SlideShare une entreprise Scribd logo
1  sur  61
Télécharger pour lire hors ligne
DESIGN AND IMPLEMENTATION OF PI CONTROLLER
  USING GENETIC ALGORITHM AND ANT COLONY
 OPTIMIZATION FOR A SPHERICAL TANK PROCESS


                             By
             A. KRISHNAMOORTHY
        M.E. (Process Control & Instrumentation Engg.)
                         (2009-2011)


                Mr. G. SAKTHIVEL
              Lecturer (selection grade)
         Department of Instrumentation Engg
                Annamalai university
                    chidambaram.
OBJECTIVES OF THE PROJECT WORK

• To identify the model of the spherical tank process by black box modeling for
   various operating region.

        a) Low Level

        b) Middle Level

        c) High Level

• To tune the PI controller by Ziegler- Nichols method.

• To optimize the designed PI controller using ACO (Ant Colony Optimization)
   Technique for various cost function like IAE, ITAE, ISE.

• To tune the PI controller by Genetic algorithm.
• To compare the results of ACO tuned PI controller with Z-N tuned PI
    and GA tuned PI controller in terms of time domain specification and
    performance indices like ISE, MSE, ITAE, IAE.

• To obtain the results form both simulation and real time process for
    the corresponding models.

•   To check to robustness of the above designed controller and test the
    ACO under white noise.
PI CONTROLLER

• It consist of proportional and integral action

• PID can be implemented as a stand alone controller (or) part of the
controller

    e.g. DDC (or) DCS

• Various actions

        P-ACTION              P = Kp* e

        I-ACTION              I = ki ∫e dt

        D-ACTION              D = Kd d(e)/ dt

where
         Kp = proportional gain
         KI = Integral gain
Closed loop Z-N tuned PI Controller

The transfer function of PI controller looks like following: U= Kp* e (t)+ki∫e(t)

Block diagram of PI controller




Recommended PID Value Setting
                                 TYPE OF
                                                Kp        Ti        Td
                              CONTROLLER

                                    P          0.5 Ku     ∞          0

                                   PI         0.45 Ku   Pu/1.2       0

                                   PID         0.6 Ku    Pu/2       Pu/8
OBJECTIVE FUNCTIONS
     The following objective function we are using for both
GA and ACO optimization.

      1. Integral Absolute error


     2. Integral square error


      3. Integral time Multiplied by Absolute error
   It is a type of machine learning technique

   Mimics the biological process of evolution

   Genetic algorithms
     Software programs that learn in an evolutionary manner,
    similar to the way biological systems evolve

   An efficient, domain-independent search heuristic for a broad
    spectrum of problem domains

   Main theme: Survival of the fittes.
     Moving towards better and better solutions by letting only
    the fittest parents to create the future generations
Reproduction

  •     Multiple copies of the same string may be selected for
  reproduction and the fittest string should begin to dominate



      e.g. roulette wheel selection




                   Depiction of roulette wheel selection
CROSSOVER
•Once the selection process is completed, the crossover
algorithm is initiated.

•The crossover operations swaps certain port of the two
selected strings in a bid to capture the good parts of old
chromosomes and create better new ones.

       Singe point

       Multi point

       Uniform
Single point crossover




Multi point crossover




  Uniform crossover
MUTATION
•Mutation is the occasional random alternation of a value of a
string position.

      Eg.
   Ant Colony Optimization (ACO) is a paradigm for designing meta heuristic algo-
    rithms for combinatorial optimization problems.

   Ants travel from node to node until end
    decision based on transition probability (called state transition)

   Once all ants travel finished Solutions compared

   Pheromone evaporation applied to all edges
    Pheromone increased along each edge of best/each ant’s path

   Original ant system: at each iteration, the pheromone values are updated by all the
    ants that have build a solution in the iteration itself.

   Daemon activities can be run (like local search)

   Redo until termination criteria met

   They have an advantage over simulated annealing and genetic algorithm approaches
    when the graph may change dynamically. The ant colony algorithm can be run
    continuously and can adapt to changes in real time.
•Ants choose paths depending on pheromone

•After collecting food, paths are marked

•After some time, the shortest path has the highest probability
   When ants travel they mark their path with substance
    called pheromone
       Attracts other ants


   When an ant reaches a fork in its path the direction it
    follows is based on amount of pheromone it detects
       Decision probabilistically made


   This causes positive feedback situation
    (i.e. Choosing a path increases the probability it will be
    chosen)
•   While ( termination not satisfied )
    – create ants
    – Find solutions
                                                                           Quantity of
        •   Transition probability:
                                                                           pheromone
                                                              β
                                                    1
                                          τij (t )α                              Heuristic
                      Pij (t ) =                     dij                         distance
                                                                       β
                                                             1
                                         ∑
                                   j∈allowed nodes
                                                   τij (t )α  
                                                              dij         α,β constants

    –   Pheromone update
    –   Daemon activities {optional}
•   While ( termination not satisfied )
    –   create ants
    –   Find solutions
    –   Pheromone update                Pheromone laid by
             Evaporation rate           each ant that uses
                                            edge (i,j)

                                                                          Q
                   τij (t +1) = (1 − ρ)τij (t ) +
                                                    k∈
                                                          ∑
                                                       Colony that        Lk
                                                    used edge ( i , j )




    –   Daemon activities {optional}
RESULTS AND DISCUSION

• In this section the result of the implemented ACO (ant colony
  optimization) tuned PI Controller was obtained.

• The ACO designed PI controller is initialized with 10 Ants and 100
  iterations then response is analyzed.

•       From the ACO-PI controller Reponses it is compared with GA
    designed PI and ZN – tuned PI controller. The various cost functions
    are plotted belowin the given figure with different tabulations.



                               4.5
              Model 1 G(s) =           e −120 s
                             440 s + 1
Initialization of Parameters

To start up with GA, certain parameters need to be defined. Initializing value

of the parameters for this project for is as follows:



Population size                             -           80

Bit length of considered chromosome                     -       6

Number of Generations                       -           100

Selection Method                                        -       ‘Roulette wheel selection

Crossover type                              -           ‘Single point crossover’

Crossover probability                       -           0.8

Mutation type                               -           ‘Uniform mutation’

Mutation probability                        -           0.05
4.5
             Model 1 G(s) =           e −120 s
                            440 s + 1
Comparison of Performance index and time domain specification
             Kp       Ki         %Mp    Tp    ts     tr    IAE       ISE     MSE      ITAE

  ZN         0.7333   0.0018     42.9   376   1320   106   315.71   195.95   0.0392   9.22x104



  ACO-ITAE   0.4479   0.000878   2.82   504   1030   209   261.27   196.24   0.0392   5.54x104

  ACO-IAE    0.5825   0.0011     16.1   412   930    143   258.72   181.85   0.0364   6.64x104

  ACO-ISE    0.6162   0.0011     18.4   398   915    135   264.40   180.38   0.0361   9.22x104



  GA-ITAE    0.5235   0.0012     16.1   448   849    157   256.64   187.37   0.0375   4.72x104

  GA-IAE     0.6886   0.0013     28.0   370   989    108   276.57   181.56   0.0363   7.03x104

  GA-ISE     0.6669   0.0017     36.3   393   1140   11    295.01   191.11   0.0382   7.56x104



  ZN         0.7333   0.0018     42.9   376   1320   106   315.71   195.95   0.0392   9.22x104

  ACO-ITAE   0.4479   0.000878   2.82   504   1030   209   261.27   196.24   0.0392   5.54x104

  GA-ITAE    0.5235   0.0012     16.1   448   849    157   256.64   187.37   0.0375   4.72x104
S p R sp n
                                                               te  e o se
                                  1.5
                                                                                                     ZN
                                                                                                     AC -ita
                                                                                                       O e
                                                                                                     GA-itae




                                    1




                    m litu e
                   A p d
                                  0.5




                                    0
                                        5 0
                                         0    1 0
                                               0 0   1 0
                                                      5 0   2 0
                                                             0 0     2 0
                                                                      5 0      3 0
                                                                                0 0    3 0
                                                                                        5 0   4 0
                                                                                               0 0   4 0
                                                                                                      5 0      5 0
                                                                                                                0 0
                                                                   T e (se
                                                                    im    c)




Step response for the closed loop system for the PI controller tuned with different methods
                                                              S p R sp n e
                                                               te  e o s


                                  1.4
                                                                                                          A O e
                                                                                                           C -ita
                                                                                                          A O e
                                                                                                           C -ia
                                  1.2
                                                                                                          A O e
                                                                                                           C -is


                                   1
                       m litu e
                      A p d




                                  0.8



                                  0.6



                                  0.4



                                  0.2



                                   0
                                        5 0
                                         0    1 0
                                               0 0   1 0
                                                      5 0   2 0 T e (se
                                                             0 0 im2 0 c)
                                                                    5 0         3 0
                                                                                 0 0     3 0
                                                                                          5 0   4 0
                                                                                                 0 0      4 0
                                                                                                           5 0    5 0
                                                                                                                   0 0




Step response for the closed loop system for the ACO -PI controller tuned
                       with different cost function
Step Response


                           1.4
                                                                                            GA-itae
                                                                                            GA-iae
                           1.2
                                                                                            GA-ise


                            1




               Amplitude
                           0.8



                           0.6



                           0.4



                           0.2



                            0
                                 500   1000   1500   2000Time2500
                                                              (sec)   3000   3500   4000   4500      5000




Step response for the closed loop system for the GA- PI controller
tuned with different cost function
Kp distribution
                          1.5

Kpdistribution
                              1


                          0.5


                              0
                                  0        10   20   30   40      50      60    70   80   90   100

                                      -3                    Ki distribution
                                  x 10
                              6
            Ki distribution




                              4


                              2


                              0
                                  0        10   20   30   40      50       60   70   80   90   100
                                                          nuber of iterations




                              Initial distribution of Kp, Ki for AC
Kp setteled
        0.5


       0.45


        0.4


       0.35
              0        20   40           60          80    100   120

                  -4                 Ki settelled
              x 10
        10

         9
gain




         8

         7

         6
          0            20   40           60           80   100   120
                                 number of iterations

                  Kp, Ki settled for ACO
Kp Value
              6


              4


       Gain   2


              0
                  0   10   20   30   40       50      60   70   80   90   100

                                           Ki Value
        0.04

        0.03
Gain




        0.02

        0.01

              0
                  0   10   20   30   40       50      60   70   80   90   100
                                          Generations



                            Kp, Ki settled for GA
ACO-ITAE setteled
       2400


       2200


       2000


       1800
ITAE




       1600


       1400


       1200


       1000


        800
              0   20    40           60           80   100   120
                             number of iterations


                  ACO – ITAE setteled
6
                    Model2 G(s) =                          e −130 s
                                                 1200 s +1
Comparison of Performance index and time domain specification

           Kp       Ki       %Mp    tp    ts       tr    IAE      ISE      MSE      ITAE

ZN         1.3846   0.0032   69.8   425   1920     105   465.61   279.93   0.0560   2.0565x105




ACO-ITAE   0.9678   0.0020   38.4   516   940      153   371.14   234.60   0.0469   1.1809x105

ACO-IAE    1.0978   0.0018   37.7   461   1450     130   346.04   220.20   0.0440   1.1059x105

ACO-ISE    1.1324   0.0019   40.5   462   1430     133   349.93   222.39   0.0445   1.1900x105




GA-ITAE    1.1528   0.0025   52.3   464   1440     120   388.66   246.06   0.0492   1.3028x105

GA-IAE     1.1869   0.0033   65.1   470   1750     122   454.97   280.66   0.0561   1.8600x105

GA-ISE     1.2488   0.0029   60.8   446   1400     128   420.10   260.00   0.0521   1.5838x105




ZN         1.3846   0.0032   69.8   425   1920     105   465.61   279.93   0.0560   2.0565x105

ACO-ITAE   0.9678   0.0020   38.4   516   940      153   371.14   234.60   0.0469   1.1809x105

GA-ITAE    1.1528   0.0025   52.3   464   1440     120   388.66   246.06   0.0492   1.3028x105
Step Response


            1.8
                                                                             ZN
            1.6                                                              ACO-itae
                                                                             GA -itae
            1.4


            1.2
Amplitude




             1


            0.8


            0.6


            0.4


            0.2


             0
                  500   1000   1500   2000Time2500
                                               (sec)    3000   3500   4000   4500       5000



              Step response for the closed loop system for the
                     PI controller tuned with different
Step Response


                  1.5
                                                                                  ACO-itae
                                                                                  ACO-iae
                                                                                  ACO-ise



                   1
      Amplitude




                  0.5




                   0
                        500   1000   1500   2000    2500
                                                Time (sec)   3000   3500   4000   4500      5000



Step response for the closed loop system for the ACO -PI controller tuned
                       with different cost function
Step Response


                  1.8
                                                                                   GA-itae
                  1.6                                                              GA-iae
                                                                                   GA-ise
                  1.4


                  1.2
      Amplitude




                   1


                  0.8


                  0.6


                  0.4


                  0.2


                   0
                        500   1000   1500   2000Time2500
                                                     (sec)   3000   3500   4000   4500      5000

Step response for the closed loop system for the GA- PI controller
tuned with different cost function
Kp distribution
                          2.5

                              2

Ki distribution           1.5

                              1

                          0.5
                                  0           10   20   30    40      50      60    70   80   90   100

                                         -3                     Ki distribution
                                  x 10
                              8

                              6
            Kp distribution




                              4

                              2

                              0
                                  0           10   20   30    40     50       60    70   80   90   100
                                                             number of iterations


                              Initial distribution of Kp, Ki for AC
Kp setteled
       0.98

       0.96

       0.94

       0.92

        0.9
              0           20     40            60         80    100   120

                     -3                   Ki settelled
              x 10
        2.5


         2
gain




        1.5


         1
              0           20     40           60           80   100   120
                                      number of iterations


                               Kp, Ki settled for ACO
Kp Value
              5

              4


       Gain
              3

              2

              1
                  0   10   20   30   40       50      60   70   80   90   100

                                           Ki Value
          0.2

        0.15
Gain




          0.1

        0.05

              0
                  0   10   20   30   40       50      60   70   80   90   100
                                          Generations



                           Kp, Ki settled for GA
ACO-ITAE setteled
       2950

       2900

       2850

       2800

       2750
ITAE




       2700

       2650

       2600

       2550

       2500

       2450
              0   20      40           60           80   100   120
                               number of iterations


                       ACO – ITAE settled
2.7
                Model3 G(s) =            e −150 s
                              1050 s + 1

z          Kp       Ki       %Mp    tp    ts     tr    IAE      ISE      MSE      ITAE

ZN         2.2900   0.0046   63.7   486   2140   124   499.58   300.23   0.0600   2.3669x105



ACO-ITAE   1.4852   0.0020   19.0   616   1230   210   374.53   245.52   0.0491   1.3270x105

ACO-IAE    1.6902   0.0025   28.8   562   1590   176   375.28   245.19   0.0490   1.2660x105

ACO-ISE    1.8300   0.0030   45.4   510   1600   158   389.48   251.79   0.0503   1.3200x105



GA-ITAE    1.8586   0.0024   30.2   525   1530   160   361.09   238.41   0.0470   1.1800x105

GA-IAE     1.9072   0.0034   43.8   528   1610   150   408.08   261.23   0.0522   1.4300x105

GA-ISE     2.0237   0.0034   37.5   536   1560   140   408.28   258.89   0.0518   1.4750x105



ZN         2.2900   0.0046   63.7   486   2140   124   499.58   300.23   0.0600   2.3669x105

ACO-ITAE   1.4852   0.0020   19.0   616   1230   210   374.53   245.52   0.0491   1.3270x105

GA-ITAE    1.8586   0.0024   30.2   525   1530   160   361.09   238.41   0.0470   1.1800x105
Step Response


                           1.8
                                                                                           ZN
                           1.6                                                             ACO-itae
                                                                                           GA-itae
                           1.4


                           1.2
               Amplitude




                            1


                           0.8


                           0.6


                           0.4


                           0.2


                            0
                                 500   1000   1500   2000Time2500
                                                              (sec)   3000   3500   4000   4500      5000



Step response for the closed loop system for the PI controller tuned with different methods
Step Response


                          1.4
                                                                                          ACO-itae
                                                                                          ACO-iae
                          1.2
                                                                                          ACO-ise


                           1



                          0.8
              Amplitude




                          0.6



                          0.4



                          0.2



                           0
                                500   1000   1500   2000Time2500
                                                             (sec)   3000   3500   4000   4500      5000




Step response for the closed loop system for the ACO -PI controller tuned
                       with different cost function
S p R sp n
                                              te  e o se


                  1.5
                                                                                  GA-itae
                                                                                  GA-iae
                                                                                  GA-ise




                   1
       m litu e
      A p d




                  0.5




                   0
                        5 0
                         0    1 0
                               0 0   1 0
                                      5 0   2 0 T e (se
                                             0 0 im2 0 c)
                                                    5 0     3 0
                                                             0 0   3 0
                                                                    5 0   4 0
                                                                           0 0   4 0
                                                                                  5 0   5 0
                                                                                         0 0



Step response for the closed loop system for the GA- PI controller
tuned with different cost function
Kp,Ki distributions
                                    4




                  Ki distribution
                                    3


                                    2


                                    1
                                     0   10   20   30    40      50      60    70   80   90   100


                  0.015
Kp distribution




                       0.01


                  0.005


                                    0
                                     0   10   20   30     40    50      60     70   80   90   100
                                                        number of generation




                                         Initial distribution of Kp, Ki for AC
Kp setteled
        2

       1.8

       1.6

       1.4


             0        20       40           60          80    100   120

                 -3                     Ki settelled
             x 10
        3
gain




       2.5




        2
             0        20       40           60           80   100   120
                                    number of iterations

                           Kp, Ki settled for ACO
K V lu
                                            p a e
               8

       G in
        a      6

               4

               2

               0
                0   10   20      30   40     50     60   70   80   90   1 0
                                                                         0

                                           K V lu
                                            i a e
              0.8

              0.6
G in
 a




              0.4

              0.2

               0
                0   10   20      30   40    50     60    70   80   90   1 0
                                                                         0
                                        G n ra n
                                         e e tio s



                              Kp, Ki settled for GA
ACO-ITAE setteled
       3800


       3600


       3400


       3200
ITAE




       3000


       2800


       2600


       2400


       2200
              0   20       40          60           80   100   120
                                number of iteration


                       ACO – ITAE settled
obustness of the controller is defined as its ability to tolerate a certain amount of
change in the process parameters without causing the feedback system to go
unstable


n order to investigate the robustness of the proposed method in the model parameters were
altered.


hence


ain constant K,


ime const   T,


elay time   Td


re deviated by ±15% of its nominal values. Therefore
ACTUAL MODELS                         ALTERED MODELS
                 4.5
Model 1 G(s) =           e −120 s                      5.7
               440 s + 1              Model 1 G(s) =           e −102 s
                                                     506 s + 1

                    6                                  6.9
Model2 G(s) =              e −130 s   Model2 G(s) =           e −110 s
                 1200 s +1                          1380 s +1


                 2.7                                     3.15
Model3 G(s) =            e −150 s     Model3 G(s) =              e −127 s
              1050 s + 1                               1207 s +1
ALTERED MODELS

Case (i)

            Gain, K value is incremented by 15%.

            The value of is incremented by 15%.

            The value of td is decremented by 15%.

Case (ii)

            Gain, K value is incremented by 10%.

            The value of is incremented by 10%.

            The value of td is decremented by 10%.
Case (iii)
          Gain, K value is incremented by 25%.
          and , td values no changes.

Case (iv)

  Time constant is incremented by 25%.

  and k, td values no changes.

Case (v)

  Time delay td is incremented by 25%.

  and k, values no changes.
Robustness check with various cost functions for various model

                                                               CASE 1

                         Model 1                                        Model 2                                        Model 3




       Kp        Ki       %Mp      tp    Ts     tr     Kp       Ki      %Mp       tp    Ts     tr     Kp       Ki      %Mp       tp    Ts     tr




 ZN   0.7333   0.0018      33.5    347   1000   105   1.3846   0.0032    53.8     390   1230   105    2.29    0.0046    49.6     448   1390   123




 ACO 0.4479    0.00087     1.96    484   380    201   0.9678   0.0020    30.8     504   1225   157   1.4852   0.0020    28.6     618   1310   195




 GA   0.5235   0.0012      11.7    439   729    162   1.1528   0.0025    39.5     437   1230   128   1.8586   0.0024    33.9     509   1350   155
Model 1
                                                   CASE 2 Model 2                             Model 3




     Kp     Ki        %Mp tp       Ts    tr   Kp    Ki     %Mp tp     Ts   tr    Kp     Ki     %Mp tp       Ts    tr




ZN   0.7333 0.0018    36.9     356 1040 105 1.3846 0.0032 59.4    402 1260 105   2.29   0.0046 52.9     464 1440 125




ACO 0.4479 0.00087 2.16        520 552   215 0.9678 0.0020 32.9   506 1140 155   1.4852 0.0020 30       628 1290 197




GA   0.5235 0.0012    13.4     433 668   157 1.1528 0.0025 43.8   545 1330 127   1.8586 0.0024 36.2     524 950   157
CASE 3
                     Model 1                         Model 2                          Model 3



     Kp     Ki        %Mp tp   Ts   tr   Kp    Ki     %Mp tp    Ts   tr   Kp     Ki    %Mp tp   Ts    tr



ZN   0.7333 0.0018    65.7 348 2050 84   1.3846 0.0032 93.9 391 3560 85.7 2.29   0.0046 85.2 450 3400 102



ACO 0.4479 0.00087 14.7 423 935     150 0.9678 0.0020 53.2 451 1410 121 1.4852 0.0020 46.8 546 1650 153



GA   0.5235 0.0012    30.8 393 1100 120 1.1528 0.0025 70.7 416 1900 102 1.8586 0.0024 60.4 485 1800 125
CASE 4
                     Model 1                              Model 2                             Model 3




     Kp     Ki        %Mp tp       Ts    tr   Kp    Ki     %Mp tp     Ts   tr    Kp     Ki     %Mp tp       Ts   tr




ZN   0.7333 0.0018    36.7     401 1170 118 1.3846 0.0032 55.6    478 1500 128   2.29   0.0046 49.3     554 1680 153




ACO 0.4479 0.00087 2.42        587 667   244 0.9678 0.0020 33.1   624 1290 192   1.4852 0.0020 31.4     773 1050 242




GA   0.5235 0.0012    13.4     499 809   181 1.1528 0.0025 42     539 1110 156   1.8586 0.0024 34.8     638 1240 194
CASE 5

                     Model 1                               Model 2                          Model 3




     Kp     Ki        %Mp tp       Ts    tr   Kp    Ki      %Mp tp    Ts   tr   Kp    Ki     %Mp tp     Ts   tr




ZN   0.7333 0.0018    20.5     326 648   109 1.3846 0.0032 40.8   370 1140 107 2.29   0.0046 35.2   428 1270 129




ACO 0.4479 0.00087 0           0   985   272 0.9678 0.0020 22.2   508 1310 166 1.4852 0.0020 20.4   641 1440 213




GA   0.5235 0.0012    3.19     450 550   182 1.1528 0.0025 29.3   424 1170 133 1.8586 0.0024 22.9   505 1034 186
Step Response


            1.4
                                                                                     aco
                                                                                     zn
            1.2
                                                                                     ga


             1
Amplitude




            0.8



            0.6



            0.4



            0.2



             0
                    500   1000   1500   2000    2500
                                            Time (sec)   3000   3500   4000   4500        5000




                  Robustness Investigation for model 1(Case1)
Step Response


            1.6
                                                                                   aco

            1.4                                                                    zn
                                                                                   ga

            1.2


             1
Amplitude




            0.8


            0.6


            0.4


            0.2


             0
                  500   1000   1500   2000Time2500
                                               (sec)   3000   3500   4000   4500        5000




       Robustness Investigation for model 2(Case1)
Step Response


              1.6
                                                                                     aco

              1.4                                                                    zn
                                                                                     ga

              1.2


               1
  Amplitude




              0.8


              0.6


              0.4


              0.2


               0
                    500   1000   1500   2000Time2500
                                                 (sec)   3000   3500   4000   4500        5000




Robustness Investigation for model 3(Case1)
The following results shows different PI-tuned methods
are implemented from real time process for above said models.

                          %Mp           ts            ISE


          ZN               0.2         3.5        8.5274 x108


          GA               0.16         3         5.3635x 106


          ACO              0.12        2.5        7.3456x 105



                Comparison of Performance index and
                    time domain specification
70
                                                       ACO
                                                       GA
                                                       ZN
              60



              50



              40
 am plitude




              30



              20



              10



               0
                   0   1   2   3      4    5   6   7           8
                                   tim e                       5
                                                        x 10
Step response for the closed loop system for the PI
     controller tuned with deferent methods
   In order to test the PI tuning with ant algorithm in the presence of
    noise, ACO- ITAE is used
   The above system is tested for three different variances σ2=0.0025
    σ2=0.025, σ2=0.25
   Ant algorithm was run 5 times with 10 ants and 100 iterations due to
    the probabilistic nature of AA and noise.
                          1.2


                            1


                          0.8

                                                                       Varience-0.0025
              amplitude




                          0.6


                          0.4


                          0.2


                            0


                          -0.2
                              0   500   1000   1500   2000   2500   3000   3500   4000   4500   5000
                                                             time

                                  White noise for variance-0.0025
1.2


                            1


                                                                              varience-0.00025
                        0.8




            amplitude
                        0.6


                        0.4


                        0.2


                            0


                        -0.2
                            0     500    1000   1500   2000   2500   3000   3500   4000   4500   5000
                                                              time



                            White noise for variance-0.00025
                        2


                                                                              V r n e0 2
                                                                               aie c - .0 5

               1.5
 m litu e
       d




                        1
a p




               0.5




                        0




            - .5
             0
                0                50
                                  0     10
                                         00     10
                                                 50    20
                                                        00    2050   30
                                                                      00     30
                                                                              50    40
                                                                                     00     40
                                                                                             50    50
                                                                                                    00
                                                              time




                                White noise for variance-0.025
   In phase 2 of this project work, the conventional PI controller was tuned by Z-N
    tuning method and compared with proposed GA and ACO methods.

   Then it is implemented to the first order with dead time process. Then simulation
    studies are carried out to analyze the performance of the spherical tank process and
    Robustness of above mentioned controller for the different set points.

   It is also implemented in real time for the real time results of GA, ACO, ZN same
    set points. The result of both simulation and real time process were compared.

   From the output response obtained using ACO tuned PI controller gives less over
    shoot, fastest settling time, fastest rise time then the other techniques.

   Time domain specification and performance indices were tabulated for the above
    said models.
   Ying- Tung Haiao, (2004) Ant colony optimization for Designing of PID
    controller, IEEE, internation symposium on computer Aided control system
    aided control systems design Taipei, Taiwan, September 2-4, 2004.

s   S. Nithya, Abhay Singh Gour, N. Sivakumaran, T.K. Radhakrishnan and N.
    Anantharaman, Model Based controller Design for shell and Tube heat
    exchanger, sensors and Transducers Journal, Vol.84, Issue 10, October 2007,
    pp.1677-1686.

,   Sigurd Skogestasd, Simple analytic rules for model reduction ad PID
    controller tuning, Journal of process control, 13,2003, pp.291-309.

g   P. Wang and D.P Kwok, “Optimal design of PID process controllers based on
    genetic algorithms” control Engineer practices Vol.2,no.4, pp.641-648, 1994.
Thank you

Contenu connexe

En vedette

Prevent choking pp(1)
Prevent choking pp(1)Prevent choking pp(1)
Prevent choking pp(1)aegeanlyq
 
คู่มือการใช้งานสำหรับโรงเรียนที่เข้าแข่งขันเพื่อพิมพ์เกียรติบัตร
คู่มือการใช้งานสำหรับโรงเรียนที่เข้าแข่งขันเพื่อพิมพ์เกียรติบัตรคู่มือการใช้งานสำหรับโรงเรียนที่เข้าแข่งขันเพื่อพิมพ์เกียรติบัตร
คู่มือการใช้งานสำหรับโรงเรียนที่เข้าแข่งขันเพื่อพิมพ์เกียรติบัตรโรงเรียน บ้านบึงมะลู
 
Bahan cetak
Bahan cetakBahan cetak
Bahan cetakkhai9955
 
20100806 wordpress-server2go
20100806 wordpress-server2go20100806 wordpress-server2go
20100806 wordpress-server2gojirapornkue
 
Presentation_new
Presentation_newPresentation_new
Presentation_newedo Pratama
 
Cv Kim Bringsjord 14032012 En
Cv Kim Bringsjord 14032012 EnCv Kim Bringsjord 14032012 En
Cv Kim Bringsjord 14032012 Enbringsjord
 
Using Technology to Improve Communication
Using Technology to Improve CommunicationUsing Technology to Improve Communication
Using Technology to Improve CommunicationSophia Abigayle
 
Double page spread step by step
Double page spread step by stepDouble page spread step by step
Double page spread step by stepasmediablogsophie
 
Presentation1
Presentation1Presentation1
Presentation1patarawut
 
Chapter 11
Chapter 11Chapter 11
Chapter 11rsalam87
 
Ethical analysis salam 1.21.13
Ethical analysis salam 1.21.13Ethical analysis salam 1.21.13
Ethical analysis salam 1.21.13rsalam87
 
magazine front cover step by step
magazine front cover step by stepmagazine front cover step by step
magazine front cover step by stepasmediablogsophie
 

En vedette (20)

Film 4
Film 4Film 4
Film 4
 
Prevent choking pp(1)
Prevent choking pp(1)Prevent choking pp(1)
Prevent choking pp(1)
 
คู่มือการใช้งานสำหรับโรงเรียนที่เข้าแข่งขันเพื่อพิมพ์เกียรติบัตร
คู่มือการใช้งานสำหรับโรงเรียนที่เข้าแข่งขันเพื่อพิมพ์เกียรติบัตรคู่มือการใช้งานสำหรับโรงเรียนที่เข้าแข่งขันเพื่อพิมพ์เกียรติบัตร
คู่มือการใช้งานสำหรับโรงเรียนที่เข้าแข่งขันเพื่อพิมพ์เกียรติบัตร
 
Bahan cetak
Bahan cetakBahan cetak
Bahan cetak
 
Filming photographs
Filming photographsFilming photographs
Filming photographs
 
meeting
meeting meeting
meeting
 
20100806 wordpress-server2go
20100806 wordpress-server2go20100806 wordpress-server2go
20100806 wordpress-server2go
 
Contents page step by step
Contents page step by step Contents page step by step
Contents page step by step
 
Presentation_new
Presentation_newPresentation_new
Presentation_new
 
Cv Kim Bringsjord 14032012 En
Cv Kim Bringsjord 14032012 EnCv Kim Bringsjord 14032012 En
Cv Kim Bringsjord 14032012 En
 
Question 4
Question 4Question 4
Question 4
 
Using Technology to Improve Communication
Using Technology to Improve CommunicationUsing Technology to Improve Communication
Using Technology to Improve Communication
 
Double page spread step by step
Double page spread step by stepDouble page spread step by step
Double page spread step by step
 
More than know
More than knowMore than know
More than know
 
Chapter7
Chapter7Chapter7
Chapter7
 
Presentation1
Presentation1Presentation1
Presentation1
 
Chapter 11
Chapter 11Chapter 11
Chapter 11
 
Ethical analysis salam 1.21.13
Ethical analysis salam 1.21.13Ethical analysis salam 1.21.13
Ethical analysis salam 1.21.13
 
magazine front cover step by step
magazine front cover step by stepmagazine front cover step by step
magazine front cover step by step
 
company profile
company profilecompany profile
company profile
 

Similaire à Krish final

Time response of first order systems and second order systems
Time response of first order systems and second order systemsTime response of first order systems and second order systems
Time response of first order systems and second order systemsNANDHAKUMARA10
 
Btl control system-lab-manual-10 eel68
Btl control system-lab-manual-10 eel68Btl control system-lab-manual-10 eel68
Btl control system-lab-manual-10 eel68Gopinath.B.L Naidu
 
ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012László Nádai
 
Embedded Programming for Quadcopters
Embedded Programming for QuadcoptersEmbedded Programming for Quadcopters
Embedded Programming for QuadcoptersRyan Boland
 
Utlization Cat Swarm Optimization Algorithm for Selected Harmonic Elemination...
Utlization Cat Swarm Optimization Algorithm for Selected Harmonic Elemination...Utlization Cat Swarm Optimization Algorithm for Selected Harmonic Elemination...
Utlization Cat Swarm Optimization Algorithm for Selected Harmonic Elemination...IJPEDS-IAES
 
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesEfficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesVissarion Fisikopoulos
 
Waveform_codingUNIT-II_DC_-PPT.pptx
Waveform_codingUNIT-II_DC_-PPT.pptxWaveform_codingUNIT-II_DC_-PPT.pptx
Waveform_codingUNIT-II_DC_-PPT.pptxKIRUTHIKAAR2
 
53564379-Ant-Colony-Optimization.ppt
53564379-Ant-Colony-Optimization.ppt53564379-Ant-Colony-Optimization.ppt
53564379-Ant-Colony-Optimization.pptAhmedSalimJAlJawadi
 
Project Review ppt for reference only for PG students
Project Review ppt for reference only for PG studentsProject Review ppt for reference only for PG students
Project Review ppt for reference only for PG studentsssusere28fc7
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfHariPrasad314745
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfShreeDevi42
 
Waveform_codingUNIT-II_DC_-PPT.pptx
Waveform_codingUNIT-II_DC_-PPT.pptxWaveform_codingUNIT-II_DC_-PPT.pptx
Waveform_codingUNIT-II_DC_-PPT.pptxKIRUTHIKAAR2
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing ssuser2797e4
 
BALLANDBEAM_GROUP7.pptx
BALLANDBEAM_GROUP7.pptxBALLANDBEAM_GROUP7.pptx
BALLANDBEAM_GROUP7.pptxOthmanBensaoud
 
Unit 4 frequency response-Bode plot
Unit 4 frequency response-Bode plotUnit 4 frequency response-Bode plot
Unit 4 frequency response-Bode plotPrajakta Pardeshi
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesSreedhar Chowdam
 

Similaire à Krish final (20)

Time response of first order systems and second order systems
Time response of first order systems and second order systemsTime response of first order systems and second order systems
Time response of first order systems and second order systems
 
ACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docxACS 22LIE12 lab Manul.docx
ACS 22LIE12 lab Manul.docx
 
PS
PSPS
PS
 
Btl control system-lab-manual-10 eel68
Btl control system-lab-manual-10 eel68Btl control system-lab-manual-10 eel68
Btl control system-lab-manual-10 eel68
 
prsntsn.pptx
prsntsn.pptxprsntsn.pptx
prsntsn.pptx
 
ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012ITS World Congress :: Vienna, Oct 2012
ITS World Congress :: Vienna, Oct 2012
 
Embedded Programming for Quadcopters
Embedded Programming for QuadcoptersEmbedded Programming for Quadcopters
Embedded Programming for Quadcopters
 
Utlization Cat Swarm Optimization Algorithm for Selected Harmonic Elemination...
Utlization Cat Swarm Optimization Algorithm for Selected Harmonic Elemination...Utlization Cat Swarm Optimization Algorithm for Selected Harmonic Elemination...
Utlization Cat Swarm Optimization Algorithm for Selected Harmonic Elemination...
 
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by OraclesEfficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
Efficient Volume and Edge-Skeleton Computation for Polytopes Given by Oracles
 
Waveform_codingUNIT-II_DC_-PPT.pptx
Waveform_codingUNIT-II_DC_-PPT.pptxWaveform_codingUNIT-II_DC_-PPT.pptx
Waveform_codingUNIT-II_DC_-PPT.pptx
 
53564379-Ant-Colony-Optimization.ppt
53564379-Ant-Colony-Optimization.ppt53564379-Ant-Colony-Optimization.ppt
53564379-Ant-Colony-Optimization.ppt
 
Project Review ppt for reference only for PG students
Project Review ppt for reference only for PG studentsProject Review ppt for reference only for PG students
Project Review ppt for reference only for PG students
 
Advanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdfAdvanced_DSP_J_G_Proakis.pdf
Advanced_DSP_J_G_Proakis.pdf
 
Course-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdfCourse-Notes__Advanced-DSP.pdf
Course-Notes__Advanced-DSP.pdf
 
Waveform_codingUNIT-II_DC_-PPT.pptx
Waveform_codingUNIT-II_DC_-PPT.pptxWaveform_codingUNIT-II_DC_-PPT.pptx
Waveform_codingUNIT-II_DC_-PPT.pptx
 
EC8553 Discrete time signal processing
EC8553 Discrete time signal processing EC8553 Discrete time signal processing
EC8553 Discrete time signal processing
 
BALLANDBEAM_GROUP7.pptx
BALLANDBEAM_GROUP7.pptxBALLANDBEAM_GROUP7.pptx
BALLANDBEAM_GROUP7.pptx
 
Unit 4 frequency response-Bode plot
Unit 4 frequency response-Bode plotUnit 4 frequency response-Bode plot
Unit 4 frequency response-Bode plot
 
Lec1
Lec1Lec1
Lec1
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture Notes
 

Dernier

Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...DhatriParmar
 
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFE
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFEPART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFE
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFEMISSRITIMABIOLOGYEXP
 
Unit :1 Basics of Professional Intelligence
Unit :1 Basics of Professional IntelligenceUnit :1 Basics of Professional Intelligence
Unit :1 Basics of Professional IntelligenceDr Vijay Vishwakarma
 
Geoffrey Chaucer Works II UGC NET JRF TGT PGT MA PHD Entrance Exam II History...
Geoffrey Chaucer Works II UGC NET JRF TGT PGT MA PHD Entrance Exam II History...Geoffrey Chaucer Works II UGC NET JRF TGT PGT MA PHD Entrance Exam II History...
Geoffrey Chaucer Works II UGC NET JRF TGT PGT MA PHD Entrance Exam II History...DrVipulVKapoor
 
The Emergence of Legislative Behavior in the Colombian Congress
The Emergence of Legislative Behavior in the Colombian CongressThe Emergence of Legislative Behavior in the Colombian Congress
The Emergence of Legislative Behavior in the Colombian CongressMaria Paula Aroca
 
Objectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptxObjectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptxMadhavi Dharankar
 
6 ways Samsung’s Interactive Display powered by Android changes the classroom
6 ways Samsung’s Interactive Display powered by Android changes the classroom6 ways Samsung’s Interactive Display powered by Android changes the classroom
6 ways Samsung’s Interactive Display powered by Android changes the classroomSamsung Business USA
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
physiotherapy in Acne condition.....pptx
physiotherapy in Acne condition.....pptxphysiotherapy in Acne condition.....pptx
physiotherapy in Acne condition.....pptxAneriPatwari
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
Indexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfIndexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfChristalin Nelson
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
CHUYÊN ĐỀ ÔN THEO CÂU CHO HỌC SINH LỚP 12 ĐỂ ĐẠT ĐIỂM 5+ THI TỐT NGHIỆP THPT ...
CHUYÊN ĐỀ ÔN THEO CÂU CHO HỌC SINH LỚP 12 ĐỂ ĐẠT ĐIỂM 5+ THI TỐT NGHIỆP THPT ...CHUYÊN ĐỀ ÔN THEO CÂU CHO HỌC SINH LỚP 12 ĐỂ ĐẠT ĐIỂM 5+ THI TỐT NGHIỆP THPT ...
CHUYÊN ĐỀ ÔN THEO CÂU CHO HỌC SINH LỚP 12 ĐỂ ĐẠT ĐIỂM 5+ THI TỐT NGHIỆP THPT ...Nguyen Thanh Tu Collection
 
Shark introduction Morphology and its behaviour characteristics
Shark introduction Morphology and its behaviour characteristicsShark introduction Morphology and its behaviour characteristics
Shark introduction Morphology and its behaviour characteristicsArubSultan
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...Nguyen Thanh Tu Collection
 
How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17Celine George
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...Nguyen Thanh Tu Collection
 

Dernier (20)

Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
 
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFE
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFEPART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFE
PART 1 - CHAPTER 1 - CELL THE FUNDAMENTAL UNIT OF LIFE
 
Unit :1 Basics of Professional Intelligence
Unit :1 Basics of Professional IntelligenceUnit :1 Basics of Professional Intelligence
Unit :1 Basics of Professional Intelligence
 
Geoffrey Chaucer Works II UGC NET JRF TGT PGT MA PHD Entrance Exam II History...
Geoffrey Chaucer Works II UGC NET JRF TGT PGT MA PHD Entrance Exam II History...Geoffrey Chaucer Works II UGC NET JRF TGT PGT MA PHD Entrance Exam II History...
Geoffrey Chaucer Works II UGC NET JRF TGT PGT MA PHD Entrance Exam II History...
 
The Emergence of Legislative Behavior in the Colombian Congress
The Emergence of Legislative Behavior in the Colombian CongressThe Emergence of Legislative Behavior in the Colombian Congress
The Emergence of Legislative Behavior in the Colombian Congress
 
Objectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptxObjectives n learning outcoms - MD 20240404.pptx
Objectives n learning outcoms - MD 20240404.pptx
 
6 ways Samsung’s Interactive Display powered by Android changes the classroom
6 ways Samsung’s Interactive Display powered by Android changes the classroom6 ways Samsung’s Interactive Display powered by Android changes the classroom
6 ways Samsung’s Interactive Display powered by Android changes the classroom
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
physiotherapy in Acne condition.....pptx
physiotherapy in Acne condition.....pptxphysiotherapy in Acne condition.....pptx
physiotherapy in Acne condition.....pptx
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
Indexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdfIndexing Structures in Database Management system.pdf
Indexing Structures in Database Management system.pdf
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
CHUYÊN ĐỀ ÔN THEO CÂU CHO HỌC SINH LỚP 12 ĐỂ ĐẠT ĐIỂM 5+ THI TỐT NGHIỆP THPT ...
CHUYÊN ĐỀ ÔN THEO CÂU CHO HỌC SINH LỚP 12 ĐỂ ĐẠT ĐIỂM 5+ THI TỐT NGHIỆP THPT ...CHUYÊN ĐỀ ÔN THEO CÂU CHO HỌC SINH LỚP 12 ĐỂ ĐẠT ĐIỂM 5+ THI TỐT NGHIỆP THPT ...
CHUYÊN ĐỀ ÔN THEO CÂU CHO HỌC SINH LỚP 12 ĐỂ ĐẠT ĐIỂM 5+ THI TỐT NGHIỆP THPT ...
 
Shark introduction Morphology and its behaviour characteristics
Shark introduction Morphology and its behaviour characteristicsShark introduction Morphology and its behaviour characteristics
Shark introduction Morphology and its behaviour characteristics
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...
BÀI TẬP BỔ TRỢ TIẾNG ANH 8 - I-LEARN SMART WORLD - CẢ NĂM - CÓ FILE NGHE (BẢN...
 
How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17How to Manage Buy 3 Get 1 Free in Odoo 17
How to Manage Buy 3 Get 1 Free in Odoo 17
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
prashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Professionprashanth updated resume 2024 for Teaching Profession
prashanth updated resume 2024 for Teaching Profession
 
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
 

Krish final

  • 1. DESIGN AND IMPLEMENTATION OF PI CONTROLLER USING GENETIC ALGORITHM AND ANT COLONY OPTIMIZATION FOR A SPHERICAL TANK PROCESS By A. KRISHNAMOORTHY M.E. (Process Control & Instrumentation Engg.) (2009-2011) Mr. G. SAKTHIVEL Lecturer (selection grade) Department of Instrumentation Engg Annamalai university chidambaram.
  • 2. OBJECTIVES OF THE PROJECT WORK • To identify the model of the spherical tank process by black box modeling for various operating region. a) Low Level b) Middle Level c) High Level • To tune the PI controller by Ziegler- Nichols method. • To optimize the designed PI controller using ACO (Ant Colony Optimization) Technique for various cost function like IAE, ITAE, ISE. • To tune the PI controller by Genetic algorithm.
  • 3. • To compare the results of ACO tuned PI controller with Z-N tuned PI and GA tuned PI controller in terms of time domain specification and performance indices like ISE, MSE, ITAE, IAE. • To obtain the results form both simulation and real time process for the corresponding models. • To check to robustness of the above designed controller and test the ACO under white noise.
  • 4. PI CONTROLLER • It consist of proportional and integral action • PID can be implemented as a stand alone controller (or) part of the controller e.g. DDC (or) DCS • Various actions P-ACTION P = Kp* e I-ACTION I = ki ∫e dt D-ACTION D = Kd d(e)/ dt where Kp = proportional gain KI = Integral gain
  • 5. Closed loop Z-N tuned PI Controller The transfer function of PI controller looks like following: U= Kp* e (t)+ki∫e(t) Block diagram of PI controller Recommended PID Value Setting TYPE OF Kp Ti Td CONTROLLER P 0.5 Ku ∞ 0 PI 0.45 Ku Pu/1.2 0 PID 0.6 Ku Pu/2 Pu/8
  • 6. OBJECTIVE FUNCTIONS The following objective function we are using for both GA and ACO optimization. 1. Integral Absolute error 2. Integral square error 3. Integral time Multiplied by Absolute error
  • 7. It is a type of machine learning technique  Mimics the biological process of evolution  Genetic algorithms Software programs that learn in an evolutionary manner, similar to the way biological systems evolve  An efficient, domain-independent search heuristic for a broad spectrum of problem domains  Main theme: Survival of the fittes. Moving towards better and better solutions by letting only the fittest parents to create the future generations
  • 8. Reproduction • Multiple copies of the same string may be selected for reproduction and the fittest string should begin to dominate e.g. roulette wheel selection Depiction of roulette wheel selection
  • 9. CROSSOVER •Once the selection process is completed, the crossover algorithm is initiated. •The crossover operations swaps certain port of the two selected strings in a bid to capture the good parts of old chromosomes and create better new ones.  Singe point  Multi point  Uniform
  • 10. Single point crossover Multi point crossover Uniform crossover
  • 11. MUTATION •Mutation is the occasional random alternation of a value of a string position. Eg.
  • 12.
  • 13. Ant Colony Optimization (ACO) is a paradigm for designing meta heuristic algo- rithms for combinatorial optimization problems.  Ants travel from node to node until end decision based on transition probability (called state transition)  Once all ants travel finished Solutions compared  Pheromone evaporation applied to all edges Pheromone increased along each edge of best/each ant’s path  Original ant system: at each iteration, the pheromone values are updated by all the ants that have build a solution in the iteration itself.  Daemon activities can be run (like local search)  Redo until termination criteria met  They have an advantage over simulated annealing and genetic algorithm approaches when the graph may change dynamically. The ant colony algorithm can be run continuously and can adapt to changes in real time.
  • 14. •Ants choose paths depending on pheromone •After collecting food, paths are marked •After some time, the shortest path has the highest probability
  • 15. When ants travel they mark their path with substance called pheromone  Attracts other ants  When an ant reaches a fork in its path the direction it follows is based on amount of pheromone it detects  Decision probabilistically made  This causes positive feedback situation (i.e. Choosing a path increases the probability it will be chosen)
  • 16. While ( termination not satisfied ) – create ants – Find solutions Quantity of • Transition probability: pheromone β 1 τij (t )α   Heuristic Pij (t ) =  dij  distance β 1 ∑ j∈allowed nodes τij (t )α    dij  α,β constants – Pheromone update – Daemon activities {optional}
  • 17. While ( termination not satisfied ) – create ants – Find solutions – Pheromone update Pheromone laid by Evaporation rate each ant that uses edge (i,j) Q τij (t +1) = (1 − ρ)τij (t ) + k∈ ∑ Colony that Lk used edge ( i , j ) – Daemon activities {optional}
  • 18. RESULTS AND DISCUSION • In this section the result of the implemented ACO (ant colony optimization) tuned PI Controller was obtained. • The ACO designed PI controller is initialized with 10 Ants and 100 iterations then response is analyzed. • From the ACO-PI controller Reponses it is compared with GA designed PI and ZN – tuned PI controller. The various cost functions are plotted belowin the given figure with different tabulations. 4.5 Model 1 G(s) = e −120 s 440 s + 1
  • 19. Initialization of Parameters To start up with GA, certain parameters need to be defined. Initializing value of the parameters for this project for is as follows: Population size - 80 Bit length of considered chromosome - 6 Number of Generations - 100 Selection Method - ‘Roulette wheel selection Crossover type - ‘Single point crossover’ Crossover probability - 0.8 Mutation type - ‘Uniform mutation’ Mutation probability - 0.05
  • 20. 4.5 Model 1 G(s) = e −120 s 440 s + 1 Comparison of Performance index and time domain specification Kp Ki %Mp Tp ts tr IAE ISE MSE ITAE ZN 0.7333 0.0018 42.9 376 1320 106 315.71 195.95 0.0392 9.22x104 ACO-ITAE 0.4479 0.000878 2.82 504 1030 209 261.27 196.24 0.0392 5.54x104 ACO-IAE 0.5825 0.0011 16.1 412 930 143 258.72 181.85 0.0364 6.64x104 ACO-ISE 0.6162 0.0011 18.4 398 915 135 264.40 180.38 0.0361 9.22x104 GA-ITAE 0.5235 0.0012 16.1 448 849 157 256.64 187.37 0.0375 4.72x104 GA-IAE 0.6886 0.0013 28.0 370 989 108 276.57 181.56 0.0363 7.03x104 GA-ISE 0.6669 0.0017 36.3 393 1140 11 295.01 191.11 0.0382 7.56x104 ZN 0.7333 0.0018 42.9 376 1320 106 315.71 195.95 0.0392 9.22x104 ACO-ITAE 0.4479 0.000878 2.82 504 1030 209 261.27 196.24 0.0392 5.54x104 GA-ITAE 0.5235 0.0012 16.1 448 849 157 256.64 187.37 0.0375 4.72x104
  • 21. S p R sp n te e o se 1.5 ZN AC -ita O e GA-itae 1 m litu e A p d 0.5 0 5 0 0 1 0 0 0 1 0 5 0 2 0 0 0 2 0 5 0 3 0 0 0 3 0 5 0 4 0 0 0 4 0 5 0 5 0 0 0 T e (se im c) Step response for the closed loop system for the PI controller tuned with different methods S p R sp n e te e o s 1.4 A O e C -ita A O e C -ia 1.2 A O e C -is 1 m litu e A p d 0.8 0.6 0.4 0.2 0 5 0 0 1 0 0 0 1 0 5 0 2 0 T e (se 0 0 im2 0 c) 5 0 3 0 0 0 3 0 5 0 4 0 0 0 4 0 5 0 5 0 0 0 Step response for the closed loop system for the ACO -PI controller tuned with different cost function
  • 22. Step Response 1.4 GA-itae GA-iae 1.2 GA-ise 1 Amplitude 0.8 0.6 0.4 0.2 0 500 1000 1500 2000Time2500 (sec) 3000 3500 4000 4500 5000 Step response for the closed loop system for the GA- PI controller tuned with different cost function
  • 23. Kp distribution 1.5 Kpdistribution 1 0.5 0 0 10 20 30 40 50 60 70 80 90 100 -3 Ki distribution x 10 6 Ki distribution 4 2 0 0 10 20 30 40 50 60 70 80 90 100 nuber of iterations Initial distribution of Kp, Ki for AC
  • 24. Kp setteled 0.5 0.45 0.4 0.35 0 20 40 60 80 100 120 -4 Ki settelled x 10 10 9 gain 8 7 6 0 20 40 60 80 100 120 number of iterations Kp, Ki settled for ACO
  • 25. Kp Value 6 4 Gain 2 0 0 10 20 30 40 50 60 70 80 90 100 Ki Value 0.04 0.03 Gain 0.02 0.01 0 0 10 20 30 40 50 60 70 80 90 100 Generations Kp, Ki settled for GA
  • 26. ACO-ITAE setteled 2400 2200 2000 1800 ITAE 1600 1400 1200 1000 800 0 20 40 60 80 100 120 number of iterations ACO – ITAE setteled
  • 27. 6 Model2 G(s) = e −130 s 1200 s +1 Comparison of Performance index and time domain specification Kp Ki %Mp tp ts tr IAE ISE MSE ITAE ZN 1.3846 0.0032 69.8 425 1920 105 465.61 279.93 0.0560 2.0565x105 ACO-ITAE 0.9678 0.0020 38.4 516 940 153 371.14 234.60 0.0469 1.1809x105 ACO-IAE 1.0978 0.0018 37.7 461 1450 130 346.04 220.20 0.0440 1.1059x105 ACO-ISE 1.1324 0.0019 40.5 462 1430 133 349.93 222.39 0.0445 1.1900x105 GA-ITAE 1.1528 0.0025 52.3 464 1440 120 388.66 246.06 0.0492 1.3028x105 GA-IAE 1.1869 0.0033 65.1 470 1750 122 454.97 280.66 0.0561 1.8600x105 GA-ISE 1.2488 0.0029 60.8 446 1400 128 420.10 260.00 0.0521 1.5838x105 ZN 1.3846 0.0032 69.8 425 1920 105 465.61 279.93 0.0560 2.0565x105 ACO-ITAE 0.9678 0.0020 38.4 516 940 153 371.14 234.60 0.0469 1.1809x105 GA-ITAE 1.1528 0.0025 52.3 464 1440 120 388.66 246.06 0.0492 1.3028x105
  • 28. Step Response 1.8 ZN 1.6 ACO-itae GA -itae 1.4 1.2 Amplitude 1 0.8 0.6 0.4 0.2 0 500 1000 1500 2000Time2500 (sec) 3000 3500 4000 4500 5000 Step response for the closed loop system for the PI controller tuned with different
  • 29. Step Response 1.5 ACO-itae ACO-iae ACO-ise 1 Amplitude 0.5 0 500 1000 1500 2000 2500 Time (sec) 3000 3500 4000 4500 5000 Step response for the closed loop system for the ACO -PI controller tuned with different cost function
  • 30. Step Response 1.8 GA-itae 1.6 GA-iae GA-ise 1.4 1.2 Amplitude 1 0.8 0.6 0.4 0.2 0 500 1000 1500 2000Time2500 (sec) 3000 3500 4000 4500 5000 Step response for the closed loop system for the GA- PI controller tuned with different cost function
  • 31. Kp distribution 2.5 2 Ki distribution 1.5 1 0.5 0 10 20 30 40 50 60 70 80 90 100 -3 Ki distribution x 10 8 6 Kp distribution 4 2 0 0 10 20 30 40 50 60 70 80 90 100 number of iterations Initial distribution of Kp, Ki for AC
  • 32. Kp setteled 0.98 0.96 0.94 0.92 0.9 0 20 40 60 80 100 120 -3 Ki settelled x 10 2.5 2 gain 1.5 1 0 20 40 60 80 100 120 number of iterations Kp, Ki settled for ACO
  • 33. Kp Value 5 4 Gain 3 2 1 0 10 20 30 40 50 60 70 80 90 100 Ki Value 0.2 0.15 Gain 0.1 0.05 0 0 10 20 30 40 50 60 70 80 90 100 Generations Kp, Ki settled for GA
  • 34. ACO-ITAE setteled 2950 2900 2850 2800 2750 ITAE 2700 2650 2600 2550 2500 2450 0 20 40 60 80 100 120 number of iterations ACO – ITAE settled
  • 35. 2.7 Model3 G(s) = e −150 s 1050 s + 1 z Kp Ki %Mp tp ts tr IAE ISE MSE ITAE ZN 2.2900 0.0046 63.7 486 2140 124 499.58 300.23 0.0600 2.3669x105 ACO-ITAE 1.4852 0.0020 19.0 616 1230 210 374.53 245.52 0.0491 1.3270x105 ACO-IAE 1.6902 0.0025 28.8 562 1590 176 375.28 245.19 0.0490 1.2660x105 ACO-ISE 1.8300 0.0030 45.4 510 1600 158 389.48 251.79 0.0503 1.3200x105 GA-ITAE 1.8586 0.0024 30.2 525 1530 160 361.09 238.41 0.0470 1.1800x105 GA-IAE 1.9072 0.0034 43.8 528 1610 150 408.08 261.23 0.0522 1.4300x105 GA-ISE 2.0237 0.0034 37.5 536 1560 140 408.28 258.89 0.0518 1.4750x105 ZN 2.2900 0.0046 63.7 486 2140 124 499.58 300.23 0.0600 2.3669x105 ACO-ITAE 1.4852 0.0020 19.0 616 1230 210 374.53 245.52 0.0491 1.3270x105 GA-ITAE 1.8586 0.0024 30.2 525 1530 160 361.09 238.41 0.0470 1.1800x105
  • 36. Step Response 1.8 ZN 1.6 ACO-itae GA-itae 1.4 1.2 Amplitude 1 0.8 0.6 0.4 0.2 0 500 1000 1500 2000Time2500 (sec) 3000 3500 4000 4500 5000 Step response for the closed loop system for the PI controller tuned with different methods
  • 37. Step Response 1.4 ACO-itae ACO-iae 1.2 ACO-ise 1 0.8 Amplitude 0.6 0.4 0.2 0 500 1000 1500 2000Time2500 (sec) 3000 3500 4000 4500 5000 Step response for the closed loop system for the ACO -PI controller tuned with different cost function
  • 38. S p R sp n te e o se 1.5 GA-itae GA-iae GA-ise 1 m litu e A p d 0.5 0 5 0 0 1 0 0 0 1 0 5 0 2 0 T e (se 0 0 im2 0 c) 5 0 3 0 0 0 3 0 5 0 4 0 0 0 4 0 5 0 5 0 0 0 Step response for the closed loop system for the GA- PI controller tuned with different cost function
  • 39. Kp,Ki distributions 4 Ki distribution 3 2 1 0 10 20 30 40 50 60 70 80 90 100 0.015 Kp distribution 0.01 0.005 0 0 10 20 30 40 50 60 70 80 90 100 number of generation Initial distribution of Kp, Ki for AC
  • 40. Kp setteled 2 1.8 1.6 1.4 0 20 40 60 80 100 120 -3 Ki settelled x 10 3 gain 2.5 2 0 20 40 60 80 100 120 number of iterations Kp, Ki settled for ACO
  • 41. K V lu p a e 8 G in a 6 4 2 0 0 10 20 30 40 50 60 70 80 90 1 0 0 K V lu i a e 0.8 0.6 G in a 0.4 0.2 0 0 10 20 30 40 50 60 70 80 90 1 0 0 G n ra n e e tio s Kp, Ki settled for GA
  • 42. ACO-ITAE setteled 3800 3600 3400 3200 ITAE 3000 2800 2600 2400 2200 0 20 40 60 80 100 120 number of iteration ACO – ITAE settled
  • 43. obustness of the controller is defined as its ability to tolerate a certain amount of change in the process parameters without causing the feedback system to go unstable n order to investigate the robustness of the proposed method in the model parameters were altered. hence ain constant K, ime const T, elay time Td re deviated by ±15% of its nominal values. Therefore
  • 44. ACTUAL MODELS ALTERED MODELS 4.5 Model 1 G(s) = e −120 s 5.7 440 s + 1 Model 1 G(s) = e −102 s 506 s + 1 6 6.9 Model2 G(s) = e −130 s Model2 G(s) = e −110 s 1200 s +1 1380 s +1 2.7 3.15 Model3 G(s) = e −150 s Model3 G(s) = e −127 s 1050 s + 1 1207 s +1
  • 45. ALTERED MODELS Case (i) Gain, K value is incremented by 15%. The value of is incremented by 15%. The value of td is decremented by 15%. Case (ii) Gain, K value is incremented by 10%. The value of is incremented by 10%. The value of td is decremented by 10%.
  • 46. Case (iii) Gain, K value is incremented by 25%. and , td values no changes. Case (iv) Time constant is incremented by 25%. and k, td values no changes. Case (v) Time delay td is incremented by 25%. and k, values no changes.
  • 47. Robustness check with various cost functions for various model CASE 1 Model 1 Model 2 Model 3 Kp Ki %Mp tp Ts tr Kp Ki %Mp tp Ts tr Kp Ki %Mp tp Ts tr ZN 0.7333 0.0018 33.5 347 1000 105 1.3846 0.0032 53.8 390 1230 105 2.29 0.0046 49.6 448 1390 123 ACO 0.4479 0.00087 1.96 484 380 201 0.9678 0.0020 30.8 504 1225 157 1.4852 0.0020 28.6 618 1310 195 GA 0.5235 0.0012 11.7 439 729 162 1.1528 0.0025 39.5 437 1230 128 1.8586 0.0024 33.9 509 1350 155
  • 48. Model 1 CASE 2 Model 2 Model 3 Kp Ki %Mp tp Ts tr Kp Ki %Mp tp Ts tr Kp Ki %Mp tp Ts tr ZN 0.7333 0.0018 36.9 356 1040 105 1.3846 0.0032 59.4 402 1260 105 2.29 0.0046 52.9 464 1440 125 ACO 0.4479 0.00087 2.16 520 552 215 0.9678 0.0020 32.9 506 1140 155 1.4852 0.0020 30 628 1290 197 GA 0.5235 0.0012 13.4 433 668 157 1.1528 0.0025 43.8 545 1330 127 1.8586 0.0024 36.2 524 950 157
  • 49. CASE 3 Model 1 Model 2 Model 3 Kp Ki %Mp tp Ts tr Kp Ki %Mp tp Ts tr Kp Ki %Mp tp Ts tr ZN 0.7333 0.0018 65.7 348 2050 84 1.3846 0.0032 93.9 391 3560 85.7 2.29 0.0046 85.2 450 3400 102 ACO 0.4479 0.00087 14.7 423 935 150 0.9678 0.0020 53.2 451 1410 121 1.4852 0.0020 46.8 546 1650 153 GA 0.5235 0.0012 30.8 393 1100 120 1.1528 0.0025 70.7 416 1900 102 1.8586 0.0024 60.4 485 1800 125
  • 50. CASE 4 Model 1 Model 2 Model 3 Kp Ki %Mp tp Ts tr Kp Ki %Mp tp Ts tr Kp Ki %Mp tp Ts tr ZN 0.7333 0.0018 36.7 401 1170 118 1.3846 0.0032 55.6 478 1500 128 2.29 0.0046 49.3 554 1680 153 ACO 0.4479 0.00087 2.42 587 667 244 0.9678 0.0020 33.1 624 1290 192 1.4852 0.0020 31.4 773 1050 242 GA 0.5235 0.0012 13.4 499 809 181 1.1528 0.0025 42 539 1110 156 1.8586 0.0024 34.8 638 1240 194
  • 51. CASE 5 Model 1 Model 2 Model 3 Kp Ki %Mp tp Ts tr Kp Ki %Mp tp Ts tr Kp Ki %Mp tp Ts tr ZN 0.7333 0.0018 20.5 326 648 109 1.3846 0.0032 40.8 370 1140 107 2.29 0.0046 35.2 428 1270 129 ACO 0.4479 0.00087 0 0 985 272 0.9678 0.0020 22.2 508 1310 166 1.4852 0.0020 20.4 641 1440 213 GA 0.5235 0.0012 3.19 450 550 182 1.1528 0.0025 29.3 424 1170 133 1.8586 0.0024 22.9 505 1034 186
  • 52. Step Response 1.4 aco zn 1.2 ga 1 Amplitude 0.8 0.6 0.4 0.2 0 500 1000 1500 2000 2500 Time (sec) 3000 3500 4000 4500 5000 Robustness Investigation for model 1(Case1)
  • 53. Step Response 1.6 aco 1.4 zn ga 1.2 1 Amplitude 0.8 0.6 0.4 0.2 0 500 1000 1500 2000Time2500 (sec) 3000 3500 4000 4500 5000 Robustness Investigation for model 2(Case1)
  • 54. Step Response 1.6 aco 1.4 zn ga 1.2 1 Amplitude 0.8 0.6 0.4 0.2 0 500 1000 1500 2000Time2500 (sec) 3000 3500 4000 4500 5000 Robustness Investigation for model 3(Case1)
  • 55. The following results shows different PI-tuned methods are implemented from real time process for above said models. %Mp ts ISE ZN 0.2 3.5 8.5274 x108 GA 0.16 3 5.3635x 106 ACO 0.12 2.5 7.3456x 105 Comparison of Performance index and time domain specification
  • 56. 70 ACO GA ZN 60 50 40 am plitude 30 20 10 0 0 1 2 3 4 5 6 7 8 tim e 5 x 10 Step response for the closed loop system for the PI controller tuned with deferent methods
  • 57. In order to test the PI tuning with ant algorithm in the presence of noise, ACO- ITAE is used  The above system is tested for three different variances σ2=0.0025 σ2=0.025, σ2=0.25  Ant algorithm was run 5 times with 10 ants and 100 iterations due to the probabilistic nature of AA and noise. 1.2 1 0.8 Varience-0.0025 amplitude 0.6 0.4 0.2 0 -0.2 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 time White noise for variance-0.0025
  • 58. 1.2 1 varience-0.00025 0.8 amplitude 0.6 0.4 0.2 0 -0.2 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 time White noise for variance-0.00025 2 V r n e0 2 aie c - .0 5 1.5 m litu e d 1 a p 0.5 0 - .5 0 0 50 0 10 00 10 50 20 00 2050 30 00 30 50 40 00 40 50 50 00 time White noise for variance-0.025
  • 59. In phase 2 of this project work, the conventional PI controller was tuned by Z-N tuning method and compared with proposed GA and ACO methods.  Then it is implemented to the first order with dead time process. Then simulation studies are carried out to analyze the performance of the spherical tank process and Robustness of above mentioned controller for the different set points.  It is also implemented in real time for the real time results of GA, ACO, ZN same set points. The result of both simulation and real time process were compared.  From the output response obtained using ACO tuned PI controller gives less over shoot, fastest settling time, fastest rise time then the other techniques.  Time domain specification and performance indices were tabulated for the above said models.
  • 60. Ying- Tung Haiao, (2004) Ant colony optimization for Designing of PID controller, IEEE, internation symposium on computer Aided control system aided control systems design Taipei, Taiwan, September 2-4, 2004. s S. Nithya, Abhay Singh Gour, N. Sivakumaran, T.K. Radhakrishnan and N. Anantharaman, Model Based controller Design for shell and Tube heat exchanger, sensors and Transducers Journal, Vol.84, Issue 10, October 2007, pp.1677-1686. , Sigurd Skogestasd, Simple analytic rules for model reduction ad PID controller tuning, Journal of process control, 13,2003, pp.291-309. g P. Wang and D.P Kwok, “Optimal design of PID process controllers based on genetic algorithms” control Engineer practices Vol.2,no.4, pp.641-648, 1994.