Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

3 d image processsing operations

255 vues

Publié le

basics of image processing operation in matlab

Publié dans : Ingénierie
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

3 d image processsing operations

  1. 1. 3D IMAGE PROCESSSING OPERATIONS BY M.MUTHUKUMAR.
  2. 2. OBJECTIVES:- Implementation of three basic image processing operations ENHANCEMENT SEGMENTATION BLUR
  3. 3. IMAGE PROCESSING:- • Form of signal processing •Input – image •Output –image or set of characteristics or parameters •Implemented through algorithms •Current concentration - “Texture", "Surface Mapping", "Video Tracking”. •Concentration needed on Spectrum & Hierarchy of processing levels
  4. 4. IMAGE ENHANCEMENT:- •Image Enhancement-Processing an image such as Sharpening, De blurring,… •Enhance Multispectral Color Composite Images-suitable for image interpretation, de-correlation •Enhance Color Images-Contrast enhancement, converts image from RGB to L*a*b. •Imadjust •Histeq •Adaphisteq
  5. 5. IMADJUST:- • Increases the contrast of the image. HISTEQ:- • Perform histogram equalization. ADAPTHISTEQ:- • Performs contrast-limited adaptive histogram equalization. • Values are already spread out between the minimum of 0 and maximum of 255.
  6. 6. SEGMENTATION:- process of partitioning a digital image into multiple segments Steps Involved:- •Detect Entire Cell •Fills Gaps •Dilate the Images •Fill Interior Gaps •Remove Connected Objects on Border •Smooth the Object
  7. 7. BLUR:- Usually makes the images unfocused. BLUR DECONVOLUTION:- Algorithm can be used effectively when no information about the distortion.
  8. 8. EXPERIMENT STUDY:- Can be processed using software such as C language Matrix- X, Visual Basic, Java program and MATLAB programming.
  9. 9. ENHANCEMENT:- ORIGINAL IMAGE IMADJUS T IMADJUST HISTEQ ADAPTHISTEQ IMAGE COMPOSITE AFTER DECORRELATION STRETCH
  10. 10. SEGMENTATION:- BINARY GRADIENT MASK BINARY IMAGE FILLED WITH HOLES CLEARED BORDER IMAGE OUTLINED ORIGINAL IMAGE SEGMENTED IMAGE
  11. 11. BLUR:- BLURRED AND NOISY IMAGE
  12. 12. HISTOGRAM:- Comparison histogram for enhancement for 2d and 3d images
  13. 13. 2d 3d Comparison histogram for blur for 2d and 3d images:Comparison histogram for segmentation for 2d and 3d
  14. 14. CONCLUSION:- •The presentation briefly elaborates the image process operations for 3D images. •Previous works-in 2D images. •Proposed work-3D images. •The output Algorithms are compared. •The software used is MATLAB
  15. 15. REFERENCES:- [1] ABDUL HALIM BIN BABA. image processing learning tool-edge detection bachelor degree. university of technology malaysia 1996. [2] FIONN MURTAGH. Image Processing data analysis. the multi-scale approach. University of Ulster. [3] Fundamentals of image processing, hany.farid@dartmouth.edu .(http://www.cs.dartmouth.edu/~farid)
  16. 16. THANK YOU

×