SlideShare a Scribd company logo
1 of 41
Download to read offline
.




                          Introduction to Tensors
                                PFI Seminar


                                Kenta OONO


                                2012/07/11

Kenta OONO
Introduction to Tensors
Self Introduction




           • Kenta OONO (Twitter:@delta2323 )
           • PSS(Professional and Support Service) Division
           • Jubatus Project
               • msgpack-idl, generation of clients
           • Survey and Prototyping Team
           • 2010 PFI Summer Intern → 2011 Engineer




Kenta OONO
Introduction to Tensors
Agenda




           • What is Tensor?
           • Decomposition of Matrices and Tensors
           • Symmetry Parametrized by Young Diagram




Kenta OONO
Introduction to Tensors
Agenda




           • What is Tensor?
           • Decomposition of Matrices and Tensors
           • Symmetry Parametrized by Young Diagram




Kenta OONO
Introduction to Tensors
Vector as a Special Case of Tensor
       Consider a n dimensional vector (Below is the case n = 3)
                                          
                                           7
                                           
                                      v = 4                           (1)
                                           9
       When we write this vector as v = (vi ), we have v1 = 7, v2 = 4,
       and v3 = 9. As v has One index, this vector is regarded as Rank 1
       Tensor.

       Note
           • We use 1-index notation, not 0-index.
           • We somtimes use rank in a different meaning, (also in the
               context of tensors).
Kenta OONO
Introduction to Tensors
Matrix as a Special Case of Tensor

       Consider a n × n Matrix (Below is the case n = 3).
                                                    
                                     7 10 3
                                           
                                A = 4 −1 −2                          (2)
                                     9 4  5
       We write this matrix as A = (aij )1≤i,j≤3 .
           • e.g. a11 = 7, a23 = −2, a32 = 4.
       A has Two indices (namely i and j) and these indeices run through
       1 to 3. A can be regarded as Rank 2 Tensor.

       → What happens if the number of indices are not just 1 or 2 ?


Kenta OONO
Introduction to Tensors
An Example of Rank 3 Tensor

       Consider the set of real numbers X = (xijk )1≤i,j,k≤3 . As i, j, k run
       throuth 1 to 3 independently, this set contains 3 × 3 × 3 = 27
       elements.
       If we fix the value of i, we can write this set in a matrix form.

                                                                           
               7 10 3             10 2 1              5 −10 18
                                                            
       x1∗∗ = 4 −1 −2 , x2∗∗ =  3 −1 0 , x3∗∗ = −4  1    −2 
               9 4  5              8 1 4              9 −4 −10
                                                           (3)
       Note
           • In some field, we concatenate these matrix and name it X(1)
                • This is called Flattening or Matricing of X .


Kenta OONO
Introduction to Tensors
Is This a Multidimensional Array?



       We can realize a tensor as a multiple dimensional array in most
       programming languages.

       PseudoCode(C like):
         int[3][3][3] x;
         x[1][1][2] = -1;




Kenta OONO
Introduction to Tensors
Inner Product of Tensors


       Let X = (xijk ), Y = (yijk ) be two rank 3 tensors and G = (g ij ) be
       a symmetric (i.e. g ij = g ji ) and positive definite matrix. We can
       introduce an inner product of X and Y by:

                                           ∑
                                           n
                          < X , Y >=                   g ai g bj g ck xabc yijk   (4)
                                       a,b,c,i,j,k=1

       Note:
        • We can similarly define an inner product of two arbitrary rank
          tensor
                   • X and Y must have same rank.




Kenta OONO
Introduction to Tensors
An Example of Inner Product (Vector)

       Let’s consider the case of rank 1 tensor ( = vector). We can write
       X = (xi ), Y = (yi ). And we set G = (g ij ) an identity matrix:
                                                      
                                     1 ···           0
                                    .               .
                                G = . 1
                                     .               .
                                                     .                   (5)
                                     0 ···           1
       In this case, this definition of inner product reduce to ordinal inner
       product of two vectors, namely,
                                       ∑                    ∑
                          < X , Y >=         g ai xa yi =       xi yi    (6)
                                       a,i                  i



Kenta OONO
Introduction to Tensors
An Example of Tensor
       Suppose we have a (smooth) function f : R3 → R. We can derive
       tensors of arbitrary rank from this function.
       Taking Gradient, we obtain rank 1 tensor. (Please replace (1, 2,
       3) with (x , y , z) and vice versa.
                                                            ∂f 
                                                            ∂x 
                                    ∇f = (∇i f ) =  ∂y 
                                                     ∂f
                                                                               (7)
                                                            ∂f
                                                            ∂z
       Similarly, Hessian is an example of rank 2 tensor.
                                                                         
                                                    ∂2f       ∂2f     ∂2f
                                                  ∂x2∂x     ∂x ∂y   ∂x ∂z 
                          H(f ) = (Hij (f )) =    ∂ f        ∂2f     ∂2f 
                                                                               (8)
                                                  ∂y ∂x     ∂y ∂y   ∂y ∂z 
                                                    ∂2f       ∂2f     ∂2f
                                                   ∂z∂x      ∂z∂y    ∂z∂z

Kenta OONO
Introduction to Tensors
Supersymmetry Property


       By taking derivative, we can create an arbitrary rank of tensors.
       These tensors are (Super)Symmetric in the sense that
       interchange of any two indices remains the tensor identical. For
       example,

                          fx y z = fx zy = fy x z = fy zx = fzx y = fzy x .   (9)
       Note:
           • Afterward, we write this symmetry as                  .




Kenta OONO
Introduction to Tensors
Agenda




           • What is Tensor?
           • Decomposition of Matrices and Tensors
           • Symmetry Parametrized by Young Diagram




Kenta OONO
Introduction to Tensors
Decompose!


       It is fundamental in mathematics to decompose some object into
       simpler, easier-to-handle objects.
                                      ∑          √
          • Fourier Expansion : f =       an exp( −1nx )
                                          n∈Z
                                              ∑
           • Legendre Polynomial : P =              ak Pk
                                                k
                                      1 dk 2
                   • where Pk (x ) =           (x − 1)k
                                     k!2k dx k
           • Jordan-H¨lder : e = G0 ◁ G1 ◁ G2 ◁ · · · ◁ Gn−1 ◁ Gn = G
                     o




Kenta OONO
Introduction to Tensors
Decomposition of Matrix

       There are many theories regarding the decomposition (or,
       factorization) of matrices.
           • SVD
           • LU
           • QR
           • Cholesky
           • Jordan
           • Diagonalization ...
       Although we have theories of factorization of Tensors (e.g. Tucker
       Decomposition, higher-order SVD etc.) We do NOT go this
       direction. Instead, we consider decomposition of matrix into
       Summation of matrix.
Kenta OONO
Introduction to Tensors
Example: Projection to Axis




Kenta OONO
Introduction to Tensors
Example of Decomposition of Matrix


       We can decompose matrix into Symmetric part and
       Antisymmetric part.

       Example:
                                                          
           7 10 3               7 7       6           0 3 −3
                                                          
         4 −1 −2 =           7 −1      1   +   −3 0 −3
           9 4  5               6 1       5           3 3 0
                              Symmetric   Part   Antisymmetric Part
                    A             Asym                  Aanti
                                                                  (10)



Kenta OONO
Introduction to Tensors
How to Calculate Sym. and Antisym. Part

       We can calculate the symmetic and antisymmetric part by simple
       calculation (Exercise!).
                                                       
                                   7 10 3            7 4 9
                               1                       
                   Asym =        4 −1 −2 + 10 −1 4
                               2
                                   9 4    5          3 −2 5       (11)
                    sym                 1
                   aij     =              (aij + aji )
                                        2
                                                       
                                   7 10 3            7 4 9
                               1                        
                   Aanti   =     4 −1 −2 − 10 −1 4
                               2
                                   9 4    5          3 −2 5       (12)
                                        1
                    anti
                   aij     =              (aij − aji )
                                        2

Kenta OONO
Introduction to Tensors
Picture of Projection to Sym. and Antisym. Part




Kenta OONO
Introduction to Tensors
Notation Using Young Diagram

       We can symbolize symmetry and antisymmetry with Young
       Diagram

                                                        
             7 10 3      7 7 6       0 3 −3
                                       
            4 −1 −2 = 7 −1 1 + −3 0 −3
             9 4  5      6 1 5       3 3 0                             (13)

                          A       Asym              Aanti

       The number of boxes indicates rank of the tensor (one box for
       vector and two boxes for matrix).


Kenta OONO
Introduction to Tensors
Agenda


           • What is Tensor?
           • Decomposition of Matrices and Tensors
           • Symmetry Parametrized by Young Diagram


       Note:
           • From now on, we concentrate on Rank 3 Tensors (i.e.
               k = 3).
           • And we assume that n = 3, that is, indices run from 1 to 3.




Kenta OONO
Introduction to Tensors
Symmetrizing Operator



       We consider the transformation of tensor:

                           T       : X = (xijk ) → X ′ = (xijk ),
                                                            ′
                                                                            (14)
                      ′
              where xijk   = 1 (xijk + xikj + xjik + xjki + xkij + xkji )
                             6                                              (15)
                           = x(ijk) .




Kenta OONO
Introduction to Tensors
Young Diagram and Symmetry of Tensor (Sym. Case)


       Let X = (x123 ) be a tensor of rank 3, we call X Has a Symmetry
       of      , if interchange of any of two indices doesn’t change each
       entry of X .

       Example:
           • If X has a symmetry of             , then

                                        x112 = x121 = x211
                                                                           (16)
                          x123 = x132 = x213 = x231 = x312 = x321 etc...

           • Symmetric matrices have a symmetry of



Kenta OONO
Introduction to Tensors
Property of T
           • For all X , T  (X ) has symmetry of       .
           • If X has symmetry of     , then T    (X ) = X .
           • For all X , T   (T     (X )) = T    (X ).




Kenta OONO
Introduction to Tensors
Antisymmetrizing Operator
       Next, we consider Antisymmetrization of tensors:

                            T : X = (xijk ) → X ′ = (xijk ),
                                                       ′
                                                                            (17)

                      ′
              where xijk   = 1 (xijk − xikj − xjik + xjki + xkij − xkji )
                             6                                              (18)
                           = x[ijk] .




Kenta OONO
Introduction to Tensors
Young Diagram and Symmetry of Tensor (Antisym. Case)

       Let X = (x123 ) be a tensor of rank k, we call X has a symmetry of

         if interchange of any of two indices change only the sign of
       each entry of X .

       Example.

           • If X has a symmetry of , then
                • x123 = −x132 = −x213 = x231 = x312 = −x321
                • x112 = 0, because x112 must be equal to −x112 .

           • Antisymmetric matrix has a symmetry of



Kenta OONO
Introduction to Tensors
Orthogonality of Projection
       T           and T       are orthogonal in the sense

                           T       ◦ T (X ) = T ◦ T          (X ) = 0.   (19)




Kenta OONO
Introduction to Tensors
Counting Dimension




       How many dimension do the vector space consisting of tensors ...
           • with symmetry      have ?

           • with symmetry   have ?




Kenta OONO
Introduction to Tensors
Dimensions of each subvector spaces.
       If n = 3 (that is, i, j and k runs through 1 to 3), then each
       dimension is as follows.




       But dimension of total space is 3 × 3 × 3 = 27. This is larger than
       1 + 10 = 11.
Kenta OONO
Introduction to Tensors
Young Diagram

       Young Diagram is an arrangent of boxes of the same size so that:
           • two adjacent boxes share one of their side.
           • the number of boxes in each row is non-increasing.
           • the number of boxes in each column is non-increasing.
       Here is an example of Young Diagram with 10 boxes.



                                                                     (20)
                          English Notation French Notation



Kenta OONO
Introduction to Tensors
Decomposition of Tensor (of Rank 3)


       We have three types of Young Diagram which have three boxes,
       namely,



                                                                 (21)
                                 ,         ,      and
                          Symmetric Antisymmetric       ???


       → What symmetry does              represent?



Kenta OONO
Introduction to Tensors
Coefficients of Symmetrizers
       We list coneffients of each operator in a tabular form.

                                            Coefficient of xijk
                                ijk   ikj      jik   jki kij     kji

                                1/6   1/6      1/6   1/6   1/6   1/6



                                1/6   -1/6    -1/6   1/6   1/6   -1/6



                          Sum    1


Kenta OONO
Introduction to Tensors
Coefficients of Symmetrizers

                                             Coefficient of xijk
                                ijk   ikj      jik    jki      kij   kji

                                1/6   1/6       1/6    1/6    1/6    1/6



                                1/6   -1/6     -1/6    1/6    1/6    -1/6


                                4/6                    -2/6   -2/6
                          Sum    1


Kenta OONO
Introduction to Tensors
Symmetrizer T




       We consider the transformation of tensor:

                                 T     : X = (xijk ) → X ′ = (xijk ),
                                                                ′
                                                                        (22)

               ′
       where xijk =       1
                              (2xijk − xjki − xkij ).
                          3




Kenta OONO
Introduction to Tensors
Property of T

           • For all X , T   (X ) has symmetry of   .

           • If X has symmetry of , then T (X ) = X .
                           (       )
           • For all X , T   T (X ) = T (X ).




Kenta OONO
Introduction to Tensors
Tensors with Symmetry of



       Let X = (xijk ) be a tensor of rank 3. We say X Has a Symmetry
       of        , if
                                      1
                             xijk =     (2xijk − xjki − xkij )   (23)
                                      3
       for all 1 ≤ i, j, k ≤ n.




Kenta OONO
Introduction to Tensors
Where This Equation ”Symmetric” ?

       Remember that X has a symmetry of               , if
                                      1
                             xijk =     (2xijk − xjki − xkij )   (24)
                                      3
       for all 1 ≤ i, j, k ≤ n.

       This equation can be transormed as follows :
                                    1
                                      (2xijk − xjki − xkij )
                                  xijk =
                                    3                            (25)
                           ⇔ 3xijk = 2xijk − xjki − xkij
                           ⇔ xijk + xjki + xkij = 0



Kenta OONO
Introduction to Tensors
Projection to Each Symmetrized Tensors




Kenta OONO
Introduction to Tensors
Decomposition of Higher Rank Tensors

       Higher rank tensors are also decompose into symmetric tensors
       parametrized by Young Diagram.


                                         ⊕              ⊕
             Rn×n×n×n×n =



                          ⊕          ⊕         ⊕         ⊕



                                                                   (26)


Kenta OONO
Introduction to Tensors
Summary




           • Tensors as a Generalization of Vectors and Matrices.
           • Decomposition of Matrices and Tensors
           • Symmetry of Tensors Parametrized by Young Diagrams.




Kenta OONO
Introduction to Tensors
References


           • T G. Kolda and B W. Bader, Tensor Decompositions and
               Applications
               • 2009, SIAM Review Vol. 51, No 3, pp 455-500
           • D S. Watkins, Fundamentals of Matrix Computations 3rd. ed.

                   • 2010, A Wiley Series of Texts, Monographs and Tracts
           • W. Fulton and J Harris, Representation Theory
              • 1991, Graduate Texts in Mathematics Readins in Mathematics.
           • And Google ”Representation Theory”, ”Symmetric Group”,
               ”Young Diagram” and so on.



Kenta OONO
Introduction to Tensors

More Related Content

What's hot

Lie-Trotter-Suzuki分解、特にフラクタル分解について
Lie-Trotter-Suzuki分解、特にフラクタル分解についてLie-Trotter-Suzuki分解、特にフラクタル分解について
Lie-Trotter-Suzuki分解、特にフラクタル分解についてMaho Nakata
 
Replica exchange MCMC
Replica exchange MCMCReplica exchange MCMC
Replica exchange MCMC. .
 
道具としての機械学習:直感的概要とその実際
道具としての機械学習:直感的概要とその実際道具としての機械学習:直感的概要とその実際
道具としての機械学習:直感的概要とその実際Ichigaku Takigawa
 
TokyoR 第36回LT Rで部分空間法
TokyoR 第36回LT Rで部分空間法TokyoR 第36回LT Rで部分空間法
TokyoR 第36回LT Rで部分空間法Prunus 1350
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization IMatthew Leingang
 
Introduction to Principle Component Analysis
Introduction to Principle Component AnalysisIntroduction to Principle Component Analysis
Introduction to Principle Component AnalysisSunjeet Jena
 
データ解析5 単回帰分析
データ解析5 単回帰分析データ解析5 単回帰分析
データ解析5 単回帰分析Hirotaka Hachiya
 
R言語による アソシエーション分析-組合せ・事象の規則を解明する-(第5回R勉強会@東京)
R言語による アソシエーション分析-組合せ・事象の規則を解明する-(第5回R勉強会@東京)R言語による アソシエーション分析-組合せ・事象の規則を解明する-(第5回R勉強会@東京)
R言語による アソシエーション分析-組合せ・事象の規則を解明する-(第5回R勉強会@東京)Koichi Hamada
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionActiveEon
 
Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With ...
Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With ...Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With ...
Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With ...Simplilearn
 
Topology for Computing: Homology
Topology for Computing: HomologyTopology for Computing: Homology
Topology for Computing: HomologySangwoo Mo
 
はじめてのパターン認識 第5章 k最近傍法(k_nn法)
はじめてのパターン認識 第5章 k最近傍法(k_nn法)はじめてのパターン認識 第5章 k最近傍法(k_nn法)
はじめてのパターン認識 第5章 k最近傍法(k_nn法)Motoya Wakiyama
 
ベイズの識別規則
ベイズの識別規則ベイズの識別規則
ベイズの識別規則Shuhei Sowa
 

What's hot (20)

Pca ppt
Pca pptPca ppt
Pca ppt
 
Tensor algebra
Tensor algebraTensor algebra
Tensor algebra
 
Lie-Trotter-Suzuki分解、特にフラクタル分解について
Lie-Trotter-Suzuki分解、特にフラクタル分解についてLie-Trotter-Suzuki分解、特にフラクタル分解について
Lie-Trotter-Suzuki分解、特にフラクタル分解について
 
Replica exchange MCMC
Replica exchange MCMCReplica exchange MCMC
Replica exchange MCMC
 
道具としての機械学習:直感的概要とその実際
道具としての機械学習:直感的概要とその実際道具としての機械学習:直感的概要とその実際
道具としての機械学習:直感的概要とその実際
 
Discrete mathematics
Discrete mathematicsDiscrete mathematics
Discrete mathematics
 
TokyoR 第36回LT Rで部分空間法
TokyoR 第36回LT Rで部分空間法TokyoR 第36回LT Rで部分空間法
TokyoR 第36回LT Rで部分空間法
 
Lattices
LatticesLattices
Lattices
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 
Stochastic calculus
Stochastic calculus Stochastic calculus
Stochastic calculus
 
Introduction to Principle Component Analysis
Introduction to Principle Component AnalysisIntroduction to Principle Component Analysis
Introduction to Principle Component Analysis
 
3 fol examples v2
3 fol examples v23 fol examples v2
3 fol examples v2
 
データ解析5 単回帰分析
データ解析5 単回帰分析データ解析5 単回帰分析
データ解析5 単回帰分析
 
R言語による アソシエーション分析-組合せ・事象の規則を解明する-(第5回R勉強会@東京)
R言語による アソシエーション分析-組合せ・事象の規則を解明する-(第5回R勉強会@東京)R言語による アソシエーション分析-組合せ・事象の規則を解明する-(第5回R勉強会@東京)
R言語による アソシエーション分析-組合せ・事象の規則を解明する-(第5回R勉強会@東京)
 
Matrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer VisionMatrix and Tensor Tools for Computer Vision
Matrix and Tensor Tools for Computer Vision
 
Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With ...
Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With ...Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With ...
Naive Bayes Classifier | Naive Bayes Algorithm | Naive Bayes Classifier With ...
 
Matrices
MatricesMatrices
Matrices
 
Topology for Computing: Homology
Topology for Computing: HomologyTopology for Computing: Homology
Topology for Computing: Homology
 
はじめてのパターン認識 第5章 k最近傍法(k_nn法)
はじめてのパターン認識 第5章 k最近傍法(k_nn法)はじめてのパターン認識 第5章 k最近傍法(k_nn法)
はじめてのパターン認識 第5章 k最近傍法(k_nn法)
 
ベイズの識別規則
ベイズの識別規則ベイズの識別規則
ベイズの識別規則
 

Viewers also liked

Deep learning with Tensorflow in R
Deep learning with Tensorflow in RDeep learning with Tensorflow in R
Deep learning with Tensorflow in Rmikaelhuss
 
システム系論文輪講会20140806
システム系論文輪講会20140806システム系論文輪講会20140806
システム系論文輪講会20140806紘也 金子
 
PFN Spring Internship Final Report: Autonomous Drive by Deep RL
PFN Spring Internship Final Report: Autonomous Drive by Deep RLPFN Spring Internship Final Report: Autonomous Drive by Deep RL
PFN Spring Internship Final Report: Autonomous Drive by Deep RLNaoto Yoshida
 
Chainer Development Plan 2015/12
Chainer Development Plan 2015/12Chainer Development Plan 2015/12
Chainer Development Plan 2015/12Seiya Tokui
 
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例Jun-ya Norimatsu
 
深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデルYuta Kashino
 
Chainer入門と最近の機能
Chainer入門と最近の機能Chainer入門と最近の機能
Chainer入門と最近の機能Yuya Unno
 
ディープラーニングにおける学習の高速化の重要性とその手法
ディープラーニングにおける学習の高速化の重要性とその手法ディープラーニングにおける学習の高速化の重要性とその手法
ディープラーニングにおける学習の高速化の重要性とその手法Yuko Fujiyama
 
Chainer Contribution Guide
Chainer Contribution GuideChainer Contribution Guide
Chainer Contribution GuideKenta Oono
 
Lighting talk chainer hands on
Lighting talk chainer hands onLighting talk chainer hands on
Lighting talk chainer hands onOgushi Masaya
 
ボケるRNNを学習したい (Chainer meetup 01)
ボケるRNNを学習したい (Chainer meetup 01)ボケるRNNを学習したい (Chainer meetup 01)
ボケるRNNを学習したい (Chainer meetup 01)Motoki Sato
 
Chainer meetup lt
Chainer meetup ltChainer meetup lt
Chainer meetup ltAce12358
 
Introduction to DEEPstation the GUI Deep learning environment for chainer
Introduction to DEEPstation the GUI Deep learning environment for chainerIntroduction to DEEPstation the GUI Deep learning environment for chainer
Introduction to DEEPstation the GUI Deep learning environment for chainerRyo Shimizu
 

Viewers also liked (16)

Deep parking
Deep parkingDeep parking
Deep parking
 
Deep learning with Tensorflow in R
Deep learning with Tensorflow in RDeep learning with Tensorflow in R
Deep learning with Tensorflow in R
 
Herd
HerdHerd
Herd
 
システム系論文輪講会20140806
システム系論文輪講会20140806システム系論文輪講会20140806
システム系論文輪講会20140806
 
PFN Spring Internship Final Report: Autonomous Drive by Deep RL
PFN Spring Internship Final Report: Autonomous Drive by Deep RLPFN Spring Internship Final Report: Autonomous Drive by Deep RL
PFN Spring Internship Final Report: Autonomous Drive by Deep RL
 
Chainer Development Plan 2015/12
Chainer Development Plan 2015/12Chainer Development Plan 2015/12
Chainer Development Plan 2015/12
 
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例
Capitalicoでのchainer 1.1 → 1.5 バージョンアップ事例
 
深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル深層学習ライブラリのプログラミングモデル
深層学習ライブラリのプログラミングモデル
 
Chainer入門と最近の機能
Chainer入門と最近の機能Chainer入門と最近の機能
Chainer入門と最近の機能
 
ディープラーニングにおける学習の高速化の重要性とその手法
ディープラーニングにおける学習の高速化の重要性とその手法ディープラーニングにおける学習の高速化の重要性とその手法
ディープラーニングにおける学習の高速化の重要性とその手法
 
Chainer Contribution Guide
Chainer Contribution GuideChainer Contribution Guide
Chainer Contribution Guide
 
Lighting talk chainer hands on
Lighting talk chainer hands onLighting talk chainer hands on
Lighting talk chainer hands on
 
ボケるRNNを学習したい (Chainer meetup 01)
ボケるRNNを学習したい (Chainer meetup 01)ボケるRNNを学習したい (Chainer meetup 01)
ボケるRNNを学習したい (Chainer meetup 01)
 
Chainer meetup lt
Chainer meetup ltChainer meetup lt
Chainer meetup lt
 
Introduction to DEEPstation the GUI Deep learning environment for chainer
Introduction to DEEPstation the GUI Deep learning environment for chainerIntroduction to DEEPstation the GUI Deep learning environment for chainer
Introduction to DEEPstation the GUI Deep learning environment for chainer
 
CuPy解説
CuPy解説CuPy解説
CuPy解説
 

Similar to tensor-decomposition

Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxoptcerezaso
 
11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...Alexander Decker
 
Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Alexander Decker
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codesSpringer
 
Homotopy perturbation and elzaki transform for solving nonlinear partial diff...
Homotopy perturbation and elzaki transform for solving nonlinear partial diff...Homotopy perturbation and elzaki transform for solving nonlinear partial diff...
Homotopy perturbation and elzaki transform for solving nonlinear partial diff...Alexander Decker
 
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...11.homotopy perturbation and elzaki transform for solving nonlinear partial d...
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...Alexander Decker
 
Intro probability 3
Intro probability 3Intro probability 3
Intro probability 3Phong Vo
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheorySEENET-MTP
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuSEENET-MTP
 
Exponentials integrals
Exponentials integralsExponentials integrals
Exponentials integralsTarun Gehlot
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integralsTarun Gehlot
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integralsTarun Gehlot
 
CHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTIONCHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTIONNikhil Pandit
 
A new approach to constants of the motion and the helmholtz conditions
A new approach to constants of the motion and the helmholtz conditionsA new approach to constants of the motion and the helmholtz conditions
A new approach to constants of the motion and the helmholtz conditionsAlexander Decker
 
Andrei rusu-2013-amaa-workshop
Andrei rusu-2013-amaa-workshopAndrei rusu-2013-amaa-workshop
Andrei rusu-2013-amaa-workshopAndries Rusu
 
Bernheim calculusfinal
Bernheim calculusfinalBernheim calculusfinal
Bernheim calculusfinalrahulrasa
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524kazuhase2011
 
The multilayer perceptron
The multilayer perceptronThe multilayer perceptron
The multilayer perceptronESCOM
 
Cunningham slides-ch2
Cunningham slides-ch2Cunningham slides-ch2
Cunningham slides-ch2cunningjames
 

Similar to tensor-decomposition (20)

Cs229 cvxopt
Cs229 cvxoptCs229 cvxopt
Cs229 cvxopt
 
Holographic Cotton Tensor
Holographic Cotton TensorHolographic Cotton Tensor
Holographic Cotton Tensor
 
11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...11.solution of linear and nonlinear partial differential equations using mixt...
11.solution of linear and nonlinear partial differential equations using mixt...
 
Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...Solution of linear and nonlinear partial differential equations using mixture...
Solution of linear and nonlinear partial differential equations using mixture...
 
Lattices and codes
Lattices and codesLattices and codes
Lattices and codes
 
Homotopy perturbation and elzaki transform for solving nonlinear partial diff...
Homotopy perturbation and elzaki transform for solving nonlinear partial diff...Homotopy perturbation and elzaki transform for solving nonlinear partial diff...
Homotopy perturbation and elzaki transform for solving nonlinear partial diff...
 
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...11.homotopy perturbation and elzaki transform for solving nonlinear partial d...
11.homotopy perturbation and elzaki transform for solving nonlinear partial d...
 
Intro probability 3
Intro probability 3Intro probability 3
Intro probability 3
 
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge TheoryL. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
L. Jonke - A Twisted Look on Kappa-Minkowski: U(1) Gauge Theory
 
Quantum modes - Ion Cotaescu
Quantum modes - Ion CotaescuQuantum modes - Ion Cotaescu
Quantum modes - Ion Cotaescu
 
Exponentials integrals
Exponentials integralsExponentials integrals
Exponentials integrals
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 
Change of variables in double integrals
Change of variables in double integralsChange of variables in double integrals
Change of variables in double integrals
 
CHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTIONCHAIN RULE AND IMPLICIT FUNCTION
CHAIN RULE AND IMPLICIT FUNCTION
 
A new approach to constants of the motion and the helmholtz conditions
A new approach to constants of the motion and the helmholtz conditionsA new approach to constants of the motion and the helmholtz conditions
A new approach to constants of the motion and the helmholtz conditions
 
Andrei rusu-2013-amaa-workshop
Andrei rusu-2013-amaa-workshopAndrei rusu-2013-amaa-workshop
Andrei rusu-2013-amaa-workshop
 
Bernheim calculusfinal
Bernheim calculusfinalBernheim calculusfinal
Bernheim calculusfinal
 
Reflect tsukuba524
Reflect tsukuba524Reflect tsukuba524
Reflect tsukuba524
 
The multilayer perceptron
The multilayer perceptronThe multilayer perceptron
The multilayer perceptron
 
Cunningham slides-ch2
Cunningham slides-ch2Cunningham slides-ch2
Cunningham slides-ch2
 

More from Kenta Oono

Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...
Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...
Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...Kenta Oono
 
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistryDeep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistryKenta Oono
 
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017Kenta Oono
 
Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...Kenta Oono
 
深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介Kenta Oono
 
20170422 数学カフェ Part2
20170422 数学カフェ Part220170422 数学カフェ Part2
20170422 数学カフェ Part2Kenta Oono
 
20170422 数学カフェ Part1
20170422 数学カフェ Part120170422 数学カフェ Part1
20170422 数学カフェ Part1Kenta Oono
 
情報幾何学の基礎、第7章発表ノート
情報幾何学の基礎、第7章発表ノート情報幾何学の基礎、第7章発表ノート
情報幾何学の基礎、第7章発表ノートKenta Oono
 
GTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introductionGTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introductionKenta Oono
 
On the benchmark of Chainer
On the benchmark of ChainerOn the benchmark of Chainer
On the benchmark of ChainerKenta Oono
 
Tokyo Webmining Talk1
Tokyo Webmining Talk1Tokyo Webmining Talk1
Tokyo Webmining Talk1Kenta Oono
 
VAE-type Deep Generative Models
VAE-type Deep Generative ModelsVAE-type Deep Generative Models
VAE-type Deep Generative ModelsKenta Oono
 
Common Design of Deep Learning Frameworks
Common Design of Deep Learning FrameworksCommon Design of Deep Learning Frameworks
Common Design of Deep Learning FrameworksKenta Oono
 
Introduction to Chainer and CuPy
Introduction to Chainer and CuPyIntroduction to Chainer and CuPy
Introduction to Chainer and CuPyKenta Oono
 
Stochastic Gradient MCMC
Stochastic Gradient MCMCStochastic Gradient MCMC
Stochastic Gradient MCMCKenta Oono
 
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用 2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用 Kenta Oono
 
Introduction to Chainer (LL Ring Recursive)
Introduction to Chainer (LL Ring Recursive)Introduction to Chainer (LL Ring Recursive)
Introduction to Chainer (LL Ring Recursive)Kenta Oono
 
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料Kenta Oono
 
提供AMIについて
提供AMIについて提供AMIについて
提供AMIについてKenta Oono
 
Chainerインストール
ChainerインストールChainerインストール
ChainerインストールKenta Oono
 

More from Kenta Oono (20)

Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...
Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...
Minimax statistical learning with Wasserstein distances (NeurIPS2018 Reading ...
 
Deep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistryDeep learning for molecules, introduction to chainer chemistry
Deep learning for molecules, introduction to chainer chemistry
 
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
Overview of Machine Learning for Molecules and Materials Workshop @ NIPS2017
 
Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...Comparison of deep learning frameworks from a viewpoint of double backpropaga...
Comparison of deep learning frameworks from a viewpoint of double backpropaga...
 
深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介深層学習フレームワーク概要とChainerの事例紹介
深層学習フレームワーク概要とChainerの事例紹介
 
20170422 数学カフェ Part2
20170422 数学カフェ Part220170422 数学カフェ Part2
20170422 数学カフェ Part2
 
20170422 数学カフェ Part1
20170422 数学カフェ Part120170422 数学カフェ Part1
20170422 数学カフェ Part1
 
情報幾何学の基礎、第7章発表ノート
情報幾何学の基礎、第7章発表ノート情報幾何学の基礎、第7章発表ノート
情報幾何学の基礎、第7章発表ノート
 
GTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introductionGTC Japan 2016 Chainer feature introduction
GTC Japan 2016 Chainer feature introduction
 
On the benchmark of Chainer
On the benchmark of ChainerOn the benchmark of Chainer
On the benchmark of Chainer
 
Tokyo Webmining Talk1
Tokyo Webmining Talk1Tokyo Webmining Talk1
Tokyo Webmining Talk1
 
VAE-type Deep Generative Models
VAE-type Deep Generative ModelsVAE-type Deep Generative Models
VAE-type Deep Generative Models
 
Common Design of Deep Learning Frameworks
Common Design of Deep Learning FrameworksCommon Design of Deep Learning Frameworks
Common Design of Deep Learning Frameworks
 
Introduction to Chainer and CuPy
Introduction to Chainer and CuPyIntroduction to Chainer and CuPy
Introduction to Chainer and CuPy
 
Stochastic Gradient MCMC
Stochastic Gradient MCMCStochastic Gradient MCMC
Stochastic Gradient MCMC
 
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用 2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
2015年9月18日 (GTC Japan 2015) 深層学習フレームワークChainerの導入と化合物活性予測への応用
 
Introduction to Chainer (LL Ring Recursive)
Introduction to Chainer (LL Ring Recursive)Introduction to Chainer (LL Ring Recursive)
Introduction to Chainer (LL Ring Recursive)
 
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料
日本神経回路学会セミナー「DeepLearningを使ってみよう!」資料
 
提供AMIについて
提供AMIについて提供AMIについて
提供AMIについて
 
Chainerインストール
ChainerインストールChainerインストール
Chainerインストール
 

Recently uploaded

Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherRemote DBA Services
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024The Digital Insurer
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAndrey Devyatkin
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfOverkill Security
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistandanishmna97
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Victor Rentea
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyKhushali Kathiriya
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...apidays
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024The Digital Insurer
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FMESafe Software
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...apidays
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Victor Rentea
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKJago de Vreede
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobeapidays
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingEdi Saputra
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...Martijn de Jong
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDropbox
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamUiPathCommunity
 

Recently uploaded (20)

Strategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a FresherStrategies for Landing an Oracle DBA Job as a Fresher
Strategies for Landing an Oracle DBA Job as a Fresher
 
Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024Manulife - Insurer Transformation Award 2024
Manulife - Insurer Transformation Award 2024
 
AWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of TerraformAWS Community Day CPH - Three problems of Terraform
AWS Community Day CPH - Three problems of Terraform
 
Cyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdfCyberprint. Dark Pink Apt Group [EN].pdf
Cyberprint. Dark Pink Apt Group [EN].pdf
 
CNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In PakistanCNIC Information System with Pakdata Cf In Pakistan
CNIC Information System with Pakdata Cf In Pakistan
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024FWD Group - Insurer Innovation Award 2024
FWD Group - Insurer Innovation Award 2024
 
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers:  A Deep Dive into Serverless Spatial Data and FMECloud Frontiers:  A Deep Dive into Serverless Spatial Data and FME
Cloud Frontiers: A Deep Dive into Serverless Spatial Data and FME
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
Apidays New York 2024 - APIs in 2030: The Risk of Technological Sleepwalk by ...
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
Modular Monolith - a Practical Alternative to Microservices @ Devoxx UK 2024
 
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUKSpring Boot vs Quarkus the ultimate battle - DevoxxUK
Spring Boot vs Quarkus the ultimate battle - DevoxxUK
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...2024: Domino Containers - The Next Step. News from the Domino Container commu...
2024: Domino Containers - The Next Step. News from the Domino Container commu...
 
DBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor PresentationDBX First Quarter 2024 Investor Presentation
DBX First Quarter 2024 Investor Presentation
 
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 AmsterdamDEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
DEV meet-up UiPath Document Understanding May 7 2024 Amsterdam
 

tensor-decomposition

  • 1. . Introduction to Tensors PFI Seminar Kenta OONO 2012/07/11 Kenta OONO Introduction to Tensors
  • 2. Self Introduction • Kenta OONO (Twitter:@delta2323 ) • PSS(Professional and Support Service) Division • Jubatus Project • msgpack-idl, generation of clients • Survey and Prototyping Team • 2010 PFI Summer Intern → 2011 Engineer Kenta OONO Introduction to Tensors
  • 3. Agenda • What is Tensor? • Decomposition of Matrices and Tensors • Symmetry Parametrized by Young Diagram Kenta OONO Introduction to Tensors
  • 4. Agenda • What is Tensor? • Decomposition of Matrices and Tensors • Symmetry Parametrized by Young Diagram Kenta OONO Introduction to Tensors
  • 5. Vector as a Special Case of Tensor Consider a n dimensional vector (Below is the case n = 3)   7   v = 4 (1) 9 When we write this vector as v = (vi ), we have v1 = 7, v2 = 4, and v3 = 9. As v has One index, this vector is regarded as Rank 1 Tensor. Note • We use 1-index notation, not 0-index. • We somtimes use rank in a different meaning, (also in the context of tensors). Kenta OONO Introduction to Tensors
  • 6. Matrix as a Special Case of Tensor Consider a n × n Matrix (Below is the case n = 3).   7 10 3   A = 4 −1 −2 (2) 9 4 5 We write this matrix as A = (aij )1≤i,j≤3 . • e.g. a11 = 7, a23 = −2, a32 = 4. A has Two indices (namely i and j) and these indeices run through 1 to 3. A can be regarded as Rank 2 Tensor. → What happens if the number of indices are not just 1 or 2 ? Kenta OONO Introduction to Tensors
  • 7. An Example of Rank 3 Tensor Consider the set of real numbers X = (xijk )1≤i,j,k≤3 . As i, j, k run throuth 1 to 3 independently, this set contains 3 × 3 × 3 = 27 elements. If we fix the value of i, we can write this set in a matrix form.       7 10 3 10 2 1 5 −10 18       x1∗∗ = 4 −1 −2 , x2∗∗ =  3 −1 0 , x3∗∗ = −4 1 −2  9 4 5 8 1 4 9 −4 −10 (3) Note • In some field, we concatenate these matrix and name it X(1) • This is called Flattening or Matricing of X . Kenta OONO Introduction to Tensors
  • 8. Is This a Multidimensional Array? We can realize a tensor as a multiple dimensional array in most programming languages. PseudoCode(C like): int[3][3][3] x; x[1][1][2] = -1; Kenta OONO Introduction to Tensors
  • 9. Inner Product of Tensors Let X = (xijk ), Y = (yijk ) be two rank 3 tensors and G = (g ij ) be a symmetric (i.e. g ij = g ji ) and positive definite matrix. We can introduce an inner product of X and Y by: ∑ n < X , Y >= g ai g bj g ck xabc yijk (4) a,b,c,i,j,k=1 Note: • We can similarly define an inner product of two arbitrary rank tensor • X and Y must have same rank. Kenta OONO Introduction to Tensors
  • 10. An Example of Inner Product (Vector) Let’s consider the case of rank 1 tensor ( = vector). We can write X = (xi ), Y = (yi ). And we set G = (g ij ) an identity matrix:   1 ··· 0 . . G = . 1 . . . (5) 0 ··· 1 In this case, this definition of inner product reduce to ordinal inner product of two vectors, namely, ∑ ∑ < X , Y >= g ai xa yi = xi yi (6) a,i i Kenta OONO Introduction to Tensors
  • 11. An Example of Tensor Suppose we have a (smooth) function f : R3 → R. We can derive tensors of arbitrary rank from this function. Taking Gradient, we obtain rank 1 tensor. (Please replace (1, 2, 3) with (x , y , z) and vice versa.  ∂f   ∂x  ∇f = (∇i f ) =  ∂y  ∂f (7) ∂f ∂z Similarly, Hessian is an example of rank 2 tensor.   ∂2f ∂2f ∂2f  ∂x2∂x ∂x ∂y ∂x ∂z  H(f ) = (Hij (f )) =  ∂ f ∂2f ∂2f  (8)  ∂y ∂x ∂y ∂y ∂y ∂z  ∂2f ∂2f ∂2f ∂z∂x ∂z∂y ∂z∂z Kenta OONO Introduction to Tensors
  • 12. Supersymmetry Property By taking derivative, we can create an arbitrary rank of tensors. These tensors are (Super)Symmetric in the sense that interchange of any two indices remains the tensor identical. For example, fx y z = fx zy = fy x z = fy zx = fzx y = fzy x . (9) Note: • Afterward, we write this symmetry as . Kenta OONO Introduction to Tensors
  • 13. Agenda • What is Tensor? • Decomposition of Matrices and Tensors • Symmetry Parametrized by Young Diagram Kenta OONO Introduction to Tensors
  • 14. Decompose! It is fundamental in mathematics to decompose some object into simpler, easier-to-handle objects. ∑ √ • Fourier Expansion : f = an exp( −1nx ) n∈Z ∑ • Legendre Polynomial : P = ak Pk k 1 dk 2 • where Pk (x ) = (x − 1)k k!2k dx k • Jordan-H¨lder : e = G0 ◁ G1 ◁ G2 ◁ · · · ◁ Gn−1 ◁ Gn = G o Kenta OONO Introduction to Tensors
  • 15. Decomposition of Matrix There are many theories regarding the decomposition (or, factorization) of matrices. • SVD • LU • QR • Cholesky • Jordan • Diagonalization ... Although we have theories of factorization of Tensors (e.g. Tucker Decomposition, higher-order SVD etc.) We do NOT go this direction. Instead, we consider decomposition of matrix into Summation of matrix. Kenta OONO Introduction to Tensors
  • 16. Example: Projection to Axis Kenta OONO Introduction to Tensors
  • 17. Example of Decomposition of Matrix We can decompose matrix into Symmetric part and Antisymmetric part. Example:       7 10 3 7 7 6 0 3 −3       4 −1 −2 = 7 −1 1 + −3 0 −3 9 4 5 6 1 5 3 3 0 Symmetric Part Antisymmetric Part A Asym Aanti (10) Kenta OONO Introduction to Tensors
  • 18. How to Calculate Sym. and Antisym. Part We can calculate the symmetic and antisymmetric part by simple calculation (Exercise!).     7 10 3 7 4 9 1     Asym = 4 −1 −2 + 10 −1 4 2 9 4 5 3 −2 5 (11) sym 1 aij = (aij + aji ) 2     7 10 3 7 4 9 1     Aanti = 4 −1 −2 − 10 −1 4 2 9 4 5 3 −2 5 (12) 1 anti aij = (aij − aji ) 2 Kenta OONO Introduction to Tensors
  • 19. Picture of Projection to Sym. and Antisym. Part Kenta OONO Introduction to Tensors
  • 20. Notation Using Young Diagram We can symbolize symmetry and antisymmetry with Young Diagram       7 10 3 7 7 6 0 3 −3       4 −1 −2 = 7 −1 1 + −3 0 −3 9 4 5 6 1 5 3 3 0 (13) A Asym Aanti The number of boxes indicates rank of the tensor (one box for vector and two boxes for matrix). Kenta OONO Introduction to Tensors
  • 21. Agenda • What is Tensor? • Decomposition of Matrices and Tensors • Symmetry Parametrized by Young Diagram Note: • From now on, we concentrate on Rank 3 Tensors (i.e. k = 3). • And we assume that n = 3, that is, indices run from 1 to 3. Kenta OONO Introduction to Tensors
  • 22. Symmetrizing Operator We consider the transformation of tensor: T : X = (xijk ) → X ′ = (xijk ), ′ (14) ′ where xijk = 1 (xijk + xikj + xjik + xjki + xkij + xkji ) 6 (15) = x(ijk) . Kenta OONO Introduction to Tensors
  • 23. Young Diagram and Symmetry of Tensor (Sym. Case) Let X = (x123 ) be a tensor of rank 3, we call X Has a Symmetry of , if interchange of any of two indices doesn’t change each entry of X . Example: • If X has a symmetry of , then x112 = x121 = x211 (16) x123 = x132 = x213 = x231 = x312 = x321 etc... • Symmetric matrices have a symmetry of Kenta OONO Introduction to Tensors
  • 24. Property of T • For all X , T (X ) has symmetry of . • If X has symmetry of , then T (X ) = X . • For all X , T (T (X )) = T (X ). Kenta OONO Introduction to Tensors
  • 25. Antisymmetrizing Operator Next, we consider Antisymmetrization of tensors: T : X = (xijk ) → X ′ = (xijk ), ′ (17) ′ where xijk = 1 (xijk − xikj − xjik + xjki + xkij − xkji ) 6 (18) = x[ijk] . Kenta OONO Introduction to Tensors
  • 26. Young Diagram and Symmetry of Tensor (Antisym. Case) Let X = (x123 ) be a tensor of rank k, we call X has a symmetry of if interchange of any of two indices change only the sign of each entry of X . Example. • If X has a symmetry of , then • x123 = −x132 = −x213 = x231 = x312 = −x321 • x112 = 0, because x112 must be equal to −x112 . • Antisymmetric matrix has a symmetry of Kenta OONO Introduction to Tensors
  • 27. Orthogonality of Projection T and T are orthogonal in the sense T ◦ T (X ) = T ◦ T (X ) = 0. (19) Kenta OONO Introduction to Tensors
  • 28. Counting Dimension How many dimension do the vector space consisting of tensors ... • with symmetry have ? • with symmetry have ? Kenta OONO Introduction to Tensors
  • 29. Dimensions of each subvector spaces. If n = 3 (that is, i, j and k runs through 1 to 3), then each dimension is as follows. But dimension of total space is 3 × 3 × 3 = 27. This is larger than 1 + 10 = 11. Kenta OONO Introduction to Tensors
  • 30. Young Diagram Young Diagram is an arrangent of boxes of the same size so that: • two adjacent boxes share one of their side. • the number of boxes in each row is non-increasing. • the number of boxes in each column is non-increasing. Here is an example of Young Diagram with 10 boxes. (20) English Notation French Notation Kenta OONO Introduction to Tensors
  • 31. Decomposition of Tensor (of Rank 3) We have three types of Young Diagram which have three boxes, namely, (21) , , and Symmetric Antisymmetric ??? → What symmetry does represent? Kenta OONO Introduction to Tensors
  • 32. Coefficients of Symmetrizers We list coneffients of each operator in a tabular form. Coefficient of xijk ijk ikj jik jki kij kji 1/6 1/6 1/6 1/6 1/6 1/6 1/6 -1/6 -1/6 1/6 1/6 -1/6 Sum 1 Kenta OONO Introduction to Tensors
  • 33. Coefficients of Symmetrizers Coefficient of xijk ijk ikj jik jki kij kji 1/6 1/6 1/6 1/6 1/6 1/6 1/6 -1/6 -1/6 1/6 1/6 -1/6 4/6 -2/6 -2/6 Sum 1 Kenta OONO Introduction to Tensors
  • 34. Symmetrizer T We consider the transformation of tensor: T : X = (xijk ) → X ′ = (xijk ), ′ (22) ′ where xijk = 1 (2xijk − xjki − xkij ). 3 Kenta OONO Introduction to Tensors
  • 35. Property of T • For all X , T (X ) has symmetry of . • If X has symmetry of , then T (X ) = X . ( ) • For all X , T T (X ) = T (X ). Kenta OONO Introduction to Tensors
  • 36. Tensors with Symmetry of Let X = (xijk ) be a tensor of rank 3. We say X Has a Symmetry of , if 1 xijk = (2xijk − xjki − xkij ) (23) 3 for all 1 ≤ i, j, k ≤ n. Kenta OONO Introduction to Tensors
  • 37. Where This Equation ”Symmetric” ? Remember that X has a symmetry of , if 1 xijk = (2xijk − xjki − xkij ) (24) 3 for all 1 ≤ i, j, k ≤ n. This equation can be transormed as follows : 1 (2xijk − xjki − xkij ) xijk = 3 (25) ⇔ 3xijk = 2xijk − xjki − xkij ⇔ xijk + xjki + xkij = 0 Kenta OONO Introduction to Tensors
  • 38. Projection to Each Symmetrized Tensors Kenta OONO Introduction to Tensors
  • 39. Decomposition of Higher Rank Tensors Higher rank tensors are also decompose into symmetric tensors parametrized by Young Diagram. ⊕ ⊕ Rn×n×n×n×n = ⊕ ⊕ ⊕ ⊕ (26) Kenta OONO Introduction to Tensors
  • 40. Summary • Tensors as a Generalization of Vectors and Matrices. • Decomposition of Matrices and Tensors • Symmetry of Tensors Parametrized by Young Diagrams. Kenta OONO Introduction to Tensors
  • 41. References • T G. Kolda and B W. Bader, Tensor Decompositions and Applications • 2009, SIAM Review Vol. 51, No 3, pp 455-500 • D S. Watkins, Fundamentals of Matrix Computations 3rd. ed. • 2010, A Wiley Series of Texts, Monographs and Tracts • W. Fulton and J Harris, Representation Theory • 1991, Graduate Texts in Mathematics Readins in Mathematics. • And Google ”Representation Theory”, ”Symmetric Group”, ”Young Diagram” and so on. Kenta OONO Introduction to Tensors