SlideShare a Scribd company logo
1 of 38
Download to read offline
2011 NCN@Purdue-Intel Summer School
         Notes Summer School: July 2011
          NCN on Photovoltaic Devices
       Notes on the Fundamental of Solar Cell

             Lecture 14
What is Different about Thin-Film PV

        M. A. Alam and S. Dongaonkar

               alam@purdue.edu
        Electrical and Computer Engineering
                  Purdue University
               West Lafayette, IN USA
copyright 2011

    This material is copyrighted by M. Alam under the
    following Creative Commons license:




    Conditions for using these materials is described at

    http://creativecommons.org/licenses/by-nc-sa/2.5/

2                           Alam 2011
The lecture series on solar cells


   Introduction to Solar cells
   Physics of Crystalline Solar cells
   Simulating Solar Cells
   What is different about thin film solar cell
   Organic photovoltaics


          superposition and recombination


                          Alam 2011
                                                   3
Outline of the lecture


1) Background information about thin film solar cells
2) Photo current from the transmission perspective
3) Dark current, shunt conduction, and weak diodes
4) Variability, reliability, and lifetime of solar cells
5) Conclusions



                             Alam 2011                     4
Different types of solar cells
                 p-n              p-i-n                   m-i-m




       Crystalline Silicon      Amorphous silicon       Flexible organic
                         Si too thick and expensive …
                                  Alam 2011                            5
*Google Images
Economics of solar cells

                   C-Si       CdTe           a-Si     CIGS         OPV
 Material/m2        207       50-60           64    100-125          37
 Process/m2         123          86           73        130       23-37
 Total/m2           350         130          138        230       50-80
 Cost/W            1.75    0.94 -1.2      0.9-1.4       1.63      1-1.36



                             c-Si installation, labor, etc. $3.75/W
                             Others … $1.00-1.50/W

                                       …. but thin film solar cell
                                       has their own problems !
• All costs are approximate
(J. Kalowekamo/E. Baker, Solar Energy, 2009. Goodrich, PVSC Tutorial, 2011.   6
Features of thin film solar cells
                                             (2) Thin doped region
    (1) Thin
    absorption layer
(3) Contact diffusion                        (4) Grain boundaries




                              Laser Scribe
                                                     Al
                                                     a-Si:H
                  TCO
         Glass

 (5) Series connection


                              Alam 2011                       7
Equivalent circuit of thin film solar cells

                                   IT
                                                Idark
                                                                IT
                           RL


                                 Iph                             Voc
           RL
                                        Pmax = Iph × Voc × FF
     Iph
IR              Id   ISH   = Iph − I0 (e qV / kBT − 1)
                            I
                                       ⇒ VOC
                                       =          ( kT q ) ln(1 + I   ph
                                                                           I0 )


                Superposition does not hold …
                                                                           8
Outline of the lecture



1) Background information about thin film solar cells
2) Photo current from the transmission perspective
3) Dark current, shunt conduction, and weak diodes
4) Variability, reliability, and lifetime of solar cells
5) Conclusions




                                  Alam 2011                9
Basics of current flow
         Wrong contact loss                                    +Recombination loss




           4 qυ
   Jn ≠ Jn = 0
         L

                                                      Jn = Jn − J p = 3qυ0 − 2qυ0
                                                            L     L
   J= J −J = J −J
         L
         n
               L
               p
                      L
                      n
                            R
                            n

= 4 qυ0 − 2qυ0                                            3           2 
                                                      = ×  υ0 − υ0 
                                                      6q
                                                          6           6 
         4         2
   = 6q × υ0 − 6q × υ0                                               γ L ,n                  γ L ,p         
         6         6                                  =
                                                      qG ×                         −                        
                γ L ,n                 γ L ,p               γ L ,n + γ R ,n + γ rec γ L ,p + γ R ,p + γ rec 
                                                                                                            
   = qG ×                 − qG ×
          γ L ,n + γ R ,n        γ L ,p + γ R ,p

                                                   Alam 2011                                        10
Basics of transmission over a barrier
                                                                         −EB ,L kBT
                                                            γ L←R = Ae
                             −EB ,R kBT
               γ R←L = Ae
                       Right                                      Right
Left                   Contact               Left                 Contact
Contact                                      Contact


               −EB ,L kBT
    γ L = Ae                                     γ R = Ae
                                                            −EB ,R kBT




   Left Contact             Device              Right Contact
                                 Alam 2011
                                                                            11
Photocurrent without recombination

                               J ph                    γ L ,nW                γ L ,p 
                              =
                               qG              ∫0 dx  γ L ,n + γ R ,n − γ L ,p + γ R ,p 
                                                                                        
                                                                                        
                γ R = υ0 e= W dx  γ L ,n
                          − E ( W − x )/ kT                              γ R ,n 
                                            ∫0  γ L ,n + γ R ,n − γ L ,n + γ R ,n 
                                                                                   
γ L = υ0                                                                           

                                            W               υ0                      υ0 e − E(W − x )/ kT 
           =                            ∫0
                                                dx 
                                                    υ0 + υ0 e − E ( W − x )/ kT
                                                                                 −                           
                                                                                   υ0 + υ0 e − E(W − x )/ kT 
                                                                                                            


                                          2L        W         2L       W 
           RL                          = D log cosh
                                       W×                ≅ W  D − coth      
                              kT          W         2 LD      W        2 LD 
                       LD ≡
                               E

                    ‘Price length’ and point of no return ….
                                        Alam 2011                                                           12
Properties of ‘Sokel’ photo-current
Sokel and Hughes, JAP, 53(11), 1982.
  J ph    2L          W                                 γL  γR
     = W × D log cosh
  qG      W           2 LD
                                          VA=0
         2 LD        W 
      ≅W      − coth      
         W           2 LD 
                                                        γL = γR
      Jn
     qG                                  Vbi=VA>0
                 Vbi
                                   VA         γL = γR
                        Vbi                               γL < γR
                                          VA>Vbi=0

Voltage dependent photocurrent, different from Si p-n junction …
Blocking layer and photocurrent

J ph          W       γ L ,n                γ R ,n                  γR ~ 0
qG      ∫ 0
                  dx 
                     
                                      −                
                       γ L ,n + γ R ,n γ L ,n + γ R ,n    VA=0
                                                      

J ph = qGW

       J ph
       qG
                         Vbi
                                                                      γR ~ 0
                                              VA           Vbi=VA>0


       With blocking layer …

                  Blocking is essential for many types of thin film PV ….
                                                                            14
Photocurrent with recombination
                                                                      Crandall, JAP, 54(12), 19823

                                                 n ≡ υ0 × τ n = µn × E × τ n




J ph       W                γ L ,n                  γ L ,p             W

       ∫       dx                         −                        = ∫ dx e − x /=  c 1 − e −W /  c 
                                                                           
                                                                                   c
                                                                                      
                                                                                                       
qG                 γ L ,n + γ R ,n + γ rec γ L ,p + γ R ,p + γ rec 
       0                                                                 0
                                                                   
                                                               J ph
                                                              qG
                                                                       {                       }
                                                                    = W − W −  n 1 − e −W /  n 
                                                                                                  
                                                                                                       15
Photo-current in crystalline cells

       with electron mirror                                            without electron mirror




       J ph       J L ,n       JL ,p
              =            −           =  n 1 − e −W /  n  ~  n
                                                                        n ≡ Dnτ n  W
      qG          qG           qG


  Voltage independent photocurrent is unaffected by electron mirrors
   Electron blocking layer does suppress dark current, increases Voc.
                                                                                           16
Numerical validation: Effect of blocking layer
     With blocking                   Without blocking




     Dτ  W                               Dτ  W




      For low quality Si PV, blocking is not essential   17
Photocurrent with field/recombination


 J ph       W    υ0 e − x /  n − υ0 e −(W − x )/  k e −(W − x )/  n   
     = ∫ dx                                                              
qG      0
                 
                              υ0 + υ0 e −(W − x )/  k                   
                                                                          
   W       e − x /  n − e −( W − x )/  k e −( W − x )/  n 
= ∫ dx                         − ( W − x )/  k              
   0
                       1+ e                                  


                   2 LD
                J ph            W 
                ≅W      − coth      
             qG    W           2 LD 
                                      nph kT
                              LD ≡
                                          E

                       Matches with numerical simulation very well …
                                                               Alam 2011      18
Outline of the lecture


1) Background information about thin film solar
2) Photo current from transmission perspective
3) Dark current, shunt conduction, and weak diodes
4) Variability, reliability, and lifetime of solar cells
5) Conclusions



                            Alam 2011                      19
Dark current without recombination
                      γL                           γR
 Jn       qnLυ0                  − qnRυ0
                  γL + γR                     γL + γR
          nL ,0 nR ,0 = γ R ,0 γ L ,0                                         ND              NA

                −E
            = Ae − qVbi
                       k T
 γ L ,0     Ae B ,0 B                       kB T

                                                                                        nR ,0 = ni2 N A
 γ R ,0 = A ×1 ⇒ γ L ,0 γ R ,0 = e −qV             bi    kB T
                                                                 nL ,0 = ND

           nL ,0 = nR ,0 e + qVbi    kB T

                                                                                              Vbi

                                       ni2 − qVbi       kB T
nR ,0 = ni2 N A              nL ,0   =    e
                                       NA                                          ER ←L = qVbi
                                                         Alam 2011
                                                                                   EL ←R = 0
                                                                                                     20
Calculating dark current without recombination
                                                                                    γ L = Ae −q(V       bi   − V ) kB T

                                   γL                           γR
  Jn          qnL ,0υ0                   − qnR ,0υ0                                 γ R= A ×1
                              γL + γR                    γL + γR                               ni2 + qVbi          kB T
                                                                                    nL ,0    =    e
                qυ0                                                                            NA
 Jn
              γL + γR
                      ( nL ,0γ L − nR ,0γ R )
                   qυ0                ni2 qVbi
                                         e      kB T − q ( Vbi −V )/ kB T
                                                     e                       − 1
       e   − q ( Vbi −V )/ kB T
                                  + 1 NA                                                                                        Vbi

        ni2         µn (V − Vbi ) / d  qVb
                    + q(V −Vbi ) / kBT  e                    − 1
                                                         kB T
      q
        NA         e                  + 1                       

                   ni2   ni2   µn (V − Vbi ) / d  qV
                                + q(V −Vbi )/ kBT  e                                           − 1 ≡ I0 e qV               − 1
                                                                                            kB T                          kB T
Jd = Jn + J p = q      +
                   N A ND   e
                                                 + 1                                                                          
                                                                                                                            21
Theory and practice of thin film dark IV

          Theory                               Experiment

Id ≡ I0 e qV
        
                kB T
                       − 1
                          
                                          Butterfly
                                          wings!




 A real solar cell IV seldom looks like textbook IV!
 These wings helped create many complicated models.
                                                            22
                              Alam 2011
Contact diffusion and shunt conduction

                                            (2) Thin doped region
 (1) Thin
 absorption layer
                                            (4) Grain boundaries


(3) Contact diffusion




      A real solar cell IV seldom looks like textbook IV     23
Parasitic shunt leakage




@ low voltage


                    shunt
@ high voltage
                     intrinsic



                       Dongaonkar and Alam JAP, 2010   24
Interpretation of ‘shunt’ leakage




             J n = qnµn E                   Va =
                                                    2      2J
                                                                 L
                                                                  3
                                                                      2

                                                    3      εµn
             dE      qn
                  =                                        9εµn
             dx     κε 0                     J ( Va ) =              Va2
                                                           8L3

                         V δ +1 *                          EA
            Ishunt   = Aµ 2δ +1                      γ=
                                                           kT
                         L
              * G. Paasch et al., JAP 106, 084502 (2009)        25
Features of shunt leakage
             V δ +1        Symmetry                    Exponents
Ishunt   = Aµ 2δ +1
             L




                                                                   L-3




                      Dongaonkar and Alam, EDL, 2010                 26
Outline of the lecture


1) Background information about thin film solar
2) Photo current from transmission perspective
3) Dark current, shunt conduction, and weak diodes
4) Variability, reliability, and lifetime of solar cells
5) Conclusions



                            Alam 2011                      27
Contact diffusion and shunt conduction



                                    (2) Thin doped region
 (1) Thin
 absorption layer
                                    (3) Grain boundaries


(4) Contact diffusion




                                                    28
                        Alam 2011
L                     I
                       Variability and weak diodes


                                              I0 ≈ Iph (Voc ) e − qVoc / kT
                               = Iph (Voc )(e ( oc ) − 1)
                                             q V −V / kT
                                I

                                            l 2 × n × Iph (Voc1 )(e ( oc1 ) − 1)
                                                                   q V −V / kT



                                            = Iph (Voc 2 )(e ( oc 2 ) − 1)
                                                            q V −V   / kT




                                          = L2 l 2 ≈ e ( oc1 oc 2 ) !
                                                      q V −V       / kT
                                           n
I   I0 (e qV / kT − 1) − Iph (V )
I0 (e qVoc / kT − 1) = (Voc )
                      Iph           Like an impact crater, a single um-sized
                                    weak diode can drain away 1-10 mm region !!
Voc = kBT × ln(1 + Iph I0 )
                                                         (karpov, PRB 69, 045325, 2004.)   29
(5) Series connection, shadow degradation,
            and a very weak diode




                                             30
                  Alam 2011
Being in shadow stresses the device


                                       Shaded
                 Load line             panel
Shaded cell                            operating
operating                              point
point




                Initial cell       Initial panel
                operating point    operating point

                 Shaded cells can get reverse biased!
                                                        31
Shadow degradation




                                    Dongaonkar et al.
                                    IRPS 2011
            Dark current


Normal                          time
operation
            Shadow          Operating
            degradation     voltage
                                              32
Light induced degradation
                                        Y. Nakata, et al., JJAP, 1992

                                               Slope – t1/3




                                          T. Shimizu, JJAP, 2004

 D. L. Staebler, et al., APL, 1977.




Ongoing discussion about
exponent n~1/3


                                                                        33
                                      M. Stutzmann, et al., PRB, 1985
Reaction-Diffusion Model for LID

                                                                                   G

                                                                                                                           H2




 Reaction:                                                                  1011




                                                    Density of DBs [cm-3]
dNDB
     = kF N0 G - kR NDB NH        ~0                                        1010
 dt
Free H Generation:                                                                                     Slope n ~0.3
                                                                            109
  dNH dNDB
      =    - kH NH 2
   dt   dt
                                                                            108
                                  2 /3
                      kf N0G                                                         10-4     10-2      100   102
 NDB ∝ ( 3kH )
              1/ 3                           1/ 3
                                        t
                      k                                                                    LS Time [sec]           34
                          r  
Light induced degradation in crystalline PV


                                       metal finger
                                       n+ emitter ~ 100 nm


                                       p absorber ~ 100 µm



                                       p+ electron mirror ~ 100 nm
                                       back reflector


Boron-doped Czochralski (Cz) crystalline PV equally
susceptible to LID. Float-zone and/or Ga doping better.

                           Alam 2011                                 35
Extrinsic and Intrinsic Solar Cell Reliability




                                                                • Electrochemical
Intrinsic



            • Light Induced




                                                  Extrinsic
                                                                  corrosion
              Degradation                                       • Moisture Ingress
            • Hot spot                                          • Glass fracture
              breakdown
                                                                • Inverters reliability
            • Shunt leakage
                                                                • Delamination
            • Shadow degradation
                                                                • Improper insulation
            • Weak diodes
                                                                • Bypass diode failure


              Source - www.nrel.gov/pv/performance_reliability/pdfs/failure_references.pdf   36
conclusions

Economic incentive to develop thin film solar cell.
The unique features of thin film PV make photo-
current voltage dependent, increases probability of
formation of weak diodes and shunts.
In addition to the extrinsic reliability issues, we need
to worry about shadow degradation, light induced
degradation, etc.
The reliability/variability are key concerns – making
modules less efficient than individual cells.

                       Alam 2011                      37
Reference for images
http://www.viraload.com/2008/08/28/avasolar-raises-104m-for-thin-film-solar/

http://www.solarserver.com/solar-magazine/solar-news/current/kw42/nanosolar-to-expand-thin-film-cigs-solar-cell-
manufacturing-to-115mw.html
http://www.solarthinfilms.com/active/en/home/photovoltaics/photovoltaics_and_thinfilms/thinfilm_photovoltaics.html
http://gotpowered.com/2011/ge-develops-thin-film-photovoltaic-panels/

 http://kypros.physics.uoc.gr/images/web2.gif




                                                                                                                 38

More Related Content

What's hot

Heterojunction silicon based solar cells
Heterojunction silicon based solar cellsHeterojunction silicon based solar cells
Heterojunction silicon based solar cells
dinomasch
 
Tandem solar cell slide share
Tandem solar cell slide shareTandem solar cell slide share
Tandem solar cell slide share
kamatlab
 
Two-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei LiTwo-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei Li
Yifei Li
 
Solid Oxide Fuel Cells Presentation
Solid Oxide Fuel Cells PresentationSolid Oxide Fuel Cells Presentation
Solid Oxide Fuel Cells Presentation
Farbod Moghadam
 

What's hot (20)

Heterojunction silicon based solar cells
Heterojunction silicon based solar cellsHeterojunction silicon based solar cells
Heterojunction silicon based solar cells
 
Tandem solar cell slide share
Tandem solar cell slide shareTandem solar cell slide share
Tandem solar cell slide share
 
Organic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar CellOrganic- Inorganic Perovskite Solar Cell
Organic- Inorganic Perovskite Solar Cell
 
Organic photovoltaic cells : OPV
Organic photovoltaic cells : OPVOrganic photovoltaic cells : OPV
Organic photovoltaic cells : OPV
 
Perovskite solar cells
Perovskite solar cellsPerovskite solar cells
Perovskite solar cells
 
Organic photovoltaic
Organic photovoltaicOrganic photovoltaic
Organic photovoltaic
 
Transparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PVTransparent conducting oxides for thin film PV
Transparent conducting oxides for thin film PV
 
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
Perovskites-based Solar Cells: The challenge of material choice for p-i-n per...
 
Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2Band structure and surface properties of 1-4 layers of MoS2
Band structure and surface properties of 1-4 layers of MoS2
 
Thermoelectricity
ThermoelectricityThermoelectricity
Thermoelectricity
 
Perovskite Solar Cells
Perovskite Solar CellsPerovskite Solar Cells
Perovskite Solar Cells
 
Thin film solar cells a review
Thin film solar cells   a reviewThin film solar cells   a review
Thin film solar cells a review
 
Graphene transistors and two-dimensional electronics
Graphene transistors and two-dimensional electronicsGraphene transistors and two-dimensional electronics
Graphene transistors and two-dimensional electronics
 
ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )
ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )
ITO (indium tin Oxide) & FTO (fluorine doped tin oxide )
 
Perovskite Solar Cells - an Introduction
Perovskite Solar Cells - an IntroductionPerovskite Solar Cells - an Introduction
Perovskite Solar Cells - an Introduction
 
2d materials introductions
2d materials introductions2d materials introductions
2d materials introductions
 
Hetero junction
Hetero junctionHetero junction
Hetero junction
 
Abhishek presentation
Abhishek presentationAbhishek presentation
Abhishek presentation
 
Two-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei LiTwo-Dimensional Layered Materials for Battery Application--Yifei Li
Two-Dimensional Layered Materials for Battery Application--Yifei Li
 
Solid Oxide Fuel Cells Presentation
Solid Oxide Fuel Cells PresentationSolid Oxide Fuel Cells Presentation
Solid Oxide Fuel Cells Presentation
 

Viewers also liked

falling film sulphonation
falling film sulphonationfalling film sulphonation
falling film sulphonation
Guruprasad Rao
 
Industrial chemistry lecture on sulfuric acid (ji&rb)
Industrial chemistry   lecture on sulfuric acid (ji&rb)Industrial chemistry   lecture on sulfuric acid (ji&rb)
Industrial chemistry lecture on sulfuric acid (ji&rb)
Lisa Pluis
 
Batteries & charging system
Batteries & charging systemBatteries & charging system
Batteries & charging system
syahmizan
 

Viewers also liked (20)

Vijay and ravi
Vijay  and raviVijay  and ravi
Vijay and ravi
 
10 major industrial applications of sulfuric acid
10 major industrial applications of sulfuric acid10 major industrial applications of sulfuric acid
10 major industrial applications of sulfuric acid
 
Aluminum Anodizing
Aluminum AnodizingAluminum Anodizing
Aluminum Anodizing
 
TALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumTALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of Aluminium
 
Antitussive mechanism ppt
Antitussive mechanism pptAntitussive mechanism ppt
Antitussive mechanism ppt
 
CVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUESCVD AND PVD THIN FILM TECHNIQUES
CVD AND PVD THIN FILM TECHNIQUES
 
falling film sulphonation
falling film sulphonationfalling film sulphonation
falling film sulphonation
 
fast disintegrating oral thin films
fast disintegrating oral thin filmsfast disintegrating oral thin films
fast disintegrating oral thin films
 
Artificial retina using thin filim Transistor
Artificial retina using thin filim TransistorArtificial retina using thin filim Transistor
Artificial retina using thin filim Transistor
 
Solar cell
Solar cellSolar cell
Solar cell
 
Air Pollution
Air PollutionAir Pollution
Air Pollution
 
Planar Chromatography
Planar ChromatographyPlanar Chromatography
Planar Chromatography
 
Thin-Film Photovoltaics R&D: Innovation, Opportunities_Ennaoui
Thin-Film Photovoltaics R&D: Innovation, Opportunities_EnnaouiThin-Film Photovoltaics R&D: Innovation, Opportunities_Ennaoui
Thin-Film Photovoltaics R&D: Innovation, Opportunities_Ennaoui
 
Electricity and Magnetism - Basic Concepts
Electricity and Magnetism - Basic ConceptsElectricity and Magnetism - Basic Concepts
Electricity and Magnetism - Basic Concepts
 
Industrial chemistry lecture on sulfuric acid (ji&rb)
Industrial chemistry   lecture on sulfuric acid (ji&rb)Industrial chemistry   lecture on sulfuric acid (ji&rb)
Industrial chemistry lecture on sulfuric acid (ji&rb)
 
Anodized aluminum measurement
Anodized aluminum measurementAnodized aluminum measurement
Anodized aluminum measurement
 
Automotive battery
Automotive batteryAutomotive battery
Automotive battery
 
Batteries & charging system
Batteries & charging systemBatteries & charging system
Batteries & charging system
 
Solar Cell
Solar CellSolar Cell
Solar Cell
 
Surface finishing processes - Electroplating
Surface finishing processes - ElectroplatingSurface finishing processes - Electroplating
Surface finishing processes - Electroplating
 

Similar to Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?

LLNC Presentaion Sham group
LLNC Presentaion Sham groupLLNC Presentaion Sham group
LLNC Presentaion Sham group
Aaron Kirkey
 
The_Status_and_Outlook_for_the_Photovoltaics_Industry_2007 BP
The_Status_and_Outlook_for_the_Photovoltaics_Industry_2007 BPThe_Status_and_Outlook_for_the_Photovoltaics_Industry_2007 BP
The_Status_and_Outlook_for_the_Photovoltaics_Industry_2007 BP
Dmitry Tseitlin
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
Faysal Khan
 

Similar to Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells? (20)

Pot.ppt.pdf
Pot.ppt.pdfPot.ppt.pdf
Pot.ppt.pdf
 
Science Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative EnergyScience Cafe Discovers a New Form of Alternative Energy
Science Cafe Discovers a New Form of Alternative Energy
 
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
Solar Cells Lecture 3: Modeling and Simulation of Photovoltaic Devices and Sy...
 
Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1Fundamentals of Photovoltaics: Lecture 1
Fundamentals of Photovoltaics: Lecture 1
 
LLNC Presentaion Sham group
LLNC Presentaion Sham groupLLNC Presentaion Sham group
LLNC Presentaion Sham group
 
ppt on the Solar cells understanding semiconductor devices
ppt on the Solar cells understanding semiconductor devicesppt on the Solar cells understanding semiconductor devices
ppt on the Solar cells understanding semiconductor devices
 
Spectroscopic ellipsometry
Spectroscopic ellipsometrySpectroscopic ellipsometry
Spectroscopic ellipsometry
 
Simulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch ApplicationsSimulation of Magnetically Confined Plasma for Etch Applications
Simulation of Magnetically Confined Plasma for Etch Applications
 
MARM_chiral
MARM_chiralMARM_chiral
MARM_chiral
 
Characteristics features, economical aspects and environmental
Characteristics features, economical aspects and environmentalCharacteristics features, economical aspects and environmental
Characteristics features, economical aspects and environmental
 
Benchmark Calculations of Atomic Data for Modelling Applications
 Benchmark Calculations of Atomic Data for Modelling Applications Benchmark Calculations of Atomic Data for Modelling Applications
Benchmark Calculations of Atomic Data for Modelling Applications
 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)
 
Cd
CdCd
Cd
 
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
Variation of Electrical Transport Parameters with Large Grain Fraction in Hig...
 
Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Representing molecules as atomic-scale electrical circuits with fluctuating-c...Representing molecules as atomic-scale electrical circuits with fluctuating-c...
Representing molecules as atomic-scale electrical circuits with fluctuating-c...
 
NANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock ApproachNANO266 - Lecture 2 - The Hartree-Fock Approach
NANO266 - Lecture 2 - The Hartree-Fock Approach
 
Periodicity introduction unit 1
Periodicity introduction unit 1Periodicity introduction unit 1
Periodicity introduction unit 1
 
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...Evidence Of Bimodal Crystallite Size Distribution In  Microcrystalline Silico...
Evidence Of Bimodal Crystallite Size Distribution In Microcrystalline Silico...
 
The_Status_and_Outlook_for_the_Photovoltaics_Industry_2007 BP
The_Status_and_Outlook_for_the_Photovoltaics_Industry_2007 BPThe_Status_and_Outlook_for_the_Photovoltaics_Industry_2007 BP
The_Status_and_Outlook_for_the_Photovoltaics_Industry_2007 BP
 
Final3 Of Lecture 13
Final3 Of Lecture 13Final3 Of Lecture 13
Final3 Of Lecture 13
 

More from Tuong Do

Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Tuong Do
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Tuong Do
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013
Tuong Do
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...
Tuong Do
 

More from Tuong Do (20)

Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt NamTiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
Tiềm năng và xu hướng công nghệ phát triển điện mặt trời ở Việt Nam
 
Tổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh họcTổng quan Công nghệ Khí sinh học
Tổng quan Công nghệ Khí sinh học
 
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại ThailandĐiện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
Điện mặt trời và cơ chế thanh toán bù trừ net-metering tại Thailand
 
Solar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introductionSolar PV development in singapore and SERIS introduction
Solar PV development in singapore and SERIS introduction
 
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast AsiaVietnam the new powerhouse for cell manufacturing in Southeast Asia
Vietnam the new powerhouse for cell manufacturing in Southeast Asia
 
Solar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong DoSolar technology and market trend 2017 - Tuong Do
Solar technology and market trend 2017 - Tuong Do
 
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gióXu hướng công nghệ thị trường - Điện mặt trời và Điện gió
Xu hướng công nghệ thị trường - Điện mặt trời và Điện gió
 
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
STATE OF THE INDUSTRY KEYNOTE BNEF SUMMIT 2016
 
Renewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV VietnamRenewable energy models for rice residues - SNV Vietnam
Renewable energy models for rice residues - SNV Vietnam
 
GIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in VietnamGIZ support mechanism for RE development in Vietnam
GIZ support mechanism for RE development in Vietnam
 
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
Giz2013 en-identification-of-biomass-market-opportunities-in-vietnam 2
 
Giz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnamGiz2013 en-exploring-biogas-market-opportunities-vietnam
Giz2013 en-exploring-biogas-market-opportunities-vietnam
 
Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...Module 1: Technical options and international best practices for on-grid powe...
Module 1: Technical options and international best practices for on-grid powe...
 
Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...Module 2: Assessment of international good practices in the fields of biomass...
Module 2: Assessment of international good practices in the fields of biomass...
 
Module 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integrationModule 3: Criteria for the siting and systems integration
Module 3: Criteria for the siting and systems integration
 
Module 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptationsModule 7: Assessment of framework conditions and necessary adaptations
Module 7: Assessment of framework conditions and necessary adaptations
 
Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...Module 4: Basic design parameters (technical and economic) for commercially v...
Module 4: Basic design parameters (technical and economic) for commercially v...
 
04 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_201304 giz doris_beck_presentation_vietnam_september_2013
04 giz doris_beck_presentation_vietnam_september_2013
 
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
Module 6 Basic design parameters for commercially viable on-grid biomass gasi...
 
Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...Giz2013 Policies and regulatory framework promoting the application of biomas...
Giz2013 Policies and regulatory framework promoting the application of biomas...
 

Recently uploaded

Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Safe Software
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 

Recently uploaded (20)

Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
Apidays New York 2024 - Accelerating FinTech Innovation by Vasa Krishnan, Fin...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ..."I see eyes in my soup": How Delivery Hero implemented the safety system for ...
"I see eyes in my soup": How Delivery Hero implemented the safety system for ...
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
ICT role in 21st century education and its challenges
ICT role in 21st century education and its challengesICT role in 21st century education and its challenges
ICT role in 21st century education and its challenges
 
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot TakeoffStrategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
Strategize a Smooth Tenant-to-tenant Migration and Copilot Takeoff
 
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
Biography Of Angeliki Cooney | Senior Vice President Life Sciences | Albany, ...
 
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
Emergent Methods: Multi-lingual narrative tracking in the news - real-time ex...
 
MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024MINDCTI Revenue Release Quarter One 2024
MINDCTI Revenue Release Quarter One 2024
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 

Solar Cells Lecture 4: What is Different about Thin-Film Solar Cells?

  • 1. 2011 NCN@Purdue-Intel Summer School Notes Summer School: July 2011 NCN on Photovoltaic Devices Notes on the Fundamental of Solar Cell Lecture 14 What is Different about Thin-Film PV M. A. Alam and S. Dongaonkar alam@purdue.edu Electrical and Computer Engineering Purdue University West Lafayette, IN USA
  • 2. copyright 2011 This material is copyrighted by M. Alam under the following Creative Commons license: Conditions for using these materials is described at http://creativecommons.org/licenses/by-nc-sa/2.5/ 2 Alam 2011
  • 3. The lecture series on solar cells  Introduction to Solar cells  Physics of Crystalline Solar cells  Simulating Solar Cells  What is different about thin film solar cell  Organic photovoltaics superposition and recombination Alam 2011 3
  • 4. Outline of the lecture 1) Background information about thin film solar cells 2) Photo current from the transmission perspective 3) Dark current, shunt conduction, and weak diodes 4) Variability, reliability, and lifetime of solar cells 5) Conclusions Alam 2011 4
  • 5. Different types of solar cells p-n p-i-n m-i-m Crystalline Silicon Amorphous silicon Flexible organic Si too thick and expensive … Alam 2011 5 *Google Images
  • 6. Economics of solar cells C-Si CdTe a-Si CIGS OPV Material/m2 207 50-60 64 100-125 37 Process/m2 123 86 73 130 23-37 Total/m2 350 130 138 230 50-80 Cost/W 1.75 0.94 -1.2 0.9-1.4 1.63 1-1.36 c-Si installation, labor, etc. $3.75/W Others … $1.00-1.50/W …. but thin film solar cell has their own problems ! • All costs are approximate (J. Kalowekamo/E. Baker, Solar Energy, 2009. Goodrich, PVSC Tutorial, 2011. 6
  • 7. Features of thin film solar cells (2) Thin doped region (1) Thin absorption layer (3) Contact diffusion (4) Grain boundaries Laser Scribe Al a-Si:H TCO Glass (5) Series connection Alam 2011 7
  • 8. Equivalent circuit of thin film solar cells IT Idark IT RL Iph Voc RL Pmax = Iph × Voc × FF Iph IR Id ISH = Iph − I0 (e qV / kBT − 1) I ⇒ VOC = ( kT q ) ln(1 + I ph I0 ) Superposition does not hold … 8
  • 9. Outline of the lecture 1) Background information about thin film solar cells 2) Photo current from the transmission perspective 3) Dark current, shunt conduction, and weak diodes 4) Variability, reliability, and lifetime of solar cells 5) Conclusions Alam 2011 9
  • 10. Basics of current flow Wrong contact loss +Recombination loss 4 qυ Jn ≠ Jn = 0 L Jn = Jn − J p = 3qυ0 − 2qυ0 L L J= J −J = J −J L n L p L n R n = 4 qυ0 − 2qυ0 3 2  = ×  υ0 − υ0  6q 6 6  4 2 = 6q × υ0 − 6q × υ0  γ L ,n γ L ,p  6 6 = qG ×  −  γ L ,n γ L ,p  γ L ,n + γ R ,n + γ rec γ L ,p + γ R ,p + γ rec    = qG × − qG × γ L ,n + γ R ,n γ L ,p + γ R ,p Alam 2011 10
  • 11. Basics of transmission over a barrier −EB ,L kBT γ L←R = Ae −EB ,R kBT γ R←L = Ae Right Right Left Contact Left Contact Contact Contact −EB ,L kBT γ L = Ae γ R = Ae −EB ,R kBT Left Contact Device Right Contact Alam 2011 11
  • 12. Photocurrent without recombination J ph  γ L ,nW γ L ,p  = qG ∫0 dx  γ L ,n + γ R ,n − γ L ,p + γ R ,p      γ R = υ0 e= W dx  γ L ,n − E ( W − x )/ kT γ R ,n  ∫0  γ L ,n + γ R ,n − γ L ,n + γ R ,n    γ L = υ0   W  υ0 υ0 e − E(W − x )/ kT  = ∫0 dx   υ0 + υ0 e − E ( W − x )/ kT −  υ0 + υ0 e − E(W − x )/ kT    2L W  2L W  RL = D log cosh W× ≅ W  D − coth  kT W 2 LD  W 2 LD  LD ≡ E ‘Price length’ and point of no return …. Alam 2011 12
  • 13. Properties of ‘Sokel’ photo-current Sokel and Hughes, JAP, 53(11), 1982. J ph 2L W γL  γR = W × D log cosh qG W 2 LD VA=0  2 LD W  ≅W − coth   W 2 LD  γL = γR Jn qG Vbi=VA>0 Vbi VA γL = γR Vbi γL < γR VA>Vbi=0 Voltage dependent photocurrent, different from Si p-n junction …
  • 14. Blocking layer and photocurrent J ph W  γ L ,n γ R ,n  γR ~ 0 qG ∫ 0 dx   −  γ L ,n + γ R ,n γ L ,n + γ R ,n  VA=0   J ph = qGW J ph qG Vbi γR ~ 0 VA Vbi=VA>0 With blocking layer … Blocking is essential for many types of thin film PV …. 14
  • 15. Photocurrent with recombination Crandall, JAP, 54(12), 19823  n ≡ υ0 × τ n = µn × E × τ n J ph W  γ L ,n γ L ,p  W ∫ dx  − = ∫ dx e − x /=  c 1 − e −W /  c    c     qG  γ L ,n + γ R ,n + γ rec γ L ,p + γ R ,p + γ rec  0 0   J ph qG {  } = W − W −  n 1 − e −W /  n   15
  • 16. Photo-current in crystalline cells with electron mirror without electron mirror J ph J L ,n JL ,p = − =  n 1 − e −W /  n  ~  n    n ≡ Dnτ n  W qG qG qG Voltage independent photocurrent is unaffected by electron mirrors Electron blocking layer does suppress dark current, increases Voc. 16
  • 17. Numerical validation: Effect of blocking layer With blocking Without blocking Dτ  W Dτ  W For low quality Si PV, blocking is not essential 17
  • 18. Photocurrent with field/recombination J ph W υ0 e − x /  n − υ0 e −(W − x )/  k e −(W − x )/  n  = ∫ dx   qG 0   υ0 + υ0 e −(W − x )/  k   W  e − x /  n − e −( W − x )/  k e −( W − x )/  n  = ∫ dx  − ( W − x )/  k  0  1+ e   2 LD J ph W  ≅W − coth  qG  W 2 LD  nph kT LD ≡ E Matches with numerical simulation very well … Alam 2011 18
  • 19. Outline of the lecture 1) Background information about thin film solar 2) Photo current from transmission perspective 3) Dark current, shunt conduction, and weak diodes 4) Variability, reliability, and lifetime of solar cells 5) Conclusions Alam 2011 19
  • 20. Dark current without recombination γL γR Jn qnLυ0 − qnRυ0 γL + γR γL + γR nL ,0 nR ,0 = γ R ,0 γ L ,0 ND NA −E = Ae − qVbi k T γ L ,0 Ae B ,0 B kB T nR ,0 = ni2 N A γ R ,0 = A ×1 ⇒ γ L ,0 γ R ,0 = e −qV bi kB T nL ,0 = ND nL ,0 = nR ,0 e + qVbi kB T Vbi ni2 − qVbi kB T nR ,0 = ni2 N A nL ,0 = e NA ER ←L = qVbi Alam 2011 EL ←R = 0 20
  • 21. Calculating dark current without recombination γ L = Ae −q(V bi − V ) kB T γL γR Jn qnL ,0υ0 − qnR ,0υ0 γ R= A ×1 γL + γR γL + γR ni2 + qVbi kB T nL ,0 = e qυ0 NA Jn γL + γR ( nL ,0γ L − nR ,0γ R ) qυ0 ni2 qVbi e kB T − q ( Vbi −V )/ kB T e − 1 e − q ( Vbi −V )/ kB T + 1 NA   Vbi ni2  µn (V − Vbi ) / d  qVb  + q(V −Vbi ) / kBT  e − 1 kB T q NA e + 1    ni2 ni2   µn (V − Vbi ) / d  qV   + q(V −Vbi )/ kBT  e − 1 ≡ I0 e qV − 1 kB T kB T Jd = Jn + J p = q  +  N A ND   e   + 1     21
  • 22. Theory and practice of thin film dark IV Theory Experiment Id ≡ I0 e qV  kB T − 1  Butterfly wings! A real solar cell IV seldom looks like textbook IV! These wings helped create many complicated models. 22 Alam 2011
  • 23. Contact diffusion and shunt conduction (2) Thin doped region (1) Thin absorption layer (4) Grain boundaries (3) Contact diffusion A real solar cell IV seldom looks like textbook IV 23
  • 24. Parasitic shunt leakage @ low voltage shunt @ high voltage intrinsic Dongaonkar and Alam JAP, 2010 24
  • 25. Interpretation of ‘shunt’ leakage J n = qnµn E Va = 2 2J L 3 2 3 εµn dE qn = 9εµn dx κε 0 J ( Va ) = Va2 8L3 V δ +1 * EA Ishunt = Aµ 2δ +1 γ= kT L * G. Paasch et al., JAP 106, 084502 (2009) 25
  • 26. Features of shunt leakage V δ +1 Symmetry Exponents Ishunt = Aµ 2δ +1 L L-3 Dongaonkar and Alam, EDL, 2010 26
  • 27. Outline of the lecture 1) Background information about thin film solar 2) Photo current from transmission perspective 3) Dark current, shunt conduction, and weak diodes 4) Variability, reliability, and lifetime of solar cells 5) Conclusions Alam 2011 27
  • 28. Contact diffusion and shunt conduction (2) Thin doped region (1) Thin absorption layer (3) Grain boundaries (4) Contact diffusion 28 Alam 2011
  • 29. L I Variability and weak diodes I0 ≈ Iph (Voc ) e − qVoc / kT = Iph (Voc )(e ( oc ) − 1) q V −V / kT I l 2 × n × Iph (Voc1 )(e ( oc1 ) − 1) q V −V / kT = Iph (Voc 2 )(e ( oc 2 ) − 1) q V −V / kT = L2 l 2 ≈ e ( oc1 oc 2 ) ! q V −V / kT n I I0 (e qV / kT − 1) − Iph (V ) I0 (e qVoc / kT − 1) = (Voc ) Iph Like an impact crater, a single um-sized weak diode can drain away 1-10 mm region !! Voc = kBT × ln(1 + Iph I0 ) (karpov, PRB 69, 045325, 2004.) 29
  • 30. (5) Series connection, shadow degradation, and a very weak diode 30 Alam 2011
  • 31. Being in shadow stresses the device Shaded Load line panel Shaded cell operating operating point point Initial cell Initial panel operating point operating point Shaded cells can get reverse biased! 31
  • 32. Shadow degradation Dongaonkar et al. IRPS 2011 Dark current Normal time operation Shadow Operating degradation voltage 32
  • 33. Light induced degradation Y. Nakata, et al., JJAP, 1992 Slope – t1/3 T. Shimizu, JJAP, 2004 D. L. Staebler, et al., APL, 1977. Ongoing discussion about exponent n~1/3 33 M. Stutzmann, et al., PRB, 1985
  • 34. Reaction-Diffusion Model for LID G H2 Reaction: 1011 Density of DBs [cm-3] dNDB = kF N0 G - kR NDB NH ~0 1010 dt Free H Generation: Slope n ~0.3 109 dNH dNDB = - kH NH 2 dt dt 108 2 /3  kf N0G  10-4 10-2 100 102 NDB ∝ ( 3kH ) 1/ 3 1/ 3  t  k   LS Time [sec] 34  r 
  • 35. Light induced degradation in crystalline PV metal finger n+ emitter ~ 100 nm p absorber ~ 100 µm p+ electron mirror ~ 100 nm back reflector Boron-doped Czochralski (Cz) crystalline PV equally susceptible to LID. Float-zone and/or Ga doping better. Alam 2011 35
  • 36. Extrinsic and Intrinsic Solar Cell Reliability • Electrochemical Intrinsic • Light Induced Extrinsic corrosion Degradation • Moisture Ingress • Hot spot • Glass fracture breakdown • Inverters reliability • Shunt leakage • Delamination • Shadow degradation • Improper insulation • Weak diodes • Bypass diode failure Source - www.nrel.gov/pv/performance_reliability/pdfs/failure_references.pdf 36
  • 37. conclusions Economic incentive to develop thin film solar cell. The unique features of thin film PV make photo- current voltage dependent, increases probability of formation of weak diodes and shunts. In addition to the extrinsic reliability issues, we need to worry about shadow degradation, light induced degradation, etc. The reliability/variability are key concerns – making modules less efficient than individual cells. Alam 2011 37