SlideShare a Scribd company logo
Soumettre la recherche
Mettre en ligne
S’identifier
S’inscrire
Unit 1.7
Signaler
Mark Ryder
Suivre
Online Instructor for Everett Public Schools à Everett School District
8 Sep 2014
•
0 j'aime
•
2,221 vues
1
sur
22
Unit 1.7
8 Sep 2014
•
0 j'aime
•
2,221 vues
Télécharger maintenant
Télécharger pour lire hors ligne
Signaler
Formation
Unit 1.7
Mark Ryder
Suivre
Online Instructor for Everett Public Schools à Everett School District
Recommandé
Unit 2.1
Mark Ryder
1.7K vues
•
26 diapositives
P
Mark Ryder
1.9K vues
•
27 diapositives
Unit 2.6
Mark Ryder
3.2K vues
•
19 diapositives
Unit 2.5
Mark Ryder
2.1K vues
•
17 diapositives
Unit 1.4
Mark Ryder
1.9K vues
•
17 diapositives
Unit 1.2
Mark Ryder
2.1K vues
•
34 diapositives
Contenu connexe
Tendances
Unit 2.4
Mark Ryder
1.8K vues
•
25 diapositives
Unit 2.8
Mark Ryder
1.7K vues
•
24 diapositives
Unit 2.7
Mark Ryder
2K vues
•
13 diapositives
Unit 1.3
Mark Ryder
1.5K vues
•
20 diapositives
Unit 3.1
Mark Ryder
1.4K vues
•
20 diapositives
Unit .5
Mark Ryder
2K vues
•
16 diapositives
Tendances
(20)
Unit 2.4
Mark Ryder
•
1.8K vues
Unit 2.8
Mark Ryder
•
1.7K vues
Unit 2.7
Mark Ryder
•
2K vues
Unit 1.3
Mark Ryder
•
1.5K vues
Unit 3.1
Mark Ryder
•
1.4K vues
Unit .5
Mark Ryder
•
2K vues
Unit .4
Mark Ryder
•
2K vues
Unit .7
Mark Ryder
•
1.6K vues
Unit 3.3
Mark Ryder
•
1.3K vues
Unit 2.2
Mark Ryder
•
1.4K vues
Unit 2.3
Mark Ryder
•
2.2K vues
Unit 3.5
Mark Ryder
•
2K vues
Unit 7.3
Mark Ryder
•
1.2K vues
Unit 7.2
Mark Ryder
•
876 vues
Unit 7.4
Mark Ryder
•
3.3K vues
Unit 3.4
Mark Ryder
•
3.2K vues
Unit 7.1
Mark Ryder
•
995 vues
Unit 3.2
Mark Ryder
•
1.4K vues
Goldie chapter 4 function
Sarah Sue Calbio
•
623 vues
Bostock and Chandler chapter3 functions
Sarah Sue Calbio
•
2.8K vues
Similaire à Unit 1.7
Unit 4.8
Mark Ryder
2.4K vues
•
21 diapositives
Unit 7.5
Mark Ryder
866 vues
•
23 diapositives
Unit 4.6
Mark Ryder
2K vues
•
16 diapositives
MATH 107 FINAL EXAMINATIONMULTIPLE CHOICE1. Deter.docx
TatianaMajor22
4 vues
•
12 diapositives
Lesson 5: Functions and surfaces
Matthew Leingang
1.2K vues
•
18 diapositives
MATH225Final
Tori Peña
143 vues
•
9 diapositives
Similaire à Unit 1.7
(20)
Unit 4.8
Mark Ryder
•
2.4K vues
Unit 7.5
Mark Ryder
•
866 vues
Unit 4.6
Mark Ryder
•
2K vues
MATH 107 FINAL EXAMINATIONMULTIPLE CHOICE1. Deter.docx
TatianaMajor22
•
4 vues
Lesson 5: Functions and surfaces
Matthew Leingang
•
1.2K vues
MATH225Final
Tori Peña
•
143 vues
Chapter 8 classroom slides
wellingb
•
178 vues
Math 116 pres. 5
United Scholars Organization (LDCU)
•
353 vues
Assignment Details of Class 504 Unit 7 (friend)To remember See .docx
rock73
•
2 vues
Lecture co4 math21-1
Lawrence De Vera
•
3.1K vues
Gch7 l1 (1)
Matt Fillingham
•
239 vues
Dwp08 0106
Mark Ryder
•
667 vues
Unit .3
Mark Ryder
•
2.1K vues
EVALUATING INTEGRALS.Evaluate the integral shown below. (H.docx
gitagrimston
•
2 vues
M166Calculus” ProjectDue Wednesday, December 9, 2015PROJ.docx
infantsuk
•
4 vues
1519 differentiation-integration-02
Dr Fereidoun Dejahang
•
968 vues
Algorithm Assignment Help
Programming Homework Help
•
163 vues
MATH 107 • Show workexplanation where indicated. Answers withou.docx
andreecapon
•
2 vues
FOR #1 THROUGH #4, SOLVE THE GIVEN EQUATION.1. Solve x = 8..docx
houndsomeminda
•
2 vues
Ch 7 Review March 18
RyanWatt
•
996 vues
Plus de Mark Ryder
Geometry 201 Unit 4.1
Mark Ryder
1.4K vues
•
19 diapositives
Algebra 302 unit 11.4
Mark Ryder
3.7K vues
•
26 diapositives
Algebra 2 unit 10.6
Mark Ryder
863 vues
•
46 diapositives
Algebra 2 unit 10.7
Mark Ryder
877 vues
•
46 diapositives
Algebra 2 unit 10.5
Mark Ryder
928 vues
•
27 diapositives
Algebra 2 unit 10.4
Mark Ryder
1.1K vues
•
35 diapositives
Plus de Mark Ryder
(20)
Geometry 201 Unit 4.1
Mark Ryder
•
1.4K vues
Algebra 302 unit 11.4
Mark Ryder
•
3.7K vues
Algebra 2 unit 10.6
Mark Ryder
•
863 vues
Algebra 2 unit 10.7
Mark Ryder
•
877 vues
Algebra 2 unit 10.5
Mark Ryder
•
928 vues
Algebra 2 unit 10.4
Mark Ryder
•
1.1K vues
Algebra 2 unit 10.3
Mark Ryder
•
1.2K vues
Algebra 2 unit 10.2
Mark Ryder
•
697 vues
11.1 combination and permutations
Mark Ryder
•
5.3K vues
Unit 11.3 probability of multiple events
Mark Ryder
•
2.1K vues
Unit 11.2 experimental probability
Mark Ryder
•
2.7K vues
Unit 11.2 theoretical probability
Mark Ryder
•
3K vues
11.1 11.1 combination and permutations
Mark Ryder
•
7K vues
Geometry 201 unit 5.7
Mark Ryder
•
3.2K vues
Geometry 201 unit 5.5
Mark Ryder
•
1.4K vues
Geometry 201 unit 5.4
Mark Ryder
•
1.5K vues
Geometry 201 unit 5.3
Mark Ryder
•
1.1K vues
Geometry 201 unit 4.7
Mark Ryder
•
1.7K vues
Geometry 201 unit 4.4
Mark Ryder
•
2.1K vues
Geometry 201 unit 4.3
Mark Ryder
•
1.2K vues
Dernier
Accounting with Drones - Sri Akshay - 23COMD60
Kumarasamy Dr.PK
120 vues
•
7 diapositives
Basic Assessment Concepts
AliAlZurfi
321 vues
•
25 diapositives
clinical Neuroanatomy_of_ventricular_system_ and CSF suparna[1]-1.pptx
Kolkata,west bengal, India
93 vues
•
18 diapositives
REPRODUCTION PART -1.pptx
MISSRITIMABIOLOGYEXP
159 vues
•
22 diapositives
Emergence of Sociology.pdf
Saritakhalko
96 vues
•
7 diapositives
Elevating Food Safety:Tackling Hazards for a Stronger Food Safety Culture
SafetyChain Software
82 vues
•
23 diapositives
Dernier
(20)
Accounting with Drones - Sri Akshay - 23COMD60
Kumarasamy Dr.PK
•
120 vues
Basic Assessment Concepts
AliAlZurfi
•
321 vues
clinical Neuroanatomy_of_ventricular_system_ and CSF suparna[1]-1.pptx
Kolkata,west bengal, India
•
93 vues
REPRODUCTION PART -1.pptx
MISSRITIMABIOLOGYEXP
•
159 vues
Emergence of Sociology.pdf
Saritakhalko
•
96 vues
Elevating Food Safety:Tackling Hazards for a Stronger Food Safety Culture
SafetyChain Software
•
82 vues
Generative AI
Corinne Weisgerber
•
100 vues
Personal Brand Exploration - NaQuan Creekmore
NaQuan Creekmore
•
97 vues
Song of the Rain Stanzas 6-10.pptx
AncyTEnglish
•
267 vues
Primary Healing-5.pptx
Kolkata,west bengal, India
•
43 vues
Year 11 Information Evening
WestHatch
•
100 vues
20230927 Tech_For_Good Discovery_Summit.pdf
International Society of Service Innovation Professionals
•
48 vues
Congruency vs Equality
Manik Bhola
•
211 vues
Project Management Starters.pptx
AnkitaNayak83
•
74 vues
BPOPS203 PRINCIPLES OF PROGRAMMING USING C LAB Manual.pdf
Syed Mustafa
•
44 vues
ACTIVITY BOOK key 00.pptx
Mar Caston Palacio
•
320 vues
10 Years of World Heutagogy Day
London Knowledge Lab
•
168 vues
ACTIVITY BOOK key 00.pptx
Mar Caston Palacio
•
92 vues
Listen to the mountain 2.pptx
AncyTEnglish
•
248 vues
NCF-SE-2023 ( National Curriculum Framework School Education
Dr. Nicholas Correa
•
99 vues
Unit 1.7
1.
1.7 Modeling with
Functions Copyright © 2011 Pearson, Inc.
2.
What you’ll learn
about Functions from Formulas Functions from Graphs Functions from Verbal Descriptions Functions from Data … and why Using a function to model a variable under observation in terms of another variable often allows one to make predictions in practical situations, such as predicting the future growth of a business based on data. Copyright © 2011 Pearson, Inc. Slide 1.7 - 2
3.
Example A Maximum
Value Problem A square of side x inches is cut out of each corner of an 8 in. by 15 in. piece of cardboard and the sides are folded up to form an open-topped box. (a) Write the volume V as a function of x. (b) Find the domain of V as a function of x. (c) Graph V as a function of x over the domain found in part (b) and use the maximum finder on your grapher to determine the maximum volume such a box can hold. (d) How big should the cut-out squares be in order to produce the box of maximum volume? Copyright © 2011 Pearson, Inc. Slide 1.7 - 3
4.
Solution A square
of side x inches is cut out of each corner of an 8 in. by 15 in. piece of cardboard and the sides are folded up to form an open-topped box. (a) Write the volume V as a function of x. 15 2x V x8 2x15 2x x 8 2x Copyright © 2011 Pearson, Inc. Slide 1.7 - 4
5.
Solution A square
of side x inches is cut out of each corner of an 8 in. by 15 in. piece of cardboard and the sides are folded up to form an open-topped box. (b) Find the domain of V as a function of x. V x8 2x15 2x The depth of x must be nonnegative, as must the side length and width. The domain is [0,4] where the endpoints give a box with no volume. Copyright © 2011 Pearson, Inc. Slide 1.7 - 5
6.
Solution V
x8 2x15 2x (c) Graph V as a function of x over the domain found in part (b) and use the maximum finder on your grapher to determine the maximum volume such a box can hold. The maximum occurs at the point (5/3, 90.74). The maximum volume is about 90.74 in.3. Copyright © 2011 Pearson, Inc. Slide 1.7 - 6
7.
Solution A square
of side x inches is cut out of each corner of an 8 in. by 15 in. piece of cardboard and the sides are folded up to form an open-topped box. (d) How big should the cut-out squares be in order to produce the box of maximum volume? Each square should have sides of one-and-two-thirds inches. Copyright © 2011 Pearson, Inc. Slide 1.7 - 7
8.
Example Finding the
Model and Solving Grain is leaking through a hole in a storage bin at a constant rate of 5 cubic inches per minute. The grain forms a cone-shaped pile on the ground below. As it grows, the height of the cone always remains equal to its radius. If the cone is one foot tall now, how tall will it be in one hour? Copyright © 2011 Pearson, Inc. Slide 1.7 - 8
9.
Solution The volume
of a cone is V 1 / 3 r2h. Since the height always equals the radius,V 1 / 3 h3 . When h 12 inches, the volume will be V (1 / 3) 12 576 in.3 . One hour later, the volume will have grown by (60 min)(5 in.3 / min) 300 in3 . The total volume will be 576 300 in3 . 1 / 3 h3 576 300 h3 3576 300 h 3576 300 3 12.63 inches Copyright © 2011 Pearson, Inc. Slide 1.7 - 9
10.
Constructing a Function
from Data Given a set of data points of the form (x, y), to construct a formula that approximates y as a function of x: 1. Make a scatter plot of the data points. The points do not need to pass the vertical line test. 2. Determine from the shape of the plot whether the points seem to follow the graph of a familiar type of function (line, parabola, cubic, sine curve, etc.). 3. Transform a basic function of that type to fit the points as closely as possible. Copyright © 2011 Pearson, Inc. Slide 1.7 - 10
11.
Example Curve-Fitting with
Technology The table shows that the number of patent applications in the United States increased from 1993 to 2003. Find both a linear and a quadratic regression model for this data. Which appears to be the better model of the data? Copyright © 2011 Pearson, Inc. Slide 1.7 - 11
12.
Solution Use a
grapher to compute the linear and quadratic regression, using x = 0 for 1993, x = 1 for 1994, … The linear regression model is y = 19.23x +1 57.84. The quadratic regression model is y = 0.7894x2 + 9.7573x + 178.36. The quadratic regression equation appears to model the data better than the linear regression equation. Copyright © 2011 Pearson, Inc. Slide 1.7 - 12
13.
Functions Copyright ©
2011 Pearson, Inc. Slide 1.7 - 13
14.
Functions (cont’d) Copyright
© 2011 Pearson, Inc. Slide 1.7 - 14
15.
Quick Review Solve
the given formula for the given variable. 1. Area of a Triangle Solve for b : A 1 2 bh 2. Volume of a Right Circular Cylinder Solve for h : V 1 3 r2h 3. Volume of a Sphere Solve for r : V 4 3 r3 4. Surface Area of a Sphere Solve for r : A 4 r2 5. Simple Interest Solve for P : I Prt Copyright © 2011 Pearson, Inc. Slide 1.7 - 15
16.
Quick Review Solutions
Solve the given formula for the given variable. 1. Solve for b : A 1 2 bh b 2A h 2. Solve for h : V 1 3 r2h h 3V r2 3. Solve for r : V 4 3 r3 r 3V 4 3 4. Solve for r : A 4 r2 r A 4 5. Solve for P : I Prt P I rt Copyright © 2011 Pearson, Inc. Slide 1.7 - 16
17.
Chapter Test Find
the (a) domain and (b) range of the function. 1. h(x) (x 2)2 5 2. k(x) 1 9 x2 3. Is the following function continuous at x 0? f (x) 2x 3 if x 0 3 x2 if x 0 4. Find all (a) vertical asymptotes and (b) horizontal asymptotes of the function y 3x x 4 . Copyright © 2011 Pearson, Inc. Slide 1.7 - 17
18.
Chapter Test 5.
State the interval(s) on which y x3 6 is increasing. 6. Tell whether the function is bounded above, bounded below or bounded. g(x) 6x x2 1 7. Use a grapher to find all (a) relative maximum values and (b) relative minimum values. y x3 3x 8. State whether the function is even, odd, or neither. y 3x2 4 x Copyright © 2011 Pearson, Inc. Slide 1.7 - 18
19.
Chapter Test 9.
Find a formula for f -1. f (x) 6 x 4 10. Find an expression for f ogx given f (x) x and g(x) x2 4. Copyright © 2011 Pearson, Inc. Slide 1.7 - 19
20.
Chapter Test Solutions
Find the (a) domain and (b) range of the function. 1. h(x) (x 2)2 5 (a) , (b) [5,) 2. k(x) 1 9 x2 (a) 3, 3 (b) [1/3,) 3. Is the following function continuous at x 0? f (x) 2x 3 if x 0 3 x2 if x 0 yes 4. Find all (a) vertical asymptotes and (b) horizontal asymptotes of the function y 3x x 4 . (a) x 4 (b) y 3 Copyright © 2011 Pearson, Inc. Slide 1.7 - 20
21.
Chapter Test Solutions
5. State the interval(s) on which y x3 6 is increasing. , 6. Tell whether the function is bounded above, bounded below or bounded. g(x) 6x x2 1 bounded 7. Use a grapher to find all (a) relative maximum values and (b) relative minimum values. y x3 3x a 2 b 2 8. State whether the function is even, odd, or neither. y 3x2 4 x even Copyright © 2011 Pearson, Inc. Slide 1.7 - 21
22.
Chapter Test 9.
Find a formula for f -1. f (x) 6 x 4 f 1 x 6 x 4 10. Find an expression for f ogx given f (x) x and g(x) x2 4. x2 4 Copyright © 2011 Pearson, Inc. Slide 1.7 - 22