS TRIGONOMÉTRICOS ∫ 𝑆𝑒𝑛𝑛(𝑢)𝑑𝑢; ∫ 𝐶𝑜𝑠𝑛(𝑢)𝑑𝑢 CASO I. En donde n es entero impar positivo Expresar: 𝑆𝑒𝑛𝑛(𝑢) = 𝑆𝑒𝑛𝑛−1(𝑢) 𝑆𝑒𝑛 (𝑢) Usar: 𝑺𝒆𝒏𝟐(𝒖) = 𝟏 − 𝑪𝒐𝒔𝟐(𝒖) 𝐶𝑜𝑠𝑛(𝑢) = 𝐶𝑜𝑠𝑛−1(𝑢) 𝐶𝑜𝑠(𝑢) Usar: 𝑪𝒐𝒔𝟐(𝒖) = 𝟏 − 𝑺𝒆𝒏𝟐(𝒖) CASO II : ∫ 𝑆𝑒𝑛𝑛(𝑢) 𝐶𝑜𝑠𝑚(𝑢)𝑑𝑢 ; En donde al menos un exponente es entero impar positivo, utilizar: 𝑺𝒆𝒏𝟐(𝒖) + 𝑪𝒐𝒔𝟐(𝒖) = 𝟏 de manera similar al CASO I NOTA: Si los dos exponentes son enteros impares positivos se cambia el impar menor 𝐴𝑥 + 𝐵 𝑎𝑥2 + 𝑏𝑥 + 𝑐 CASO III. Factores cuadráticos distintos. A cada factor cuadrático (𝑎𝑥2 + 𝑏𝑥 + 𝑐) le corresponde una fracción de la forma 𝐴1𝑥 + 𝐵1 𝑎𝑥2 + 𝑏𝑥 + 𝑐 + ⋯ + 𝐴𝑘𝑥 + 𝐵𝑘 (𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑘 CASO IV. Factores cuadráticos repetidos. A cada factor cuadrático repetido (𝑎𝑥2 + 𝑏𝑥 + 𝑐)𝑘 le corresponde la suma de k fracciones parciales de la forma: TEOREMAS DE SUMATORIAS Sean m y n enteros positivos, c= constante 1. ∑ 𝒄 𝒇(𝒊) = 𝒄 ∑ 𝒇(𝒊) 𝒏 𝒊=𝟏 𝒏 𝒊=𝟏 2. ∑ [𝒇(𝒊) ± 𝒈(𝒊)] = ∑ 𝒇(𝒊) ± ∑ 𝒈(𝒊) 𝒏 𝒊=𝟏 𝒏 𝒊=𝟏 𝒏 𝒊=𝟏 3. ∑ 𝒇(𝒊) = ∑ 𝒇(𝒊) + ∑ 𝒇(𝒊) 𝒎 < 𝒏 𝒏 𝒊=𝒎+𝟏 𝒎 𝒊=𝟏 𝒏 𝒊=𝟏 4. ∑ 𝒄 = 𝒏𝒄 𝒏 𝒊=𝟏 5. ∑ 𝒊 𝒏 𝒊=𝟏 = 𝒏(𝒏+𝟏) 𝟐 6. ∑ 𝒊𝟐 = 𝒏(𝒏+𝟏)(𝟐𝒏+𝟏) 𝟔 𝒏 𝒊=𝟏 7. ∑ 𝒊𝟑 = [ 𝒏(𝒏+𝟏) 𝟐 ] 𝟐 𝒏 𝒊=𝟏 SUMA DE RIEMANN ∫ 𝑓(𝑥)𝑑𝑥 = lim𝑛→∞ ∑ 𝑓(𝑐𝑖)∆𝑥 𝑛 𝑖=1 𝑏 𝑎 ∆𝑥 = 𝑏−𝑎 𝑛 , 𝑐𝑖 = 𝑎 + 𝑖 ∗ ∆𝑥 FRACCIONES PARCIALES 𝐴 𝑎𝑥 + 𝑏 CASO I: Factores lineales distintos. A cada factor lineal (ax + b) le corresponde una fracción de la forma: 𝐴1 𝑎𝑥 + 𝑏 + 𝐴2 (𝑎𝑥 + 𝑏)2 + ⋯ + 𝐴𝑘 (𝑎𝑥 + 𝑏)𝑘 CASO II: Factores lineales repetidos. A cada factor lineal repetido (ax + b)𝑘 . Le corresponde la suma de k fracciones parciales de la forma:
  • 3. Tipo de Integral Condición Identidad útil 1 ∫ 𝑆𝑒𝑛𝑛 𝑢 𝑑𝑢, ∫ 𝐶𝑜𝑠𝑛 𝑢 𝑑𝑢, donde n es un entero impar positivo 𝑆𝑒𝑛2 𝑢 + 𝐶𝑜𝑠2 𝑢 = 1 2 ∫ 𝑆𝑒𝑛𝑛 𝑢 𝐶𝑜𝑠𝑚 𝑢 𝑑𝑢, donde n o m es un entero impar positivo 𝑆𝑒𝑛2 𝑢 + 𝐶𝑜𝑠2 𝑢 = 1 3 ∫ 𝑆𝑒𝑛𝑛 𝑢 𝑑𝑢, ∫ 𝐶𝑜𝑠𝑛 𝑢 𝑑𝑢, ∫ 𝑆𝑒𝑛𝑛 𝑢 𝐶𝑜𝑠𝑚 𝑢 𝑑𝑢, donde n y m son enteros pares positivos 𝑆𝑒𝑛2 𝑢 = 1−𝐶𝑜𝑠 2𝑢 2 𝐶𝑜𝑠2 𝑢 = 1+𝐶𝑜𝑠 2𝑢 2 𝑆𝑒𝑛 𝑢 𝐶𝑜𝑠 𝑢 = 1 2 𝑆𝑒𝑛 2𝑢 4 ∫ 𝑆𝑒𝑛 (𝑚𝑢) 𝐶𝑜𝑠(𝑛𝑢)𝑑𝑢 ∫ 𝑆𝑒𝑛 (𝑚𝑢) 𝑆𝑒𝑛(𝑛𝑢)𝑑𝑢 ∫ 𝐶𝑜𝑠 (𝑚𝑢) 𝐶𝑜𝑠(𝑛𝑢)𝑑𝑢 donde n y m son cualquier número 𝑆𝑒𝑛 𝐴 𝐶𝑜𝑠 𝐵 = 1 2 [𝑆𝑒𝑛 (𝐴 − 𝐵) + 𝑆𝑒𝑛 (𝐴 + 𝐵)] 𝑆𝑒𝑛 𝐴 𝑆𝑒𝑛 𝐵 = 1 2 [ 𝐶𝑜𝑠 (𝐴 − 𝐵) − 𝐶𝑜𝑠 (𝐴 + 𝐵)] 𝐶𝑜𝑠 𝐴 𝐶𝑜𝑠 𝐵 = 1 2 [ 𝐶𝑜𝑠 (𝐴 − 𝐵) + 𝐶𝑜𝑠 (𝐴 + 𝐵)] 5 ∫ 𝑇𝑎𝑛𝑛 𝑢 𝑑𝑢, ∫ 𝐶𝑜𝑡𝑛 𝑢 𝑑𝑢 donde n es cualquier número entero 1 + 𝑇𝑎𝑛2 𝑢 = 𝑆𝑒𝑐2 𝑢 6 ∫ 𝑆𝑒𝑐𝑛 𝑢 𝑑𝑢, ∫ 𝐶𝑠𝑐𝑛 𝑢 𝑑𝑢 donde n es un entero par positivo 1 + 𝑇𝑎𝑛2 𝑢 = 𝑆𝑒𝑐2 𝑢 1 + 𝐶𝑜𝑡2 𝑢 = 𝐶𝑠𝑐2 𝑢 7 ∫ 𝑇𝑎𝑛𝑚 𝑢 𝑆𝑒𝑐𝑛 𝑢 𝑑𝑢 ∫ 𝐶𝑜𝑡𝑚 𝑢 𝐶𝑠𝑐𝑛 𝑢 𝑑𝑢 donde n es un entero par positivo 1 + 𝑇𝑎𝑛2 𝑢 = 𝑆𝑒𝑐2 𝑢 1 + 𝐶𝑜𝑡2 𝑢 = 𝐶𝑠𝑐2 𝑢 8 ∫ 𝑇𝑎𝑛𝑚 𝑢 𝑆𝑒𝑐𝑛 𝑢 𝑑𝑢 ∫ 𝐶𝑜𝑡𝑚 𝑢 𝐶𝑠𝑐𝑛 𝑢 𝑑𝑢 donde m es un entero impar positivo 1 + 𝑇𝑎𝑛2 𝑢 = 𝑆𝑒𝑐2 𝑢 1 + 𝐶𝑜𝑡2 𝑢 = 𝐶𝑠𝑐2 𝑢 CASOS TRIGONOMETRICOS APLICACIONES DE LA INTEGRAL DEFINIDA 𝐴 = ∫ [(𝐹𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒 𝑎𝑟𝑟𝑖𝑏𝑎) − (𝑓𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒 𝑎𝑏𝑎𝑗𝑜)]𝑑𝑥 𝑏 𝑎 𝐴 = ∫ [(𝐹𝑢𝑛𝑐𝑖ó𝑛 𝑑𝑒𝑟𝑒𝑐ℎ𝑎) − (𝑓𝑢𝑛𝑐𝑖ó𝑛 𝑖𝑧𝑞𝑢𝑖𝑒𝑟𝑑𝑎)]𝑑𝑦 𝑏 𝑎 ÁREA: 𝑉 = 2𝜋 ∫ 𝑟(𝑦)ℎ(𝑦)𝑑𝑦 𝑏 𝑎 𝑉 = 2𝜋 ∫ 𝑟(𝑥)ℎ(𝑥)𝑑𝑥 𝑏 𝑎 VOLUMEN / METODO DE CAPAS O CORTEZA Cuando el eje de revolución es horizontal Cuando el eje de revolución es vertical VOLUMEN / METODO DEL DISCO O ARANDELA V= 𝜋 ∫ [(𝑅2(𝑥) − 𝑟2 (𝑥)]𝑑𝑥 𝑏 𝑎 V= 𝜋 ∫ [(𝑅2(𝑦) − 𝑟2 (𝑦)]𝑑𝑦 𝑏 𝑎 LONGITUD DE ARCO 𝑆 = ∫ √1 + [𝑓´(𝑥)]2 𝑑𝑥 𝑏 𝑎 𝑆 = ∫ √1 + [𝑔´(𝑦)]2 𝑑𝑦 𝑑 𝑐 TRABAJO 𝑾 = ∫ 𝑭(𝒙)𝒅𝒙 𝒃 𝒂 CALCULO DE INTEGRALES DOBLES ∬ 𝑓(𝑥, 𝑦)𝑑𝐴 𝑅 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑦𝑑𝑥 𝑔2(𝑥) 𝑔1(𝑥) 𝑏 𝑎 ∬ 𝑓(𝑥, 𝑦)𝑑𝐴 𝑅 = ∫ ∫ 𝑓(𝑥, 𝑦)𝑑𝑥𝑑𝑦 𝑔2(𝑦) 𝑔1(𝑦) 𝑏 𝑎
  • 4. IDENTIDADES TRIGONOMÉTRICAS INVERSAS 𝑆𝑒𝑛(𝑢) = 1 𝐶𝑠𝑐(𝑢) Csc(𝑢) = 1 𝑆𝑒𝑛(𝑢) 𝐶𝑜𝑠(𝑢) = 1 𝑆𝑒𝑐(𝑢) 𝑆𝑒𝑐(𝑢) = 1 𝐶𝑜𝑠(𝑢) 𝑇𝑎𝑛(𝑢) = 1 𝐶𝑜𝑡(𝑢) 𝐶𝑜𝑡(𝑢) = 1 𝑇𝑎𝑛(𝑢) FORMA DE COCIENTE 𝑇𝑎𝑛(𝑢) = 𝑆𝑒𝑛(𝑢) 𝐶𝑜𝑠(𝑢) 𝐶𝑜𝑡(𝑢) = 𝐶𝑜𝑠(𝑢) 𝑆𝑒𝑛(𝑢) PITAGÓRICAS 𝑆𝑒𝑛2(𝑢) = 1 − 𝐶𝑜𝑠2 (𝑢) 𝐶𝑜𝑠2(𝑢) = 1 − 𝑆𝑒𝑛2 (𝑢) 𝑆𝑒𝑐2(𝑢) = 1 + 𝑇𝑎𝑛2 (𝑢) 𝑇𝑎𝑛2(𝑢) = 𝑆𝑒𝑐2(𝑢) − 1 𝐶𝑠𝑐2(𝑢) = 1 + 𝐶𝑜𝑡2 (𝑢) 𝐶𝑜𝑡2(𝑢) = 𝐶𝑠𝑐2(𝑢) − 1 ANGULO DOBLE Sen2u= 2Sen(u)Cos(u) Cos2u = 𝐶𝑜𝑠2(𝑢) − 𝑆𝑒𝑛2(𝑢) 𝑆𝑒𝑛2(𝑢) = 1−cos(2𝑢) 2 𝐶𝑜𝑠2(𝑢) = 1+cos(2𝑢) 2 IDENTIDADES HIPERBÓLICAS 𝑐𝑜𝑠ℎ2(𝑢) − 𝑠𝑒𝑛ℎ2(𝑢) = 1 𝑠𝑒𝑐ℎ2(𝑢) + 𝑡𝑎𝑛ℎ2(𝑢) = 1 𝑐𝑜𝑡ℎ2(𝑢) − 𝑐𝑠𝑐ℎ2(𝑢) = 1 𝑠𝑒𝑛ℎ(2𝑢) = 2𝑠𝑒𝑛ℎ(𝑢)cosh(𝑢) cosh(2𝑢) = 𝑐𝑜𝑠ℎ2(𝑢) + 𝑠𝑒𝑛ℎ2(𝑢) 𝑡𝑎𝑛ℎ(2𝑢) = 2tanh(𝑢) 1+𝑡𝑎𝑛ℎ2(𝑢) 𝑠𝑒𝑛ℎ2(𝑢) = 𝑐𝑜𝑠ℎ(2𝑢)−1 2 𝑐𝑜𝑠ℎ2(𝑢) = 𝑐𝑜𝑠ℎ(2𝑢)+1 2 𝑠𝑒𝑛ℎ 𝑥 = 𝑒𝑥−𝑒−𝑥 2 𝐶𝑜𝑠ℎ 𝑥 = 𝑒𝑥+𝑒−𝑥 2 𝑇𝑎𝑛ℎ 𝑥 = 𝑠𝑒𝑛ℎ𝑥 𝑐𝑜𝑠ℎ𝑥 𝐶𝑜𝑡ℎ 𝑥 = 𝑐𝑜𝑠ℎ𝑥 𝑠𝑒𝑛ℎ𝑥 𝑆𝑒𝑛ℎ 𝑥𝐶𝑠𝑐ℎ𝑥 = 1 𝐶𝑜𝑠ℎ 𝑥𝑆𝑒𝑐ℎ𝑥 = 1 𝑇𝑎𝑛ℎ 𝑥𝐶𝑜𝑡ℎ𝑥 = 1 FUNCIONES TRIGONOMÉTRICAS 𝑆𝑒𝑛𝜃 = 𝐶.𝑂. 𝐻𝑖𝑝 𝐶𝑜𝑡𝜃 = 𝐶.𝐴. 𝐶.𝑂. 𝐶𝑜𝑠𝜃 = 𝐶.𝐴. 𝐻𝑖𝑝 𝑆𝑒𝑐𝜃 = 𝐻𝑖𝑝. 𝐶.𝐴. 𝑇𝑎𝑛𝜃 = 𝐶.𝑂. 𝐶.𝐴. 𝐶𝑠𝑐𝜃 = 𝐻𝑖𝑝. 𝐶.𝑂. 𝑆𝑒𝑛(−𝐴) = −𝑠𝑒𝑛(𝐴) 𝐶𝑜𝑠(−𝐵) = cos(𝐵) 𝑠𝑒𝑛(0) = 0 𝑠𝑒𝑛(𝜋) = 0 𝑠𝑒𝑛(2𝜋) = 0 𝑠𝑒𝑛(𝑛𝜋) = 0 𝑠𝑒𝑛 [(2𝑛 ± 1) 𝜋 2 ] = −(−1)𝑛 = (−1)𝑛+1 𝑠𝑒𝑛 [(1 ± 2𝑛) 𝜋 2 ] = −(−1)𝑛 = (−1)𝑛+1 𝑐𝑜𝑠(0) = 1 𝑐𝑜𝑠(𝜋) = −1 𝑐𝑜𝑠(2𝜋) = 1 𝑐𝑜𝑠(2𝑛𝜋) = 1 𝑐𝑜𝑠 [(2𝑛 ± 1) 𝜋 2 ] = 𝑐𝑜𝑠 [(1 ± 2𝑛) 𝜋 2 ] = 0 𝑐𝑜𝑠(−𝑛𝜋) = 𝑐𝑜𝑠(𝑛𝜋) = (−1)𝑛 𝑠𝑒𝑛 [(1 ± 4𝑛) 𝜋 2 ] = 1 𝐶𝑜𝑠 [(1 ± 4𝑛) 𝜋 2 ] = 0 VALORES IMPORTANTES DEL SENO Y COSENO 𝑠𝑒𝑛 ( 𝜋 2 ) = 1 𝑠𝑒𝑛 ( 3 2 𝜋) = −1 𝑠𝑒𝑛(−𝑛𝜋) = −𝑠𝑒𝑛(𝑛𝜋) = 0 𝑐𝑜𝑠 ( 𝜋 2 ) = 0 𝑐𝑜𝑠 ( 3 2 𝜋) = 0 𝑐𝑜𝑠(2𝑛 − 1)𝜋 = −1 𝑆𝑒𝑛(2𝑛 − 1)𝜋 = 0 𝑐𝑜𝑠(𝑛𝜋) = (−1)𝑛 𝑐𝑜𝑠(1 ± 𝑛)𝜋 = −(−1)𝑛 𝑒±𝑗𝑡 = cos(𝑡) ± 𝑗 𝑠𝑒𝑛(𝑡) 𝑆𝑒𝑛 (𝑡) = 1 2𝑗 (𝑒𝑗𝑡 − 𝑒−𝑗𝑡 ) 𝐶𝑜𝑠 (𝑡) = 1 2 (𝑒𝑗𝑡 + 𝑒−𝑗𝑡 ) 𝑎𝑚 𝑎𝑛 = 𝑎𝑚+𝑛 ( 𝑎 𝑏 ) 𝑚 = 𝑎𝑚 𝑏𝑚 (𝑎𝑚 )𝑛 = 𝑎𝑚𝑛 𝑎−𝑛 = 1 𝑎𝑛 (𝑎𝑏)𝑚 = 𝑎𝑚 𝑏𝑚 𝑎 𝑝 𝑞 = √𝑎𝑝 𝑞 𝑎𝑚 𝑎𝑛 = 𝑎𝑚−𝑛 𝑚 > 𝑛 𝑎0 = 1 𝑎𝑚 𝑎𝑛 = 1 𝑎𝑛−𝑚 𝑚 < 𝑛 LEYES DE EXPONENTES
  • 5. TABLA DE TRANSFORMADAS ELEMENTALES f(t) F(s) 1 C 𝑪 𝒔 , 𝒔 > 0 2 t 𝟏 𝒔𝟐 , 𝒔 > 0 3 𝒕𝒏 𝒏! 𝒔𝒏+𝟏 , 𝒔 > 0 4 𝒆𝒂𝒕 𝟏 𝒔 − 𝒂 , 𝒔 > 𝑎 5 𝑺𝒆𝒏 𝒂𝒕 𝒂 𝒔𝟐 + 𝒂𝟐 , 𝒔 > 0 6 Cos at 𝒔 𝒔𝟐 + 𝒂𝟐 , 𝒔 > 0 7 Senh at 𝒂 𝒔𝟐 − 𝒂𝟐 , 𝒔 > |𝑎| 8 Cosh at 𝒔 𝒔𝟐 − 𝒂𝟐 , 𝒔 > |𝑎| 9 𝒕𝒏 𝒆𝒂𝒕 𝒏! (𝒔 − 𝒂)𝒏+𝟏 10 𝒆𝒃𝒕 𝑺𝒆𝒏 𝒂𝒕 𝒂 (𝒔 − 𝒃)𝟐 + 𝒂𝟐 11 𝒆𝒃𝒕 𝑪𝒐𝒔 𝒂𝒕 𝒔 − 𝒃 (𝒔 − 𝒃)𝟐 + 𝒂𝟐 12 𝒆𝒃𝒕 𝑺𝒆𝒏𝒉 𝒂𝒕 𝒂 (𝒔 − 𝒃)𝟐 − 𝒂𝟐 13 𝒆𝒃𝒕 𝑪𝒐𝒔𝒉 𝒂𝒕 𝒔 − 𝒃 (𝒔 − 𝒃)𝟐 − 𝒂𝟐 TRANSFORMADAS DE LAPLACE TABLA DE TRANSFORMADAS INVERSAS ELEMENTALES F(s) f(t) 1 𝑪 𝒔 C 2 𝟏 𝒔𝟐 t 3 𝟏 𝒔𝒏+𝟏 𝒕𝒏 𝒏! 4 𝟏 𝒔 − 𝒂 𝒆𝒂𝒕 5 𝟏 𝒔𝟐 + 𝒂𝟐 𝑺𝒆𝒏 𝒂𝒕 𝒂 6 𝒔 𝒔𝟐 + 𝒂𝟐 Cos at 7 𝟏 𝒔𝟐 − 𝒂𝟐 𝑺𝒆𝒏𝒉 𝒂𝒕 𝒂 8 𝒔 𝒔𝟐 − 𝒂𝟐 Cosh at 9 𝟏 (𝒔 − 𝒂)𝒏+𝟏 𝒕𝒏 𝒆𝒂𝒕 𝒏! 10 𝟏 (𝒔 − 𝒃)𝟐 + 𝒂𝟐 𝒆𝒃𝒕 𝑺𝒆𝒏 𝒂𝒕 𝒂 11 𝒔 − 𝒃 (𝒔 − 𝒃)𝟐 + 𝒂𝟐 𝒆𝒃𝒕 𝑪𝒐𝒔 𝒂𝒕 12 𝟏 (𝒔 − 𝒃)𝟐 − 𝒂𝟐 𝒆𝒃𝒕 𝑺𝒆𝒏𝒉 𝒂𝒕 𝒂 13 𝒔 − 𝒃 (𝒔 − 𝒃)𝟐 − 𝒂𝟐 𝒆𝒃𝒕 𝑪𝒐𝒔𝒉 𝒂𝒕 ℒ{𝑓(𝑛) (𝑡)} = 𝑠𝑛 𝐹(𝑠) − 𝑠𝑛−1 𝐹(0) − 𝑠𝑛−2 𝐹′(0) − ⋯ − 𝑠𝐹(𝑛−2) (0) − 𝐹(𝑛−1) (0) ℒ {∫ 𝑓(𝑡)𝑑𝑡 𝑡 0 } = 𝐹(𝑠) 𝑠 ℒ{𝑡𝑛 𝑓(𝑡)} = (−1)𝑛 𝐹𝑛 (𝑠) ℒ−1{𝐹(𝑠 − 𝑎)} = 𝑒𝑎𝑡 𝑓(𝑡) ℒ−1 {𝐹𝑛 (𝑠)} = (−1)𝑛 𝑡𝑛 𝑓(𝑡) ℒ−1 { 𝐹(𝑠) 𝑠𝑛 } = ∫ … ∫ 𝑓(𝑡)𝑑𝑡 … 𝑑𝑡 𝑡 0 𝑡 0 ℒ−1{𝐹(𝑠)𝐺(𝑠)} = ∫ 𝑓(𝑢)𝑔(𝑡 − 𝑢)𝑑𝑢 𝑡 0 = ∫ 𝑔(𝑢)𝑓(𝑡 − 𝑢)𝑑𝑢 𝑡 0 Transformada de la derivada Transformada de la Integral Multiplicación por 𝐭𝐧 Primera Propiedad de Traslación Transformada Inversa de la Derivada División por s Teorema de Convolución o Transformada Inversa del Producto Si ℒ−1{𝐹(𝑠)} = 𝑓(𝑡) 𝑦 ℒ−1{𝐺(𝑠)} = 𝑔(𝑡), entonces:
  • 6. 𝑓(𝑡) = 1 2 𝑎0 + ∑[𝑎𝑛 cos(𝑛𝜔0𝑡) + 𝑏𝑛 sen(𝑛𝜔0𝑡)] ∞ 𝑛=1 Fórmula General 𝑎0 = 2 𝑇 ∫ f(t) 𝑑𝑡 𝑇 2 ⁄ −𝑇 2 ⁄ 𝑎𝑛 = 2 𝑇 ∫ f(t)cos(𝑛𝜔0𝑡)𝑑𝑡 𝑇 2 ⁄ −𝑇 2 ⁄ 𝑏𝑛 = 2 𝑇 ∫ f(t)sen(𝑛𝜔0𝑡)𝑑𝑡 𝑇 2 ⁄ −𝑇 2 ⁄ Simetría Par 𝑎0 = 4 𝑇 ∫ f(t) 𝑑𝑡 𝑇 2 ⁄ 0 𝑎𝑛 = 4 𝑇 ∫ f(t)cos(𝑛𝜔0𝑡)𝑑𝑡 𝑇 2 ⁄ 0 𝑏𝑛 = 0 Simetría Impar 𝑎0 = 0 𝑎𝑛 = 0 𝑏𝑛 = 4 𝑇 ∫ f(t)sen(𝑛𝜔0𝑡)𝑑𝑡 𝑇 2 ⁄ 0 Simetría de Media Onda 𝑎0 = 0 𝑎2𝑛−1 = 4 𝑇 ∫ f(t)cos[(2𝑛 − 1)(𝜔0𝑡)]𝑑𝑡 𝑇 2 ⁄ 0 𝑏2𝑛−1 = 4 𝑇 ∫ f(t)sen[(2𝑛 − 1)(𝜔0𝑡)]𝑑𝑡 𝑇 2 ⁄ 0 Simetría de un cuarto de onda Par 𝑎0 = 0 𝑎2𝑛−1 = 8 𝑇 ∫ f(t)cos[(2𝑛 − 1)(𝜔0𝑡)]𝑑𝑡 𝑇 4 ⁄ 0 𝑏2𝑛−1 = 0 Simetría de un cuarto de onda Impar 𝑎0 = 0 𝑎2𝑛−1 = 0 𝑏2𝑛−1 = 8 𝑇 ∫ f(t)sen[(2𝑛 − 1)(𝜔0𝑡)]𝑑𝑡 𝑇 4 ⁄ 0 SERIES DE FOURIER 𝐶𝑛 = 1 𝑇 ∫ 𝑓(𝑡)𝑒−𝑗𝑛𝑊𝑜𝑡 𝑑𝑡 𝑇 2 ⁄ −𝑇 2 ⁄ 𝑓(𝑡) = ∑ 𝐶𝑛 ∞ 𝑛=−∞ 𝑒𝑗𝑛𝑊𝑜𝑡 𝑗 = √−1 Serie De Fourier (FORMA COMPLEJA) n= 0±1±2±3… 𝐶𝑛 = 1 2 (𝑎𝑛−𝑗𝑏𝑛) 𝐶0 = 1 2 𝑎0 Si se conoce 𝐚𝐧, 𝐚𝟎 y 𝐛𝐧 se obtiene: 𝑎𝑛 = 2𝑅𝑒[𝐶𝑛] 𝑏𝑛 = −2𝐼𝑚[𝐶𝑛] 𝑎0 = 2𝐶0 Si se conoce 𝐂𝐧, 𝐂𝟎 se obtiene: 𝜔𝑜 = 2𝜋 𝑇