Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Japan Wrap Up re:Invent2018

Japan Wrap Up
reinvent2018

Livres associés

Gratuit avec un essai de 30 jours de Scribd

Tout voir
  • Soyez le premier à commenter

Japan Wrap Up re:Invent2018

  1. 1. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. JapanWrap upSession Today’sAgenda 16:45-17:00 WelcomeSpeech 17:00-17:45 MachineLearningに関するサービスアップデート 17:45-18:15 DataBaseに関するサービスアップデート 18:15-18:37 ITTransformation関連サービスのまとめ 18:37-19:00 その他主要サービスアップデートのまとめ
  2. 2. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. JapanWrap upSession 長崎 忠雄 代表取締役社長 アマゾン ウェブ サービス ジャパン株式会社
  3. 3. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  4. 4. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  5. 5. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  6. 6. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  7. 7. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  8. 8. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  9. 9. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Machine Learning ServicesUpdate Makoto Shimura Solution Architect A W S r e : I n v e n t 2 0 1 8 J a p a n W r a p - u p S e s s i o n
  10. 10. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS MachineLearningServicesStack
  11. 11. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 今回のアップデートの概要 1. 万人が対象 API サービス - 誰でも機械学習技術を活用できるように 2. [機械学習] 技術者が対象 ML パイプライン - 機械学習のあらゆるプロセスを便利に 3. 機械学習技術者が対象 強化学習 – 機械学習の新たな領域
  12. 12. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. API サービス
  13. 13. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS MachineLearningServicesStack
  14. 14. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  15. 15. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonPersonalize–easy-to-useなパーソナライズ • Amazon Personalize は機械学習のエキスパートでない人向けの,レコメンデー ションやパーソナライゼーションが簡単に行えるサービス • Amazon が培ったレコメンデーションのナレッジを活用して,データを入れたら自 動でレコメンド・パーソナライズの結果を取得可能 • 既存サービスに簡単にレコメンド機能を追加できるように
  16. 16. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonPersonalizeの利用イメージ • 以下のようなユースケースに適用可能 • ユーザーの行動ログデータをベースとしたレコメンデーションを実行 • ユーザーごとに検索結果をパーソナライズして,表示順序を変更 • ノートフィケーションをパーソナライズした形で実行 • バッチデータとストリームデータの両方に対応 • バッチデータは S3 から「ユーザー x 商品」行列形式のデータを取り込む • ストリームデータは AWS Amplify か AWS SDK 経由でデータを送信
  17. 17. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 価格と提供リージョン • 価格 • データ量,学習数,推論数に応じて課金 • 提供リージョン • バージニア北部 • オレゴン • ステータス • 以下のページからプレビュー申請可能 https://pages.awscloud.com/AmazonPersonalizePreview.html
  18. 18. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  19. 19. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonForecast–easy-to-useな時系列予測サービス • Amazon Forecast は機械学習のエキスパートでない人向けの,時系列データの予 測を簡単に行えるサービス • Amazon が培った時系列予測のナレッジを活用して,データを入れたら自動で時系 列予測の結果を表示 • ウェブトラフィック,売上データ,商品需要,小売における製品値引きやプロモー ションの効果などを予測する際に役立つ
  20. 20. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 価格と提供リージョン • 価格 • 作成した予測数,保存データ量,学習にかかった時間の 3 要素に応じて課金 • 提供リージョン • バージニア北部 • オレゴン • ステータス • 以下のページからプレビュー申請可能 https://pages.awscloud.com/AmazonForecast-Preview.html
  21. 21. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  22. 22. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonComprehendMedical–メディカルデータ対応 • 文章から様々な情報を抽出する,自然言語理解サービス Amazon Comprehend の拡張サービスで,メディカルデータ向けのチューニング を行なったもの • 症状,治療法,薬等の医療用語,略語に対応できるように追加学習済み • 医療上の文脈やエンティティの関係性を認識 • Protected health Information (PHI) を抜き出す API も用意.ただし 100 % の精度で検出できるわけではないので,その点に注意して使用す る必要あり
  23. 23. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonComprehend Medical の利用イメージ • 症状や治療法のようなエンティティを認識 • 文章構造をみて,単語間の関係性も認識することが可能
  24. 24. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 価格と提供リージョン • 価格 • $0.01/unit : Medical Named Entity and Relationship Extraction API • $0.0014/unit : Medical PHI Data Extraction and Identification API • 1 unit は 100 文字 • 対応言語 • 英語 • 提供リージョン • バージニア北部 • オレゴン • オハイオ • アイルランド
  25. 25. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  26. 26. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonTextract–文章構造も認識可能なOCR 概要 • Amazon Textract は高機能な OCR を提供 • 見出し,ヘッダー,フォーム,テーブル等の構造情報 も認識 • 既存の OCR にあるような文書章フォーマットのテン プレートをメンテナンスする必要はない 価格 • $1.50 / 1000 pages ステータス • 以下のページからプレビュー申請可能 https://pages.awscloud.com/textract-preview.html
  27. 27. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  28. 28. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonTranslateCustomTerminology–カスタム語彙 • Amazon Translate は高機能な多言語 間翻訳サービス • ただ固有名詞等,決まった特定の形 で処理をしたいものに関しては,必 ずしもうまく対応できなかった • カスタム語彙を追加することで,こ の問題に対応できるように • ただし多用しすぎると翻訳の質を逆に下げてし まう • 商品名,固有名詞のような常に一定の規則で変 換されるもの留めることを推奨 • 言語ごとのカスタム語彙利用推奨, 非推奨は右図の通り
  29. 29. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  30. 30. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. MLModelsinAWSMarketplace– 機械学習モデルのマーケットプレイスを新たに提供開始 • さまざまな会社が提供する機械 学習モデルを,マーケットプレ イス経由でサブスクライブし, Amazon SageMaker の学習 ジョブおよび,推論エンドポイ ントやバッチ推論ジョブで利用 可能に • 200 以上のアルゴリズムがすで に公開済み • 自社アルゴリズムの販売も当然 可能
  31. 31. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. SageMaker でのマーケットプレイスモデルの利用 学習ジョブ実行時 モデル作成時
  32. 32. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS MachineLearningServicesStack
  33. 33. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. ML パイプライン
  34. 34. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 機械学習の分類 ラベルや値を学習 正解あり ラベルや値を学習 正解なし
  35. 35. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 一般的な機械学習のプロセス
  36. 36. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 実際の機械学習のプロセス
  37. 37. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. データ 準備 実際の機械学習のプロセス
  38. 38. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 機械学習の分類 ラベルや値を学習 正解あり ラベルや値を学習 正解なし
  39. 39. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  40. 40. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonSageMakerGroundTruth– 効率的アノテーション作業の支援サービス • Amazon SageMaker Ground Truth は,機械学習の正解データ作成(ア ノテーションと呼ばれる)作業をサポートするマネージドサービス • 画像や文章に正解ラベルを付与するのは,非常に手間のかかるプロセス だが,精度の高い正解データ作成は,機械学習活用には必須 • 例えば以下のようなアノテーションを実行可能 • 画像分類(ネコ画像とイヌ画像を分類) • 物体検出(画像内の複数の物体を,物体の範囲を四角形で囲む形で検出) • セマンティックセグメンテーション(ピクセルレベルで画像内の領域を分割) • テキスト分類(ポジティブな文章とネガティブな文章を分類) • 自分で定義したさまざまなタスク
  41. 41. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. GroundTruthによるアノテーション • ピクセル単位,バウンディングボックス等さまざまなタスクに対応 • アクティブラーニングによる効率的なアノテーション • ツールを提供するだけでなく,以下のアノーテターを選択可能 • 自社リソース • 3rd パーティ • Amazon Mechanical Turk
  42. 42. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. アノテーション作業と結果のチェック
  43. 43. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 価格と提供リージョン • 価格 • Amazon Mehcanical Turk および 3rd パーティベンダーのアノテーターを使用するときには, その利用料が別途かかる • 提供リージョン • バージニア北部 • オレゴン • オハイオ • アイルランド • 東京
  44. 44. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 実際の機械学習のプロセス モデル 変換
  45. 45. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  46. 46. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonSageMakerNeo– 各種フレームワーク対応のモデル変換 • Amazon SageMaker Neo は Tensorflow や PyTorch などの Deep Learning フレームワークで学習 したモデルを, EC2 インスタンスや Greengrass デバイス上で高速に動作するように変換する サービス • モデルの速度は最大 2 倍に(もちろん予測精度を一切下げることなく) • 従来のフレームワーク上で 500MB-1GB あるようなモデルが,Amazon SageMaker Neo Runtime 上で 1MB 程度のサイズに • Apache Software License で OSS として提供
  47. 47. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Neoの対応フレームワークとプラットフォーム • 対応フレームワーク • Tensorflow • Apache MXNet • PyTorch • ONYX • XGBoost • 対応プラットフォーム • EC2 インスタンス(ml.c5, ml.c4, ml.m5, ml.m4, ml.p3, ml.p2) • デバイス • ARM Cortex-A, Intel Atom, Nvidia Jetson) • Cadence, Qualcomm, Xilinx にも対応予定
  48. 48. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 価格と提供リージョン • 価格 • 無料 • 提供リージョン • バージニア北部 • オレゴン • アイルランド
  49. 49. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 実際の機械学習のプロセス 推論
  50. 50. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  51. 51. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonElasticInference–GPUによる推論を安価に • Amazon Elastic Inference は GPU リソースを 推論演算ごとに細切れで利用可能とすること で,推論にかかる費用を削減しながら高速な 推論を行えるサービス • 現在の GPU は,主に学習プロセスに最適化 されており,これを推論で用いる場合,コス ト的な無駄が生じやすかった • 推論に適した CPU / メモリの EC2 インスタ ンスを選んだ上で,GPU のスループットを 得るための EIA (Elastic Inference Accelerator) を以下の 3 つから選択 • eia1.medium: 8TFLOPS の混合精度演算 • eia1.large: 16TFLOPS の混合精度演算 • eia1.xlarge: 32TFLOPS の混合精度演算
  52. 52. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. CPUインスタンスの計算をGPUでアクセラレート • ワークロードに応じた最適なリソース配分 • 画像処理:more GPU, CPU, and Memory • 音声認識:less GPU, more CPU and Memory • たとえば画像分類の推論処理をする場合,コストを下げながら十分なパ フォーマンスを得ることが可能 インスタンス EIA 推論速度 (msec) 価格 ($/hour) c5.large なし 230 msec $0.085 c5.large eia1.medium 46 msec $0.22 p2.xlarge なし 42 msec $0.90
  53. 53. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 価格と提供リージョン • 価格(東京リージョン) • eia1.medium: $0.308/h • eia1.large: $0.630/h • eia1.xlarge: $1.246/h • 提供リージョン • バージニア北部 • オハイオ • オレゴン • アイルランド • ソウル • 東京
  54. 54. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  55. 55. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS Inferentia – 機械学習の推論チップ • AWS Inferentia は,低コストで高性能を実現するように設計された機械学習の推論 チップ • TensorFlow,Apache MXNet,PyTorch ONNX フォーマットを使用するモデルをサ ポートし,アプリケーションの計算コストの90%を節約することができる • 2019 年に提供開始予定で,Amazon SageMaker,Amazon EC2,Amazon Elastic Inference が対応
  56. 56. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 実際の機械学習のプロセス 推論
  57. 57. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  58. 58. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSStepFunctionsAPIConnectors Step Functions のステートマシンから他のAWS サービス群に対して直接操作できるようになり, 前処理〜ジョブ実行〜デプロイの流れをより便 利に行えるように • DynamoDB: 既存のテーブルからitemの取り出し,新規item の追加 • AWS Batch: バッチジョブの開始と完了待機 • Amazon ECS/Fargate: ECSまたはFargateのタスクを実行 • Amazon SNS: SNSトピックにメッセージをパブリッシュ • Amazon SQS: キューにメッセージをプッシュ • AWS Glue: ジョブを開始 • Amazon SageMaker: 学習ジョブ、変換ジョブを開始
  59. 59. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AirflowOperator サポート • Airflow 1.10.1 より,SageMaker Operator をサポート • 既存の Airflow 環境から,SageMaker を読んでパイプラインを構築する ことがより簡単に https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/workflow/README.rst
  60. 60. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 実際の機械学習のプロセス 開発 学習 推論
  61. 61. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  62. 62. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AirflowOperator サポート • Airflow 1.10.1 より,SageMaker Operator をサポート • 既存の Airflow 環境から,SageMaker を読んでパイプラインを構築する ことがより簡単に https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/workflow/README.rst
  63. 63. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Github /CodeCommit インテグレーション • SageMaker のノートブックインスタンスが,Github および CodeCommit と統合 された形で利用可能になった • JupyterLab モードから GUI で利用可能 • Git リポジトリを紐づけてノートブックインスタンスを起動することで,最初から 当該リポジトリが含まれた状態で作かを開始できる
  64. 64. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. TensorflowコンテナがスクリプトモードとPython3に対応 • 従来の SageMaker では model_fn, train_input_fn, eval_input_fn とコン ポーネントを分けて記述する必要があった • これが __main__ の中に直接モデル定義とデータ読み込み,学習処理を すべて書けるようになったので,既存の Tensorflow スクリプトをそのま ま持ってきて動かすことが容易になった • あわせて tf.keras を使うことで,既存の Keras コードを移植して学習さ せることも容易に • また従来の Python 2 だけでなく,Tensorflow 1.11 以降ではPython 3 に 対応
  65. 65. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. ビルトインアルゴリズムに セマンティックセグメンテーションが追加 • セマンティックセグメンテーションは,ピクセル単位で画像の領域が何 かを判定するもの • Image Classification, Object Detection と並んでよく行われる画像認識の 手法
  66. 66. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 学習ジョブに対して高度な検索を行える Search 機能(ベータ)が追加 • アルゴリズム,ハイパーパラメータ設定,学習データ,タグ等で,合致するデータ を検索することが可能 • 検索結果を Accuracy や Loss 等のメトリクスでソートすることが可能 • デプロイされたモデルについて,どのデータが使われたかという Linage をトレー スすることも可能
  67. 67. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 実際の機械学習のプロセス 開発
  68. 68. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  69. 69. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 非常に高速な学習のためのGPU インスタンス • C5n インスタンス同様,最大 100Gbps のネットワーク性能 • ENA ドライバが必要 • 1 セッションでは 5Gbps が上限なので,通信真の多重化を考慮する必要あり • 32GB 版 NVIDIA® Tesla® V100 GPU を 8 個,Intel® Xeon® Scalable (Skylake) の 96v CPU を搭載 • 2x900GB の NVMe SSD でディスクアクセスもさらに高速に
  70. 70. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 強化学習
  71. 71. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 機械学習の分類 ラベルや値を学習 正解あり ラベルや値を学習 正解なし
  72. 72. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 機械学習の分類 ラベルや値を学習 正解あり ラベルや値を学習 正解なし 「方策」を学習 正解なし
  73. 73. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 機械学習の分類 ラベルや値を学習 正解あり ラベルや値を学習 正解なし 「方策」を学習 正解なし
  74. 74. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 強化学習(Reinforcement Learning) とは • 定義された「環境」の中で,「エージェント」が「行動」したフィード バックとして「報酬」を受け取るステップを,何度も繰り返し,最終的 に良い結果を目指す • 報酬は,ポジティブなものだけではなくネガティブなものもある • 最終的に良い結果につながる行動には,ポジティブな報酬 • 最終的に悪い結果につながる行動には,ネガティブな報酬 • 例: 将棋 • 環境: 9x9 のマス目と,多くの種類の駒,およびルール • エージェント: 将棋の指し手 2 名 • 行動: 駒を動かす • 報酬: 勝ち負け
  75. 75. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  76. 76. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonSageMakerで強化学習のサポート • Amazon SageMaker RL は,強化学習を行うための機能拡張 • Open AI Gym / Intel Coach / Berkeley Ray RLLib などを含んだ形で, Tensorflow / MXNet のコンテナを利用することが可能 • また TensorForce や StableBaselines のような強化学習ライブラリを活 用して,自分自身の環境を作成することも可能 • 以下のようなツール群と連携 • シミュレーター • AWS が提供: AWS RoboMaker, Amazon Sumerian • 他社提供: MATLAB and Simulink(ライセンスは別途必要) • 環境: OpenAI Gym, Gym インタフェースを使った環境(Roboschool, EnergyPlus など)
  77. 77. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. SageMakerの強化学習でオートスケーリングの最適化 • 環境: ロードプロファイルと稼働インスタンス数 • 行動: インスタンスの起動 or 停止 • 報酬: 費用 + トランザクション成功率.キャパシティ不足の際は大きなペナルティ
  78. 78. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  79. 79. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSDeepRacer–強化学習のためのラジコンカー • AWS DeepRacer は,1/18 スケールの 4 輪ラジコンカー • 開発者が強化学習を始める際に,ハンズオンを行えるようにするためのもの 仕様 • 1/18 スケールラジコンカー • Intel Atom プロセッサ • 4Mピクセル, 1080p カメラ • WiFi (802.11ac) • 2h 以上稼働可能なバッテリー • Ubuntu 16.04LTS, ROS (Robot Operating System), OpenVino
  80. 80. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSDeepRacerの構成と関連サービス • Amazon SageMaker で強化学習のトレーニング を行うことが可能 • AWS RoboMaker による 3D シミュレーション環 境を用いて,トレーニングした結果の評価を行 い,良かったものを実機で走らせる • AWS DeepRacer リーグを開催.AWS 各地のサ ミットでレーシングイベントを開催するととも に,オンラインのイベントやトーナメントも実 施.成績上位者は re:Invent 2019 で行われる チャンピオンカップに集結
  81. 81. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 価格 • Amazon.com にて,$399.00 のところが今なら期間限定で $249.00 で予 約受付中.2019/3/6 発売予定
  82. 82. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  83. 83. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. まとめ 1. 万人が対象 API サービス - 誰でも機械学習技術を活用できるように • 自分たちのデータで時系列予測・パーソナライズを簡単に行える新サービスが登場 • 医療用自然言語解析,OCR といった,既存の言語・画像領域のサービスも拡大 2. [機械学習] 技術者が対象 ML パイプライン - 機械学習のあらゆるプロセスを便利に • アノテーション,モデル変換,GPU 推論の最適化,ワークフロー管理など,ML パイプライ ンをエンドツーエンドでサポートするようなサービスを提供 • 従来開発・の学習・推論プロセスに関しても,より多くの機能を提供 3. 機械学習技術者が対象 強化学習 – 機械学習の新たな領域 • Amazon SageMaker が強化学習をサポートし,他サービスとも連携 • AWS DeepRacer によって,強化学習の第一歩を踏み出すことがより簡単に
  84. 84. Thank you! © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Makoto Shimura makotosh@amazon.co.jp
  85. 85. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. re:InventWrap upSession Database Tats Shibata Database Solutions Architect Amazon Web Services Japan
  86. 86. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Agenda 新サービス • Amazon Quantum Ledger Database (QLDB) • Amazon Managed Blockchain • Amazon Timestream • Amazon RDS on VMware アップデート • Amazon DynamoDB Transactions • Amazon DynamoDB On-Demand • Amazon Aurora Global Databases • Amazon Aurora: Custom endpoints • Amazon Aurora Serverless: Data API • Amazon Aurora with PostgreSQL 10 Compatibility • Amazon RDS for Oracle 12.2 • Amazon RDS for SQL Server: Always On availability groups • Amazon RDS for SQL Server: Enhanced backup and restore capabilities • AWS Database Migration Service: Amazon Elasticsearch Service and Amazon Kinesis Data Streams as targets
  87. 87. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  88. 88. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonQuantumLedger Database(QLDB) • フルマネージドな元帳データベース • すべてのデータ変更を 正確に順序づけられたエントリーとして格納。 内部的には追記のみが行われ、各エントリーは変更不可能 ヘルスケア 患者の医療記録の 確認や追跡 製造業 リコールされた製品の 製造履歴を追跡 人事部門 従業員プロフィールへの 変更を追跡 政府機関 各種履歴の追跡
  89. 89. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 既存技術で元帳を実現する際の課題 不必要な複雑さ ブロックチェーンRDBMSでの監査テーブル 複雑な メンテナンス 低い スループット プロシージャの 作成 / 管理 管理者による 変更 / 削除
  90. 90. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. QLDBの構成要素 C | H J ジャーナル C | H 現在値 | 履歴 現在値 | 履歴 ジャーナル 元帳が 構成されるJ L 元帳データベースL ジャーナルが 規定 現在値 | 履歴
  91. 91. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. ID Version Start End Manufacturer Model Year VIN OwnerID Version Start End Manufacturer Model Year VIN Owner 1 1 07/16/2012 NULL Tesla Model S 2012 123456789 Traci Russell ID Version Start End Manufacturer Model Year VIN Owner 1 1 07/16/2012 08/03/2013 Tesla Model S 2012 123456789 Traci Russell 1 2 08/03/2013 09/02/2016 Tesla Model S 2012 123456789 Ronnie Nash 1 3 09/02/2016 NULL Tesla Model S 2012 123456789 Elmer Hubbard ID Version Start End Manufacturer Model Year VIN Owner 1 1 07/16/2012 08/03/2013 Tesla Model S 2012 123456789 Traci Russell 1 2 08/03/2013 NULL Tesla Model S 2012 123456789 Ronnie Nash ID Manufacturer Model Year VIN Owner 1 Tesla Model S 2012 123456789 Elmer Hubbard ID Manufacturer Model Year VIN OwnerID Manufacturer Model Year VIN Owner 1 Tesla Model S 2012 123456789 Traci Russell ID Manufacturer Model Year VIN Owner 1 Tesla Model S 2012 123456789 Ronnie Nash FROM cars WHERE VIN = '123456789' UPDATE owner = 'Elmer Hubbard'INSERT INTO cars << { 'Manufacturer': 'Tesla', 'Model': 'Model S', 'Year': '2012', 'VIN': '123456789', 'Owner': 'Traci Russel' } >> FROM cars WHERE VIN = '123456789' UPDATE owner = 'Ronnie Nash' QLDBの具体例 J current.cars C history.cars H INSERT cars ID:1 Manufacturer: Tesla Model: Model S Year: 2012 VIN: 123456789 Owner: Traci Russell Metadata: { Date:07/16/2012 } H(x) UPDATE cars ID:1 Owner: Ronnie Nash Metadata: { Date:08/03/2013 } H(x) UPDATE cars ID:1 Owner: Elmer Hubbard Metadata: { Date: 09/02/2016 } H(x)
  92. 92. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. QLDBの機能まとめ • 追加のみできるジャーナルデータを保存 • 暗号化ハッシュ関数を利用した トランザクションの整合性検証が可能 • サーバーレス • SQLライクな文法 • ドキュメント型データモデル • ACIDサポート • 2018/11時点では、プレビューの申し込み受付中
  93. 93. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Managed Blockchain • Hyperledger Fabric とEtherum*を使用した フルマネージドなブロックチェーンネットワークサービス • 数クリックでスケーラブルなブロックチェーン ネットワークをセットアップ可能 • ブロックチェーンネットワークへの新規メンバーの追加や リソースの使用率の追跡などの管理や保守が容易に • QLDBにブロックチェーンネットワークのアクティビティを レプリケートし、ネットワークのアクティビティ分析や トレンドの把握が容易に • 2018/11時点では、プレビューの申し込み受付中
  94. 94. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonTimestream[1/3] • IoTデバイスからのセンシングデータや 産業機器のテレメトリデータなどの 大量に発生する時系列データの追加に特化したデータベース • 大量の時系列データから開始 / 終了時刻の範囲を設定して データをクエリーするようなワークロードに最適 • RDBMSでも同様のことは可能だが、 毎日数兆件のイベントが発生するようなワークロードでは、 10分の1のコストで最大1000倍の性能向上を実現 • サーバーレス • 2018/11時点では、プレビューの申し込み受付中
  95. 95. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonTimestream[2/3] ITシステムや、 工業製品といった 接続デバイスから データを収集 Amazon Timestream を 使用して、時系列データを 効率的に格納、処理。 また、補間、近似、 スムージングなどの 組込み解析機能を使用して、 データを分析 BIツールの プラグインに よって、 SQLライクな クエリーにより 時系列データ分析 機械学習を使用して 傾向、パターン、 異常を特定
  96. 96. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonTimestream[3/3] • IoTアプリケーション • スムージング、近似、補間などの組込み解析関数を使用し、 IoTアプリケーションで生成された時系列データを迅速に解析。 例えば、Amazon Timestream 経由でデバイスセンサーから モーションや照度データを収集し、留守のときはライトをオフにするなど • 産業用テレメトリ • 産業機器の保守、やり取りの監視や、ルーティング計画と最適化のために、 時系列データを簡単に保存および分析 • DevOps • 各アプリケーションからデータおよびサーバー監視データなどをリアルタイムで分析し、 アプリケーションのパフォーマンスと可用性を向上させるDevOpsアプリケーションを構築
  97. 97. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon RDSonVMware • VMware上で Amazon RDS を実行可能に。 RDSの特徴であるマネージドサービス、スケラービリティ、 高可用性、高セキュリティをVMware環境でも実現 • 災対用に、RDS on VMware のスタンバイやリードレプリカを AWSに構築するハイブリッドクラウドを構成可能 • 既存オンプレミスデータベースを RDS on VMware に移行してから、 AWSに移行する Shift & Lift 戦略 • 2018/11時点では、プレビューの申し込み受付中
  98. 98. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. データカテゴリとユースケース Relational 参照整合性、 ACIDトラン ザクション、 スキーマ Lift and shift, ERP, CRM, finance Key-value 高スループット、 低レイテンシ、 スケーラ ビリティ Real-time bidding, shopping cart, social, product catalog, customer preferences Document ドキュメントを 保存し、任意の 属性にクエリで すばやく アクセス Content management, personalization, mobile In-memory マイクロ秒 レベルの keyアクセス Leaderboards, real-time analytics, caching Graph すばやく簡単に データ間の 関係を元に グラフ構造を 作成、 ナビゲート Fraud detection, social networking, recommendation engine Time-series 時系列に特化 した形で データの収集、 格納、処理 IoT applications, event tracking Ledger アプリケーション データの全変更を 完全、不変、 検証可能な 履歴として保存 Systems of record, supply chain, health care, registrations, financial
  99. 99. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSの提供するサービス Aurora CommercialCommunity Relational Key-value Document In-memory Graph Time-series Ledger
  100. 100. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  101. 101. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon DynamoDBTransactions [1/2] • DynamoDBが複数アイテム、複数テーブルに対する 読み書きでACIDトランザクションをサポート • 金融取引、商品の受注から決済までの管理などの ユースケースでの使用が容易に • 同一アカウント内の同一リージョン内で、 最大10個の異なるアイテムに対して、 最大10回の書き込みを1個のトランザクションに含められる
  102. 102. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon DynamoDBTransactions [2/2] • トランザクション分離レベルはSerializableで、 ロックは取らない • トランザクションの進行中に、アイテムがトランザクション外で 変更された場合、トランザクションはキャンセルされ、例外が発生 • 複数のトランザクションが同一アイテムを頻繁に変更するような ワークロードには向かない • グローバルテーブルではデフォルト無効、 有効にした場合もトランザクションはリージョン単位 • 追加料金なし
  103. 103. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon DynamoDBOn-Demand • DynamoDBで、読み書きリクエスト数に応じた Pay-per-Requestモデルの請求モードが選択可能に • 今までは事前にキャパシティ設計が必要だったが、 on-demandを利用することで不要に • 既存テーブルでも、どちらの請求モードにするか変更可能。 ただし、on-demandへの変更は1日1回まで • バージニア北部リージョンでの料金 • 100万書き込みリクエスト当たり$1.25 • 100万読み込みリクエスト当たり$0.25
  104. 104. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonAuroraGlobal Databases [1/2] • Aurora with MySQL 5.6 のクロスリージョン リードレプリカが強化され、Global Databases に • 通常1秒未満の低レイテンシなレプリケーションと、 通常1分以内の高速なフェールオーバーが可能に • 従来はBinlogを基にしたレプリカインスタンスを作成していたが、 Global Databases では、Auroraストレージレベルでのクラスター間の 物理レプリケーションで実現 • 2018/11時点では、バージニア北部、 オハイオ、オレゴン、アイルランドで 利用可能 バージニア北部 オレゴン
  105. 105. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonAuroraGlobal Databases [2/2]
  106. 106. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonAurora:Customendpoints • Auroraクラスター内のどのインスタンスを含めるかを ユーザーが指定可能なエンドポイントが作成可能に • オンラインクエリー用のリードレプリカと 分析クエリー用のリードレプリカを分離することが可能に • MySQL / PostgreSQL 両互換で対応
  107. 107. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonAuroraServerless:DataAPI • Aurora Serverless へのアクセス方法として、 MySQLネイティブプロトコルに加え、HTTPSエンドポイント および AWS SDK からのアクセスを提供 • AWS Lambda や AWS AppSync から、 VPCにアクセスすることなくAuroraを利用可能 • クエリー結果はJSON形式で戻される。 1000行および1MBが上限 • 同期APIであり、 1分以内に完了しない場合は中断される • 2018/11時点では、 バージニア北部でベータ版として提供
  108. 108. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonAurora with PostgreSQL 10Compatibility • Aurora with PostgreSQL 2.0 として PostgreSQL 10.4 互換バージョンをリリース • ネイティブパーティショニング(宣言的パーティショニング)に対応 • パラレルクエリーの強化 • postgres_fdwの強化 • 2018/11時点では、バージニア北部、オハイオ、 オレゴン、アイルランドで利用可能
  109. 109. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon RDSforOracle 12.2 • RDS for Oracle のサポートバージョンに12.2が追加 • BYOL (Bring Your Own License) での Oracle Support による Extended Support 終了日が2025年1月に • Oracle Multitenant には引きつづき未対応だが、 一部の機能はRDSの機能で代替可能 Premier Support 終了 Extended Support 終了 11.2.0.4 2015/01 2020/12 12.1.0.2 2018/07 2021/07 12.2 2022/03 2025/03 http://www.oracle.com/us/support/library/lifetime-support-technology-069183.pdf
  110. 110. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon RDSforSQLServer: AlwaysOn availabilitygroup • RDS for SQL Server が Always On 可用性グループを使用した マルチAZ構成をサポート • Always On 可用性グループリスナーが使用可能に • 従来のミラーリングに比べ、フェイルオーバーがより短く • 従来のミラーリングを利用するか、Always On 可用性グループを 利用するかは、エディションとバージョンからRDSが自動選択 • 対応エディション: Enterprise Edition • 対応バージョン: SQL Server 2016 13.00.5216.0以降 • 2018/11時点では、SQL Server 2017 に未対応
  111. 111. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon RDSforSQLServer: Enhanced backup and restore capabilities • 1つのバックアップファイル(.bakファイル)からの 復元を利用して、複数の RDS for SQL Server インスタンスを 作成できるようになり、開発 / 検証環境の複製がより高速に • マルチAZ構成の RDS for SQL Server が、プライマリとミラーの 両方を同時に復元できるようになり、復元時間がより短く • 同一インスタンス上にある復元する必要のないデータベースの 停止および再ミラーリングが不要に
  112. 112. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS DatabaseMigrationService(DMS): Amazon ElasticsearchServiceand Amazon KinesisDataStreamsas targets • DMSのデータ送信先に Elasticsearch Service と Kinesis Data Streams が追加 • RDBMSへのINSERTなどの変更を RDBMSの外でリアルタイムに分析 / 監視できるように
  113. 113. Thank you! © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Tats Shibata
  114. 114. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. JapanWrap-up ITTransformation 関連サービスのまとめ 瀧澤与一 アマゾンウェブサービスジャパン株式会社 技術統括本部 エンタープライズソリューション本部 本部長 / プリンシパルソリューションアーキテクト
  115. 115. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Agenda Storage: • AWS Snowball Edge Compute Optimized • AWS DataSync • Glacier Deep Archive • S3 Intelligent-Tiering • EFS Infrequent Access • AWS Transfer for SFTP • Amazon FSx for Windows File Server • Amazon FSx for Lustre Networking: • AWS Global Accelerator • AWS Transit Gateway • Elastic Fabric Adapter • AWS Ground Station Security • AWS Security Hub • AWS Control Tower Enterprise IT Management: • AWS License Manager • Amazon RDS on Vmware • OutPosts • AWS Well-Architected Tool
  116. 116. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  117. 117. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSSnowballEdgeComputeOptimized 物理的に過酷な場所やオフラインの場所でコンピューティングを集中的に 使用するアプリケーション用に、52vCPU、208GBのメモリ、7.68TBの NVMe SSD、および42TBのS3互換ストレージを提供。 また、フルモー ションビデオ処理などのシナリオのため、NVIDIA TESLA V100 GPUを追 加するオプションもあります。 • 52vCPU/208GiB:Snowball Edge Compute Optimized • 52vCPU/208GiB:Snowball Edge Compute Optimized with GPU • 従来のSnowball Edge(24vCPU/32GiB/100TB S3互換ストレージ)は “Snowball Edge Storage Optimized”として引き続き利用可能
  118. 118. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS DataSync マイグレーションやアップロード、バックアップ/DRにおける、データ転 送の加速と自動化を実現。
  119. 119. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Glacier DeepArchive オンプレミスのテープよりも低価格な、低コストストレージをクラウドで 提供
  120. 120. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. (Coming soon) Amazon EFS InfrequentAccessStorageClass アクセス頻度の低いファイルのコストに最適化されたAmazon EFSの新し いストレージクラス
  121. 121. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AutomaticCostOptimization forAmazonS3 IntelligentTiering パフォーマンスへの影響や運用上のオーバーヘッドなしに、データ・アク セス・パターンが変更されたときにストレージ・コストを自動的に最適化 する新しいストレージクラス
  122. 122. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSTransfer forSFTP 完全マネージド、高い可用性のSFTPサービス。Amazon S3のバケットを 使い、IAMを利用して、ユーザ認証、権限管理や鍵で制御可能。
  123. 123. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon FSxforWindowsServer ネイティブ Windows ファイルサーバー上に構築された完全に管理された Windows ファイルシステム • ファイルシステムあたり最大2 GB /秒のスループット、数十 万IOPS、一貫したサブミリ秒のレイテンシを備えた高速性 能を提供
  124. 124. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon FSxfor Lustre 処理負荷の高いワークロード向けの完全管理型ファイルシステム • 高性能コンピューティング、機械学習、メディアデータ処理 ワークフロー、電子設計自動化(EDA)などのコンピュー ティング集約型ワークロードに最適化された、完全に管理さ れたファイルシステム • 数百ギガバイト/秒のスループット、数百万のIOPS、および サブミリ秒の遅延で大量のデータセットを処理できるLustre ファイルシステム • Amazon FSxはAmazon S3と統合されているため、S3デー タに簡単にアクセスして、コンピューティング集約型のワー クロードを実行可能。Amazon Direct ConnectまたはVPN経 由でFSxファイルシステムにアクセスも可能。
  125. 125. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  126. 126. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSControlTower(Preview) マルチアカウントに対応したセキュアな環境を簡単に設定および管理可能 • Control Towerには統合されたダッシュボードが用意されて いるため、AWS環境のトップレベルの要約を表示して、ア カウントに関するすべての情報を1か所で把握可能。
  127. 127. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSSecurityHub(Preview) AWS 環境全体でセキュリティとコンプライアンスを一元的に管理可能
  128. 128. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  129. 129. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSGroundStation 衛星通信のダウンリンクと衛星データの処理、衛星に関するオペレーショ ンをAmazon EC2のように、使いたい時に従量課金で利用可能。 • 衛星を登録するには、チームと連絡する必要があります。利 用率と需要を監視し、必要に応じてステーションとアンテナ を増設します。
  130. 130. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSGlobalAccelerator AWSグローバルネットワークを利用して、複数リージョン向けのアプリ ケーションの可用性とパフォーマンスの向上を容易に。
  131. 131. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSTransitGateway 複数AWSアカウントで構成された複数のAmazon VPCや、オンプレミスの ネットワークを相互に接続。
  132. 132. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. ElasticFabricAdopter HPCに最適化されたAmazon EC2用ネットワークインターフェイス • 既存のHPCアプリケーションをAWSクラウドにス ケール可能に。 • 例えば、リザボアシミュレーション((油田の原油産出量 予測)、気象モデリング、流体計算など、ノード間の通 信が重要なワークロードで効果を発揮。 • 業界標準のMPI(Message passing Interface)をサポー トし、既存のアプリケーションへの変更なしに利用が 可能。 • 100GbpsをサポートしたC5nインスタンスで利用可能。
  133. 133. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  134. 134. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 商用ソフトウェアのライセンス管理を提供する AWS License Managerを発表 • 現在のライセンス利用状況の可視化や、ライセンス 上限到達時に新規起動を抑止することが可能 • 構築済みAMIやLaunch Templateとルールを紐付ける ことでトラッキングを行う。トラッキングについて はオンプレミスのサーバにも対応 • vCPUの最小・最大数を規定することや、Dedicated 利用の強制することでライセンス規定への抵触を回 避するための機能を備える • 東京リージョンを含む各リージョンにおいて、無料 で利用できる
  135. 135. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. VMware基盤上でAmazon RDSを利用できる Amazon RDS on VMwareのパブリックプレビューを開始 • MySQLとPostgreSQLについて、Amazon RDS on VMwareのプライベートプレビューを開始 • 利用できるバージョンは限定的で、MySQLは5.7。 PostgreSQLは10.4となる • 通常のRDSと同様にOSやDBMSへのパッチ適用、 バックアップとPITR、スケーリングやフェイルオー バーを自動化することができる • マスター側をVMwareに配置し、リードレプリカを AWSに起動することもできる • プレビューにはサインアップが必要 Traditional server Traditional server Traditional server
  136. 136. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSOutposts AWSインフラストラクチャをオンプレミスで実行して、一貫したハイブ リッド体験を実現 • VMware Cloud for AWS Outpostsと、AWS OutpostsのAWS ネイティブバリアントを提供。 • Amazon Elastic Compute Cloud (Amazon EC2) and Amazon Elastic Block Store (Amazon EBS) がOutpostsで提供。数ヶ 月後に、RDS, ECS, EKS, SageMaker, EMRも対応。 • AWS Management Consoleにログインして、さまざまな計 算オプションとストレージオプションから選択して、 Outpostsサーバーを注文します。1つまたは複数のサーバー、 または1/4、ハーフ、およびフルラック単位を発注すること ができます。 • AWSによって完全に管理されサポートされます。
  137. 137. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSWell-ArchitectedTool ソリューションアーキテクトが活用しているWell-Architectedツールを使っ て、アーキテクチャの改善が可能に。
  138. 138. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Summary Storage: • AWS Snowball Edge Compute Optimized • AWS DataSync • Glacier Deep Archive • S3 Intelligent-Tiering • EFS Infrequent Access • AWS Transfer for SFTP • Amazon FSx for Windows File Server • Amazon FSx for Lustre Networking: • AWS Global Accelerator • AWS Transit Gateway • Elastic Fabric Adapter • AWS Ground Station Security • AWS Security Hub • AWS Control Tower Enterprise IT Management: • AWS License Manager • Amazon RDS on VMware • OutPosts • AWS Well-Architected Tool
  139. 139. Thank you! © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Yoichi Takizawa Sr. Manager, Principle Solutions Architect Amazon Web Services Japan K.K.
  140. 140. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. JapanWrap-upSession その他主要サービスアップデート 荒木靖宏 本部長/プリンシパルソリューションアーキテクト アマゾン ウェブ サービス ジャパン株式会社
  141. 141. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  142. 142. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. IoTセンサー群をモニターし異常検知とアクションを容易にする AWS IoT Eventsを発表 • 様々な場所に設置したIoTセンサー群からのデータをモニタリングし異常 や不具合をいち早く検知、保守の手配などのアクションを開始できる • if-then-elseの形式でイベントを検知するロジックを定義し、イベント発 生時に実行する通知やアクションを選択するだけでセットアップは完了 • AWS IoT CoreやAWS IoT Analyticsとも 連携可能 • バージニア、オレゴン、アイルランド でプレビュー提供
  143. 143. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 工場に設置した産業機器からのデータ収集を容易にする AWS IoT SiteWiseを発表 • 工場に配置された産業機器からのデータを簡単に収集し整理することを 可能にするマネージドサービス • SiteWiseは産業機器と連携しやすい設計であり、Snowball EdgeやGW に導入してデータを収集、予兆検知などに応用することが可能 • バージニア、オレゴン、アイルランドでリミテッドプレビューを開始
  144. 144. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. デバイスとWebサービスをつなぐアプリをGUIで構築する AWS IoT Things Graphを発表 • IoTアプリケーションは様々なデバイスとWebサー ビスを連携させる形で構築される • AWS IoT Things GraphはデバイスやWebサービスを モデルとして定義し、GUIで相互接続を設定するこ とでIoTアプリケーションの構築を迅速化する • 構築されたアプリケーションはGreengrassが導入さ れたデバイスで稼働させることができる • バージニア、オレゴン、アイルランドのリージョン でプレビューを開始。試用を希望する場合はWebで お申し込みを
  145. 145. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS RoboMaker ロボットの開発、シミュレート、テスト、デプロイをサポートするサービ ス。工場、教室、レストラン、ホテル、他の惑星など、様々な環境やサイ ズで動作するロボット向けに提供します。
  146. 146. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  147. 147. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. ARMベースのAWS Gravitonプロセッサ Amazon EC2 A1インスタンス • マイクロサービスのホストや、ウェ ブサーバ、開発環境やキャッシュ サーバなど、小規模インスタンスを たくさん並べる用途に最適 • 他ファミリと比較し顕著に低コスト • Amazon Linux 2, RHEL, Ubuntuの AMIがすでに利用可能で他も近日サ ポート開始予定 • バージニア、オレゴン、アイルラン ド、オハイオで a1ファミリ vCPU メモリ (GiB) EBS帯域 (Gbpx) NW帯域 (Gbps) コスト ($/時) a1.medium 1 2 Max 3.5 Max 10 0.0255 a1.large 2 4 Max 3.5 Max 10 0.0510 a1.xlarge 4 8 Max 3.5 Max 10 0.1020 a1.2xlarge 8 16 Max 3.5 Max 10 0.2040 a1.4xlarge 16 32 3.5 Max10 0.4080
  148. 148. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon EC2C5nInstance 100Gbpsのネットワークスループットに対応した新しいインスタンス
  149. 149. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. サーバの状態を維持したままインスタンスを停止できる Amazon EC2がハイバネーションをサポート • ハイバネーションの対応により、メモリ状態をディ スクに書き出した上でインスタンスを停止可能に • サーバで動作しているアプリケーションなどを停止 することなく、インスタンスを停止できる • ハイバネーション中のインスタンスサイズを変更す ることはできない。メモリサイズとEBS速度に応じ て停止・復帰には処理時間を要するので注意 • M3/M4/M5/C3/C4/C5/R3/R4/R5インスタンスで利用 可能。Windows ServerとAmazon Linux 1がサポート されるが、Amazon Linux 2も近日対応
  150. 150. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 100GbpsのNWを備え、さらにリッチなリソースを提供する Amazon EC2 p3dn.24xlargeインスタンスを発表 • 従来のP3インスタンスに加えて、100Gbpsのネット ワーク帯域が利用可能でリソースを強化した p3dn.24xlargeインスタンスを追加 • 以下のリソースを備える  96vCPU, 768GiB RAM, 2x 1TB NVMe SSD  8x NVIDIA Testa V100 GPU  100Gbps Network • バージニアとオレゴンのリージョンで利用可能。オ ンデマンドに加えて、Reserved InstanceやSpot Instanceとしても利用できる
  151. 151. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. サーバレスコンピューティング向けのマイクロ仮想マシン Firecrackerを発表 • コンテナのリソース利用効率と仮想サーバのセ キュリティ・独立性を兼ね備えるKVMテクノ ロジベースのマイクロVMテクノロジ • LambdaやFargateの基盤技術として利用されて おり、大規模な運用にも耐えられる • マイクロVMあたりわずか5MiBのメモリオー バーヘッド。CPUリソースの細かな制御にも 対応 • Apache 2.0ライセンス
  152. 152. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  153. 153. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon ManagedStreaming for Kafka フルマネージドの可用性の高いApache Kafraサービス
  154. 154. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AmazonCloudWatchLog Insights 数秒で大量のログを読み込み、迅速かつインタラクティブなクエリと視覚 化を実現します。任意のログ形式を処理でき、JSONログからフィールド を自動検出。 • 高度なアドホッククエリ言語があり、目的のイベントフィー ルドを取得したり、条件に基づいてフィルタリング可能。 • しパーセンタイルや時系列集計などの集計統計を計算したり、 任意のファイルを並べ替えることが可能。 • 正規表現を使用してイベントフィールドからデータを抽出し、 クエリでさらに処理できる1つ以上の一時的なフィールドを 作成することも可能。 • クエリ結果を視覚化することができ、CloudWatch Dashboardにクエリを追加することが可能。 • N. Virginia, Ohio, N. California, Oregon, Ireland, Frankfurt, London, Paris, Tokyo, Mumbai, Seoul, Sydney, São Pauloで 提供開始。
  155. 155. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon KinesisDataAnalyticsforJava Amazon Kinesis Data AnalyticsにJavaのサポートを導入 • 開発者は独自のJavaコードを使用して、データレイクにデータを連続的に変換してロードしたり、 リアルタイムのゲームのリーダーボードを提供するためのメトリクスを生成したり、接続されてい るデータストリームに機械学習モデルを適用するなどのストリーミングデータを処理する強力なリ アルタイムアプリケーションを作成できます。 • この新しい機能を使用するために、開発者は、アプリケーションが任意の規模でデータを整理、変 換、集約、分析できるようにする共通データ処理関数の組み込み演算子を含むオープンソースライ ブラリを使用してアプリケーションを構築します。 • これらのライブラリはどちらもオープンソースであり、どこでも実行できます。 • N.Virginia, Ohio, Oregon, Irelandでご利用いただけます。
  156. 156. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS LakeFormation • すべてのデータを元の形式で保存し、分析の準備が整った、 集中管理された、保護された、安全なリポジトリ • データサイロを分解し、さまざまなタイプの分析を組み合わ せて洞察を得て、より良いビジネス上の意思決定を導くこと が可能。 • データの格納場所と適用するデータアクセスとセキュリティ ポリシーを定義するだけの簡単さ。 • データベースとオブジェクトストレージからデータを収集し カタログ化し、新しいAmazon S3データレイクにデータを 移動し、機械学習アルゴリズムを使用してデータを整理し、 機密データへのアクセスを確保。
  157. 157. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  158. 158. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWSToolkitsfor Popular IDEs 開発者が普段使っているIDEに、AWS Toolkitsが対応
  159. 159. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS LambdaがRubyによるファンクションをサポート • AWS LambdaのファンクションをRubyで記述する ことができるようになった • 現時点で利用可能な言語は以下の通り  Python 2.7, 3.6, 3.7  Node.js 4.3, 6.10, 8.10  .NET Core 1.0(C#), 2.0(C#), 2,1(C#/PowerShell)  Go 1.x  Java 8  Ruby x.x • Lambdaが利用可能な全リージョンで一般利用開始 Lambda Function
  160. 160. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. 言語ランタイムを持ち込むことで好みの言語を利用する AWS LambdaでCustom Runtimesをサポート • Linuxで互換のランタイムを持ち込むことで、任意の 言語をLambda関数を記述できるようになった • 新たにリリースされたRuntime APIによって可能に なった。Rubyのサポートはこの方式による • 現在AWSからC++/Rustのリリースを準備中。パート ナーからはPHP/Erlang/Elixir/N|Solid/Cobolが提供さ れる予定 • C++/RustはOSSとなる  https://github.com/awslabs/aws-lambda-cpp-runtime  https://github.com/awslabs/aws-lambda-rust-runtime
  161. 161. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. ALBSupport for Lambda Lambda 関数を既存のウェブアーキテクチャに統合することが可能に。
  162. 162. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. StepFunctionsAPIConnectors コードを書かずに AWS サービスを結合させることが可能に。
  163. 163. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. WebSocket support forAPIGateway Lambda 関数とAPI Gateway を利用し、リアルタイムの2-way通信アプリ ケーションを構築できます。
  164. 164. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. アプリケーションのサービスディスカバリを容易に実現する AWS Cloud Mapをローンチ • マイクロサービス間の依存関係を把握するのは難し いが、各サービスは連携先を認識し接続する必要が ある。これを解決するのがサービスディスカバリ • 各サービスのロケーションやサービス状態を自動的 にトラックしサービスディスカバリの仕組みを実現 • SDK/CLIやDNSを利用して問い合わせが可能。各 サービスはCloud Mapに問い合わせをおこない、接 続先を自動的に取得することが可能に • 登録したリソース毎に$0.10/月、百万回のディスカ バリAPI呼び出し毎に$1.00の料金
  165. 165. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. マイクロサービス向けのサービスメッシュを提供する AWS App Meshのパブリックプレビューを開始 • AWS上のマイクロサービスを簡単に監視・制御する ための仕組み。サービス間の通信方式を標準化し、 連携状況の可視化や可用性を確保しやすくする • マイクロサービスアーキテクチャの課題の一つは、 個々のサービスの管理が煩雑な点だが、これによっ て個別管理から解放され運用が容易になる • App MeshはオープンソースのEnvoy Proxyを利用し ている。様々なオープソースツールやパートナ製品 と連携できる • App Mesh自体は無料で利用できる
  166. 166. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. Amazon Managed Blockchain Hyperledger Fabric, Etherreumフレームワークをサポートする、完全に管 理されたブロックチェーンサービス • 管理されたブロックチェーンコンソールで数回ク リックするだけで構成可能(sw構成、nw設定、新し いメンバーの追加などの管理する必要なし) • Hyperledger Fabric と Ethereumを利用可能。(Ethereum は後日提供)
  167. 167. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  168. 168. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS ElementalMediaConnect 安価で、高信頼でセキュアな複数拠点にリアルタイムビデオ転送を実現
  169. 169. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  170. 170. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved. AWS re:Invent 2018 ダイジェスト 〜 AWS の最新動向を学ぶ〜 https://amzn.to/2R23scQhttps://amzn.to/2S4F1eN
  171. 171. Thank you! © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  172. 172. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  173. 173. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.
  174. 174. © 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

×