SlideShare une entreprise Scribd logo
1  sur  10
I
t is well documented that climate change is already affecting regions
across the globe. Even if the global community can successfully limit
greenhouse gas emissions, the impacts of climate change will still
last decades into the future. In addition to implementing mitigation
efforts, many communities are already planning for climate change
and adopting measures to adapt to projected scenarios and prepare
for potential surprises. While national governments and international
organizations have a major role to play in supporting climate adaptation
efforts at all levels of governance, these efforts ultimately should be
tailored to the local level, as the type and magnitude of climate change
impacts vary greatly across regions.
To prepare for climate change at the local level, it is important to engage
local citizens. Input from local citizens can help verify the impacts of this
phenomenon on the ground and ensure that identified solutions fit the
specific conditions and needs of that location. Furthermore, engaging
local citizens in climate adaptation efforts increases the capacity of
communities to adjust to future changes.
One way to engage local communities is through citizen-based
observation networks. This strategy improves the adaptation process
by allowing for the collection and sharing of crucial environmental data
across communities and regions. These networks encourage members
of the public to submit observations about their local environments,
which can then typically be accessed using a public online platform. By
making these observations public, researchers, decision-makers, and
citizens are able to view and analyze information gathered across space
and time. In the European Union (EU), the term “citizens’ observatory”
is often used to refer to such information networks.
Citizen-based observation is a form of “citizen science,” a more
readily understood term that has grown in popularity in recent years.
According to the US National Oceanic and Atmospheric Administration,
citizen science is “a form of open collaboration where members of the
Using Citizen-Based
Observations to Plan
for Climate Change
The Emerging Leaders in Energy
and Environmental Policy
(ELEEP) Network is a joint
project of the Atlantic Council’s
Millennium Leadership Program
and the Ecologic Institute, an
independent nonprofit think tank
and applied research organization
focused on environmental policy.
The Millennium Leadership
Program provides exceptional
leaders aged thirty-five and under
with unique opportunities to
build a global network, engage
directly with world leaders at
flagship Atlantic Council events,
develop key professional skills,
and collaborate to have a global
impact.
ISSUE BRIEF
SEPTEMBER 2017 SARAH ABDELRAHIM
Atlantic Council
MILLENNIUM LEADERSHIP
PROGRAM
A Look at the United States
and Europe
2 ATLANTIC COUNCIL
ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change
public participate in the scientific process to address
real-world problems in ways that include identifying
research questions, collecting and analyzing data,
interpreting results, making new discoveries,
developing technologies and applications, and solving
complex problems.”1
With advances in technology,
crowdsourcing has become a popular way to share
and pool information for diverse applications—from
spreading new ideas to navigating traffic—in real time.
Citizen-based observation networks build on the
concepts of citizen science and crowdsourcing. With
respect to climate change, citizen-based observation
networks have great potential to help scientists,
decision-makers, and the public understand its varied
impacts across regions. These networks also have the
potential to increase information-sharing across local
and international boundaries to support continued
learning in light of new, and sometimes unexpected,
challenges.
This paper explores the potential of citizen-based
observation networks when used as a tool for sharing
information in ways that can help local communities
prepare for the impacts of climate change. The first
section presents several examples of these networks in
the United States and Europe and the second uses these
examples to explore the networks’ potential benefits
and challenges. The third part describes recent policies
and initiatives that support the increase of these
networks in the United States and Europe. The issue
brief ends with three overarching recommendations
to expand the use of community-based observation
networks in local, regional, national, and international
climate adaptation efforts.
Citizen-Based Observation Networks:
Examples from the United States and
Europe
There are numerous examples of citizen-based
observation networks throughout the United States and
across Europe. These networks help local communities
and decision-makers in all levels of government prepare
for the ramifications of a changing climate.
1	 “Citizen Science and Crowdsourcing,” National Oceanic and
Atmospheric Administration, http://www.noaa.gov/office-educa-
tion/citizen-science-crowdsourcing.
USA National Phenology Network
The USA National Phenology Network (USA-NPN)2
—
whose activities are supported by several federal
government agencies and academic partners3
—
promotes enhanced understanding of plant and
animal phenology4
and highlights changes to these
phenologies over short and long timescales. To achieve
its goals, the USA-NPN maintains Nature’s Notebook,
a network that allows members of the public to submit
observations online or through a mobile application.
Users can track events, such as the autumnal arrival
of migratory birds at a specific site, or the appearance
of sunflowers as they emerge from the soil, produce
leaves, and flower.5
USA-NPN also offers a tool to
visualize and analyze data across seasons, regions, and
species. The network tries to standardize its monitoring
approach and improve the quality of data that it collects
by offering detailed protocols and training materials to
its citizen scientists.
Phenology is a key indicator of climate change
impacts. Changes in phenological life cycles of plants
and animals are already observed anecdotally by
people around the world. Therefore, formalizing these
observations through established networks will allow
for a more systematic method of tracking, comparing,
and analyzing these changes. To this end, the US Global
Change Research Program has proposed a prototype
set of national climate change indicators,6
including
the “start of spring” indicator, which is calculated
and validated using data from USA-NPN and Nature’s
Notebook. The results have the potential to support
many decision-makers and resource managers who
must account for changing environmental variables
such as fire seasons and flora and fauna ranges.7
2	 USA National Phenology Network, https://www.usanpn.org.
3	 “About Us,” USA National Phenology Network, https://www.usan-
pn.org/about.
4	 According to the USA National Phenology Network, phenology
refers to recurring plant and animal life cycle stages. It is also the
study of these recurring life cycle stages, especially their timing
and relationships with weather and climate.
5	 US Geological Survey (USGS) and the USA National Phenology
Network, “The USA National Phenology Network - Taking the
Pulse of Our Planet,” 2011, https://www.usanpn.org/files/shared/
files/USA-NPN_factsheet_March2011.pdf.
6	 “Indicators,” U.S. Global Change Research Program, http://www.
globalchange.gov/explore/indicators.
7	 “Phenology: A National Indicator,” USA National Phenology Net-
work, https://www.usanpn.org/about/national-indicator.
3ATLANTIC COUNCIL
ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change
iNaturalist
iNaturalist is a global network that allows citizen
scientists to submit observations of biodiversity, either
online or through a mobile app. iNaturalist also allows
experts to crowdsource identifications of observed
organisms. The quality of an observation is “graded”
based on its levels of verification. A submitted
observation is classified as “research-grade” when it
includes coordinates, a photo, and a date, and when the
community agrees on the identification of the species
that has been observed.8
iNaturalist also allows users
to create “projects,” or iNaturalist sub-communities,
in order to track more specific types of information.
Several existing projects, for example, are aimed at
improving global understanding of coral reefs, and
how they might be impacted by climate change.
Developed at the University of California, Berkeley,
in 2008, iNaturalist was acquired by the California
8	 “Help,” iNaturalist, http://www.inaturalist.org/pages/help.
Academy of Sciences in 2014.9
The network shares its
data with a number of other platforms. For example,
Biodiversity Information Serving Our Nation (BISON)10
builds on research-grade iNaturalist data and a range
of other sources (e.g., monitoring programs, peer-
reviewed literature) to share millions of plant and
animal species’ observation records publicly.11
BISON,
maintained by the US Geological Survey, is a useful tool
for visualizing species’ occurrences and distribution.
Moreover, it can be used to analyze how species’ ranges
and population sizes are shifting with a changing
climate. Users can search for species within a specific
geographical area (e.g., state, county, customized
location) to see how occurrence is changing over time.
The range of data offered by BISON is enhanced by the
addition of iNaturalist citizen science data.
9	 “About Us,” iNaturalist, https://www.inaturalist.org/pages/about.
10	 “Home,” USGS, Biodiversity Information Serving Our Nation (BI-
SON), https://bison.usgs.gov.
11	 “Data Providers,” USGS, BISON, https://bison.usgs.gov/#providers.
La Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), based in Mexico, is an organizational
node of the iNaturalist Network. CONABIO operates the NaturaLista website, which connects to the iNaturalist software.
Photo credit: www.naturalista.mx/.
4 ATLANTIC COUNCIL
ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change
iNaturalist is a global community that enables
information-sharing across national boundaries, and
consists of organizational “nodes” that operate in
the United States, Canada, Mexico, New Zealand,
and Colombia.12
Collectively, these organizational
nodes are known as the iNaturalist Network, and they
manage nationally tailored websites (e.g., inaturalist.ca
or naturalista.conabio.gob.mx) that connect to the
iNaturalist software. The iNaturalist Network allows
organizations to more effectively engage the public by
tailoring the software’s features and interface to their
respective national contexts.
WeSenseIt Citizen Water Observatories
In 2012, as part of the European Union’s Seventh
Framework Programme for Research and Technological
Development (2007-2013), five citizens’ observatory
projects received funding under the topic “developing
community-based environmental systems using
innovative and novel earth observations applications.”13
One of these projects, WeSenseIt Citizen Water
Observatories, began in October 2012 and developed
crowdsourcing applications in different pilot regions.
One of the project’s pilot areas was the densely
populated Delfland region of the Netherlands, home
to 1.4 million people. The applications allow citizens
to submit observations about various aspects of the
water environment (e.g., flooding occurrence, water
quality, and the built infrastructure) in their respective
locations.14
Today, the applications from WeSenseIt help decision-
makers access and visualize a range of information.
For example, the WaterDetective application allows
observers to submit photos of a clogged drain or a
ditch that has overflowed. These types of observations
can serve as quick references for water managers
preparing for extreme weather events. As such events
rise in frequency and intensity, and as climate change
increasingly impacts water quality, tools like those
produced by the WeSenseIt initiative can prove valuable
for ensuring the resilience of water environments and
the communities around them.
12	 “What Is It,” iNaturalist, https://www.inaturalist.org/pages/
what+is+it.
13	 European Commission, FP7 Work Programme 2012: Environ-
ment; European Biodiversity Observation Network, “Citizens’
Observatories: Five EU FP7 Projects Focused on Citizen Science,”
September 23, 2014, http://www.eubon.eu/news/11594_cit-
izens%E2%80%99-observatories-five-eu-fp7-projects-fo-
cused-on-citizen-science-/.
14	 WeSenseIt, http://www.wesenseit.com/.
GROW Observatory
Other citizens’ observatories are emerging or in the
early stages of development throughout Europe. The
EU’s Horizon 2020 research and innovation program
(2014-2018) provided funding to four more citizens’
observatory projects in 2016.15
One of these initiatives,
the GROW Observatory,16
aims to share land, water,
and soil resource information across Europe. By
encouraging the collection of local soil moisture
observations, the GROW project hopes to validate the
soil moisture data provided remotely by satellites. Soil
moisture is an important indicator of extreme climate
events, such as flooding, drought, and heat waves.17
GROW also explores ways to support participants
with monitoring protocols, soil testing kits, and low-
cost sensing technology. As the GROW network
expands, the aim is to establish an active online
community of growers and land managers that share
not only data, but knowledge and advice on best
practices for managing soil and growing food. In
addition to providing important data for dealing with
extreme events, GROW will also establish a network
of people equipped to preserve the quality of land
and soil resources in the face of climate change.18
Soil
quality is an important factor in carbon sequestration
and ensuring the production of high-quality food—
challenges that will grow with climate change.19
LEO Network
The Local Environmental Observer (LEO) Network20
is
a community-based observation network with origins
in Alaska that is poised to expand across the United
States, Mexico, and the circumpolar Arctic.21
In Alaska
15	 “About,” Citizens’ Observatories, http://citizen-obs.eu/about/.
16	 GROW Observatory, http://growobservatory.org/.
17	 Kirien Whan, Jakob Zscheischler, Rene Orth, Mxolisi Shongwe et
al., “Impact of Soil Moisture on Extreme Maximum Temperatures
in Europe,” Weather and Climate Extremes 9, 2015: 57-67.
18	 University of Dundee Centre for Environmental Change and Hu-
man Resilience, The GROW Observatory – An EU-Wide “Citizen
Science” Project, September 5, 2016, https://www.dundee.ac.uk/
cechr/news/2016/articles/the-grow-observatory--an-eu-wide-cit-
izen-science-project.php.
19	 R. Victoria et al., “The Benefits of Soil Carbon,” in UNEP Year Book
2012, United Nations Environment Programme, Nairobi, http://
staging.unep.org/yearbook/2012/pdfs/UYB_2012_CH_2.pdf.
20	 Local Environmental Observer Network, https://www.leonetwork.
org/en/.
21	 “Local Environmental Observer Network (LEO),” Commission
for Environmental Cooperation, http://www.cec.org/our-work/
projects/local-environmental-observer-network-leo; Arctic Con-
taminants Action Program, “Circumpolar Local Environmental
5ATLANTIC COUNCIL
ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change
and the Arctic, temperatures are rising at twice the
global average rate.22
As a result, communities in the
region are already experiencing deep impacts to their
environment and way of life.
The LEO Network engages communities on the front
lines of climate change by collecting information
on anomalous environmental events. For example,
observers can report when sea ice melts earlier than
seasonally normal or when mass numbers of a particular
species die at once, the latter of which can be an early
indicator of disease related to a changing climate.
These observations are important contributions in a
region where data availability is often quite poor. Many
of the communities that contribute to the LEO Network
have a deep connection to the land. Thus, continuous
monitoring of the surrounding environment is crucial
to ensuring the health of these communities.
LEO members can submit observations, with added
commentary, using a mobile application. Attaching
notes allows participants to put their observations into
context, which is particularly important for observers
from indigenous communities. These groups can add
indigenous and/or local knowledge,23
particularly with
respect to their communities’ own experiences and
historical observations. The LEO Network also engages
scientists and other experts, who advise community
members on observations of concern.
The LEO Network, maintained by the Alaska Native
Tribal Health Consortium and supported in part by the
US Environmental Protection Agency, has also been
actively identifying partner organizations in order to
expand. Due to the program’s success in Alaska, the
White House announced in September 2016 that the
program will expand both to the lower forty-eight
US states, as well as across international borders.24
The Commission for Environmental Cooperation, a
Observer Network,” February 23, 2016, https://www.arctic-coun-
cil.org/images/PDF_attachments/CLEO_meeting_docs/2016-02-
23-v3-ACAP-CLEO-one-pager.pdf.
22	 J. Overland et al., “Surface Air Temperature” in Arctic Report
Card 2016, Arctic Program, http://www.arctic.noaa.gov/Re-
port-Card.
23	 According to the United Nations Educational, Scientific, and Cul-
tural Organization, indigenous and local knowledge refers to the
understandings, skills, and philosophies developed by societies
with long histories of interaction with their natural surroundings.
24	 The White House (archived), “Fact Sheet: The 8th Annual White
House Tribal Nations Conference,” September 26, 2016, https://
obamawhitehouse.archives.gov/the-press-office/2016/09/26/
fact-sheet-8th-annual-white-house-tribal-nations-conference.
trinational organization consisting of the United States,
Canada, and Mexico, has announced its support for
expanding the LEO Network across North America.25
Under the Arctic Council, partners are working
to establish a foundation for a Circumpolar Local
Environmental Observer Network (CLEO).26
A CLEO
would cover both the North American and European
Arctic and provide a mechanism for communities to
share observations about their changing environments
across international borders. Sharing information and
experiences is an important pillar of a region-wide
Arctic approach to adaptation and resilience. Given
that communities in the same region often face similar
challenges, a CLEO could help establish stronger
networks and share information across the Arctic.
Benefits and Challenges
Supporting citizen-based observation efforts could
have many benefits for climate change adaptation and
resilience. In remote areas, such as the Arctic, the public
availability of physical and biological data can be sparse,
while the costs and time associated with collecting
these data can be significant. However, planning for
climate change and undertaking adaptation measures
are difficult without proper baseline observations
and consideration of additional trends. Citizen-based
observation efforts can increase the availability of data
in remote areas. Along with indigenous and/or local
knowledge of historical events and trends, projects
such as the LEO Network can provide an opportunity
for community members to integrate individual
observations into the broader context.
Citizen-based observation networks also increase
local engagement and preparedness. Participants in
the networks become invested in the information they
collect and are therefore more likely to understand
environmental trends and plan for the future. Because
effective adaptation requires locally tailored solutions,
it is important to support the capacity of local citizens
to understand and address the changes they observe.
Additionally, citizen-based observation networks
connect people. iNaturalist brings citizen observers
and experts together to discuss observations and
crowdsource species identifications. The GROW
25	 “Local Environmental Observer Network (LEO),” Commission for
Environmental Cooperation.
26	 Arctic Contaminants Action Program, “Circumpolar Local Envi-
ronmental Observer Network.”
6 ATLANTIC COUNCIL
ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change
initiative will eventually result in an EU-wide network
that will share information and best practices for
the conservation of soil quality. The LEO Network
has the potential to connect observers across all of
North America and the circumpolar Arctic. Sharing
information and connecting citizens can spur learning
between regions and lead to innovation.
Finally, citizen-based observation initiatives allow
communities to monitor the effectiveness of adaptation
programs and adjust accordingly. When developing
adaptation plans, communities can consider how
citizen-based observation networks can be used as
part of a monitoring and evaluation plan.
Of course, citizen-based observation networks can also
face a few challenges. While they can be especially
beneficial in remote areas, internet connectivity in
these places can be limited, making it difficult to submit
data points in real time. Additionally, as these networks
expand, approaches become more decentralized,
which could lead to observer bias or variations in data
quality. To alleviate these issues, many networks have
implemented standardized guidelines and provide
training opportunities for observers, both online and
in person. The training encourages a higher level of
data quality and enhances decision-makers’ ability to
compare data across observation points. Furthermore,
organizations such as the Citizen Science Association
are emerging to provide monitoring guidelines and
best practice recommendations across citizen-
based observation initiatives. Despite the challenges
associated with these networks, recent policies suggest
a growing acknowledgment that the advantages
outweigh the potential risks.
Top-Down Support for Participatory
Monitoring
While citizen-based observation networks are often
developed from the bottom up, national and multilateral
organizations have taken note of their potential.
The US federal government has long supported the
development of several citizen-based observation
networks. The benefits of citizen science and
crowdsourcing were more formally recognized by law
in January 2017 through the American Innovation and
Competitiveness Act,27
which granted federal agencies
the explicit authority to use crowdsourcing and citizen
27	 “S.3084—American Innovation and Competitiveness Act of 2017,”
Congress.gov, United States Government, 114th Congress, https://
www.congress.gov/bill/114th-congress/senate-bill/3084.
science. The law acknowledged that these methods
help advance the federal government’s responsibilities,
and recognized the ability of citizen science and
crowdsourcing to increase effective spending, address
societal issues, and engage members of the public.
In addition, the law formalized the position of a US
chief technology officer (CTO). It is too soon to tell
if and how the Donald Trump administration plans to
advance crowdsourcing and citizen science efforts,
but further top-down policies may be influenced by the
appointment of a CTO. A CTO had not been nominated
at the time of publication.
Countries across Europe are adopting programs or
outlining citizen science approaches at the national
level.28
While the EU has not formalized citizen science
policies,29
theEuropeanCommissionhasshownsupport
for the concept through initiatives such as FP7 (2007-
2013) and Horizon 2020, the European Commission’s
research and innovation program. The current 2016-
2017 Work Programme (climate action, environment,
resource efficiency, and raw materials) for Horizon
2020 identifies the coordination of community-based
environmental monitoring initiatives—again referred
to as citizens’ observatories—and promotion of best
practices as priorities.30
It envisions a coordinated
network of environmental monitoring initiatives that
can be integrated with traditional Earth observation
systems and contribute to more informed decision-
making actions by local environmental and emergency
managers. As shown by the expansion of the LEO
Network, many multilateral organizations such as the
Arctic Council and the Commission for Environmental
Cooperation support citizen-based observation
networks.
Outside of government, nonprofit organizations also
support the coordination of citizen-based observations
and citizen science efforts. The Citizen Science
28	 A. Bonn et al., Citizen Science Strategy 2020 for Germany, Bürg-
er Schaffen Wissen, 2016, http://www.buergerschaffenwissen.de/
sites/default/files/assets/dokumente/gewiss_cs_strategy_en-
glisch.pdf.
29	 Muki Haklay, Citizen Science and Policy: A European Perspective,
Woodrow Wilson International Center for Scholars, 2015, https://
www.wilsoncenter.org/sites/default/files/Citizen_Science_Poli-
cy_European_Perspective_Haklay.pdf.
30	 European Commission, Horizon 2020, Work Programme 2016-
2017, Climate Action, Environment, Resource Efficiency and Raw
Materials, April 24, 2017, https://ec.europa.eu/research/partici-
pants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-cli-
mate_en.pdf.
7ATLANTIC COUNCIL
ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change
Association31
isanonprofitorganizationthatcoordinates
citizen science activities, connects practitioners, and
offers guidelines and best practices. Furthermore, the
European Citizen Science Association,32
established
in 2013, coordinates citizen science activities across
the EU in hopes of encouraging and increasing citizen
science efforts, while connecting actors across Europe
that are involved in planning and promoting citizen
science programs.
Recommendations
Citizen-based observation networks are growing in the
United States and Europe and present opportunities
for the development of relevant programs.
Governments at all levels, international organizations,
networking organizations, and even citizen-based
observation networks themselves all have a role to
play in supporting the expansion of these networks.
31	 Citizen Science Association, http://citizenscience.org/.
32	 European Citizen Science Association, https://ecsa.citizen-sci-
ence.net/.
The following overarching recommendations should
be considered to expand the use of citizen-based
observation networks to better plan for and address
climate change impacts.
1.	 Policy makers, planners, and decision-makers
should consider using citizen-based observation
networks as an integral part of local, regional,
and national climate adaptation strategies.
The benefits of participatory monitoring and
its contribution to the climate adaptation and
resilience-building process of local communities
are increasingly recognized. To maximize the
benefits of these methods, policy makers and
planners should consider integrating citizen-
based observation efforts into their adaptation
and resilience strategies. Doing so would prioritize
support for citizen-based observation networks
and ensure their connection to other adaptation
and resilience activities.
The Local Environmental Observer (LEO) Network website includes an interactive mapping tool to view observations by
location. Photo credit: www.leonetwork.org.
8 ATLANTIC COUNCIL
ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change
2.	 Governments at all levels, along with multilateral
organizations, should consider formalizing the use
of citizen science and citizen-based observation
networks through policies. While the decentralized
nature of citizen science may lead to some
hesitation on its formal endorsement from policy
makers, it is important to recognize the potential
benefits and cost savings, especially in the face of
increasing climate change impacts. Formal policies
can further promote citizen science and citizen-
based observations as useful and authoritative
tools for solving problems. These policies should be
considered at the international, regional, national,
and sub-national levels.
3.	 Where feasible, governments, peer-to-peer
learning organizations, and observation
networks themselves should work together to
connect citizen observation networks. As the
use of participatory monitoring efforts grows, it
is important that these efforts are coordinated
to the maximum extent possible. Collaboration
saves resources and raises awareness among
users about the information available through
various networks. There is also potential to
share experiences and observations of local
environmental changes across international
borders. Communities, nations, and regions
of the world will need to be flexible and adapt
their climate adaptation approaches to the
changing conditions and challenges. Using citizen
observation networks is one way to ensure that
people across the world can learn from each other
and better prepare for and adapt to changes
brought about by climate change.
Conclusion
The establishment and use of citizen observation
networks is growing across the United States and
Europe. These networks can and should be used as
tools for understanding climate change impacts and
building local communities’ capacity for adaptation and
resilience to environmental changes. As the benefits
of citizen science are increasingly recognized at the
national and international levels, there is great potential
for linking citizen observation networks to facilitate
knowledge-sharing across both local communities
and international borders. There is no one-size-fits-
all approach to prepare for climate change—rather,
climate change adaptation undoubtedly requires a
wide range of solutions. Citizen observation networks
are critical tools for helping communities and countries
become better prepared for climate change impacts
now and in the future.
Sarah Abdelrahim is a 2016-2017 Emerging Leaders in
Energy and Environmental Policy Fellow.
Atlantic Council Board of Directors
CHAIRMAN
*Jon M. Huntsman, Jr.
CHAIRMAN EMERITUS,
INTERNATIONAL
ADVISORY BOARD
Brent Scowcroft
PRESIDENT AND CEO
*Frederick Kempe
EXECUTIVE VICE CHAIRS
*Adrienne Arsht
*Stephen J. Hadley
VICE CHAIRS
*Robert J. Abernethy
*Richard Edelman
*C. Boyden Gray
*George Lund
*Virginia A. Mulberger
*W. DeVier Pierson
*John Studzinski
TREASURER
*Brian C. McK. Henderson
SECRETARY
*Walter B. Slocombe
DIRECTORS
Stéphane Abrial
Odeh Aburdene
*Peter Ackerman
Timothy D. Adams
Bertrand-Marc Allen
John R. Allen
*Michael Andersson
David D. Aufhauser
*Rafic A. Bizri
Dennis C. Blair
*Thomas L. Blair
Philip M. Breedlove
Reuben E. Brigety II
Myron Brilliant
*Esther Brimmer
R. Nicholas Burns
*Richard R. Burt
Michael Calvey
James E. Cartwright
John E. Chapoton
Ahmed Charai
Melanie Chen
Michael Chertoff
George Chopivsky
Wesley K. Clark
David W. Craig
*Ralph D. Crosby, Jr.
Nelson W. Cunningham
Ivo H. Daalder
Ankit N. Desai
*Paula J. Dobriansky
Christopher J. Dodd
Conrado Dornier
Thomas J. Egan, Jr.
*Stuart E. Eizenstat
Thomas R. Eldridge
Julie Finley
Lawrence P. Fisher, II
*Alan H. Fleischmann
*Ronald M. Freeman
Laurie S. Fulton
Courtney Geduldig
*Robert S. Gelbard
Gianni Di Giovanni T
homas H. Glocer
Sherri W. Goodman
Ian Hague
Amir A. Handjani
John D. Harris, II
Frank Haun
Michael V. Hayden
Annette Heuser
Ed Holland
*Karl V. Hopkins
Robert D. Hormats
Miroslav Hornak
*Mary L. Howell
Wolfgang F. Ischinger
Deborah Lee James
Reuben Jeffery, III
Joia M. Johnson
*James L. Jones, Jr.
Stephen R. Kappes
*Maria Pica Karp
*Zalmay M. Khalilzad
Robert M. Kimmitt
Henry A. Kissinger
Franklin D. Kramer
Richard L. Lawson
*Jan M. Lodal
*Jane Holl Lute
William J. Lynn
Wendy W. Makins
Zaza Mamulaishvili
Mian M. Mansha
Gerardo Mato
William E. Mayer
T. Allan McArtor
John M. McHugh
Eric D.K. Melby
Franklin C. Miller
James N. Miller
Judith A. Miller
*Alexander V. Mirtchev
Susan Molinari
Michael J. Morell
Richard Morningstar
Georgette Mosbacher
Thomas R. Nides
Franco Nuschese
Joseph S. Nye
Hilda Ochoa-Brillem-
bourg
Sean C. O’Keefe
Ahmet M. Oren
Sally A. Painter
*Ana I. Palacio
Carlos Pascual
Alan Pellegrini
David H. Petraeus
Thomas R. Pickering
Daniel B. Poneman
Arnold L. Punaro
Robert Rangel
Thomas J. Ridge
Charles O. Rossotti
Robert O. Rowland
Harry Sachinis
Rajiv Shah
Stephen Shapiro
Kris Singh
James G. Stavridis
Richard J.A. Steele
Paula Stern
Robert J. Stevens
Robert L. Stout, Jr.
*Ellen O. Tauscher
Nathan D. Tibbits
Frances M. Townsend
Clyde C. Tuggle
Paul Twomey
Melanne Verveer
Charles F. Wald
Michael F. Walsh
Maciej Witucki
Neal S. Wolin
Mary C. Yates
Dov S. Zakheim
HONORARY DIRECTORS
David C. Acheson
Madeleine K. Albright
James A. Baker, III
Harold Brown
Frank C. Carlucci, III
Ashton B. Carter
Robert M. Gates
Michael G. Mullen
Leon E. Panetta
William J. Perry
Colin L. Powell
Condoleezza Rice
Edward L. Rowny
George P. Shultz
Horst Teltschik
John W. Warner
William H. Webster
*Executive Committee Members
List as of September 18, 2017
The Atlantic Council is a nonpartisan organization that
­promotes constructive US leadership and engagement
in ­international ­affairs based on the central role of
the Atlantic community in ­meeting today’s global
­challenges.
© 2017 The Atlantic Council of the United States. All
rights reserved. No part of this publication may be
reproduced or transmitted in any form or by any means
without permission in writing from the Atlantic Council,
except in the case of brief quotations in news articles,
critical articles, or reviews. Please direct inquiries to:
Atlantic Council
1030 15th Street, NW, 12th Floor,
Washington, DC 20005
(202) 463-7226, www.AtlanticCouncil.org

Contenu connexe

Tendances

Final - It's Just a Little Bit of History Repeating
Final - It's Just a Little Bit of History RepeatingFinal - It's Just a Little Bit of History Repeating
Final - It's Just a Little Bit of History RepeatingKatherine McKee
 
NSF Climate Research Investment
NSF Climate Research InvestmentNSF Climate Research Investment
NSF Climate Research InvestmentPaul Filmer
 
Climate change and health_ NAP Expo
Climate change and health_ NAP ExpoClimate change and health_ NAP Expo
Climate change and health_ NAP ExpoNAP Events
 
Assessing and mapping ecosystem services in a small islands state
Assessing and mapping ecosystem services in a small islands stateAssessing and mapping ecosystem services in a small islands state
Assessing and mapping ecosystem services in a small islands stateMario Balzan
 
FY 2013 R&D REPORT January 6 2014 - Department of Interior
FY 2013 R&D REPORT January 6 2014 - Department of InteriorFY 2013 R&D REPORT January 6 2014 - Department of Interior
FY 2013 R&D REPORT January 6 2014 - Department of InteriorLyle Birkey
 
UN Water and its Role in Global Water Governance
UN Water and its Role in Global Water GovernanceUN Water and its Role in Global Water Governance
UN Water and its Role in Global Water GovernanceDr Lendy Spires
 
Multidisciplinary nature of enviroment
Multidisciplinary nature of enviromentMultidisciplinary nature of enviroment
Multidisciplinary nature of enviromentShaikh Sabina Meraj
 
SRM Policy Brief
SRM Policy BriefSRM Policy Brief
SRM Policy BriefLuke Dotto
 
Reconsidering public attitudes and public acceptance of renewable energy tech...
Reconsidering public attitudes and public acceptance of renewable energy tech...Reconsidering public attitudes and public acceptance of renewable energy tech...
Reconsidering public attitudes and public acceptance of renewable energy tech...Angu Ramesh
 
CESAB-FREE-sfe2018
CESAB-FREE-sfe2018CESAB-FREE-sfe2018
CESAB-FREE-sfe2018CESAB-FRB
 
AnaEmlingermasccc2014
AnaEmlingermasccc2014AnaEmlingermasccc2014
AnaEmlingermasccc2014Jen Boudrie
 
The land grant university system and UMN Extension forestry
The land grant university system and UMN Extension forestryThe land grant university system and UMN Extension forestry
The land grant university system and UMN Extension forestryEli Sagor
 
Mc neeleynaf april32013_4.1.13
Mc neeleynaf april32013_4.1.13Mc neeleynaf april32013_4.1.13
Mc neeleynaf april32013_4.1.13NC_CSC
 
Remote sensing-derived national land cover land use maps: a comparison for Ma...
Remote sensing-derived national land cover land use maps: a comparison for Ma...Remote sensing-derived national land cover land use maps: a comparison for Ma...
Remote sensing-derived national land cover land use maps: a comparison for Ma...rsmahabir
 
International Conference on Maritime Spatial Planning, DG MARE, Azores, Portu...
International Conference on Maritime Spatial Planning, DG MARE, Azores, Portu...International Conference on Maritime Spatial Planning, DG MARE, Azores, Portu...
International Conference on Maritime Spatial Planning, DG MARE, Azores, Portu...Eleni Hatziyanni
 
Climate Literacy May 20 2009 V2 2
Climate Literacy May 20 2009 V2 2Climate Literacy May 20 2009 V2 2
Climate Literacy May 20 2009 V2 2Frank Niepold
 
Supporting marine management from the bottom up at the 2nd Baltic Maritime Sp...
Supporting marine management from the bottom up at the 2nd Baltic Maritime Sp...Supporting marine management from the bottom up at the 2nd Baltic Maritime Sp...
Supporting marine management from the bottom up at the 2nd Baltic Maritime Sp...Pan Baltic Scope / Baltic SCOPE
 

Tendances (20)

Final - It's Just a Little Bit of History Repeating
Final - It's Just a Little Bit of History RepeatingFinal - It's Just a Little Bit of History Repeating
Final - It's Just a Little Bit of History Repeating
 
Woods, Water, and Wildlife: Designing Management Actions for Changing Condit...
Woods, Water, and Wildlife: Designing Management Actions for Changing Condit...Woods, Water, and Wildlife: Designing Management Actions for Changing Condit...
Woods, Water, and Wildlife: Designing Management Actions for Changing Condit...
 
NSF Climate Research Investment
NSF Climate Research InvestmentNSF Climate Research Investment
NSF Climate Research Investment
 
Climate change and health_ NAP Expo
Climate change and health_ NAP ExpoClimate change and health_ NAP Expo
Climate change and health_ NAP Expo
 
Assessing and mapping ecosystem services in a small islands state
Assessing and mapping ecosystem services in a small islands stateAssessing and mapping ecosystem services in a small islands state
Assessing and mapping ecosystem services in a small islands state
 
Workshop 1 - Jim Angel
Workshop 1 - Jim AngelWorkshop 1 - Jim Angel
Workshop 1 - Jim Angel
 
FY 2013 R&D REPORT January 6 2014 - Department of Interior
FY 2013 R&D REPORT January 6 2014 - Department of InteriorFY 2013 R&D REPORT January 6 2014 - Department of Interior
FY 2013 R&D REPORT January 6 2014 - Department of Interior
 
UN Water and its Role in Global Water Governance
UN Water and its Role in Global Water GovernanceUN Water and its Role in Global Water Governance
UN Water and its Role in Global Water Governance
 
Flyer 1
Flyer 1Flyer 1
Flyer 1
 
Multidisciplinary nature of enviroment
Multidisciplinary nature of enviromentMultidisciplinary nature of enviroment
Multidisciplinary nature of enviroment
 
SRM Policy Brief
SRM Policy BriefSRM Policy Brief
SRM Policy Brief
 
Reconsidering public attitudes and public acceptance of renewable energy tech...
Reconsidering public attitudes and public acceptance of renewable energy tech...Reconsidering public attitudes and public acceptance of renewable energy tech...
Reconsidering public attitudes and public acceptance of renewable energy tech...
 
CESAB-FREE-sfe2018
CESAB-FREE-sfe2018CESAB-FREE-sfe2018
CESAB-FREE-sfe2018
 
AnaEmlingermasccc2014
AnaEmlingermasccc2014AnaEmlingermasccc2014
AnaEmlingermasccc2014
 
The land grant university system and UMN Extension forestry
The land grant university system and UMN Extension forestryThe land grant university system and UMN Extension forestry
The land grant university system and UMN Extension forestry
 
Mc neeleynaf april32013_4.1.13
Mc neeleynaf april32013_4.1.13Mc neeleynaf april32013_4.1.13
Mc neeleynaf april32013_4.1.13
 
Remote sensing-derived national land cover land use maps: a comparison for Ma...
Remote sensing-derived national land cover land use maps: a comparison for Ma...Remote sensing-derived national land cover land use maps: a comparison for Ma...
Remote sensing-derived national land cover land use maps: a comparison for Ma...
 
International Conference on Maritime Spatial Planning, DG MARE, Azores, Portu...
International Conference on Maritime Spatial Planning, DG MARE, Azores, Portu...International Conference on Maritime Spatial Planning, DG MARE, Azores, Portu...
International Conference on Maritime Spatial Planning, DG MARE, Azores, Portu...
 
Climate Literacy May 20 2009 V2 2
Climate Literacy May 20 2009 V2 2Climate Literacy May 20 2009 V2 2
Climate Literacy May 20 2009 V2 2
 
Supporting marine management from the bottom up at the 2nd Baltic Maritime Sp...
Supporting marine management from the bottom up at the 2nd Baltic Maritime Sp...Supporting marine management from the bottom up at the 2nd Baltic Maritime Sp...
Supporting marine management from the bottom up at the 2nd Baltic Maritime Sp...
 

Similaire à Abdelrahim, s. (2017). using citizen based observations to plan..

Climate literacy highres_english
Climate literacy highres_englishClimate literacy highres_english
Climate literacy highres_englishAlmudena Alegría
 
Resource Guide for Advanced Learning on the Scientific Fundamentals of Climat...
Resource Guide for Advanced Learning on the Scientific Fundamentals of Climat...Resource Guide for Advanced Learning on the Scientific Fundamentals of Climat...
Resource Guide for Advanced Learning on the Scientific Fundamentals of Climat...UN CC:Learn
 
SIo 209-2013 Knowledge Action Networks, 2010
SIo 209-2013 Knowledge Action Networks, 2010SIo 209-2013 Knowledge Action Networks, 2010
SIo 209-2013 Knowledge Action Networks, 2010Charlie Kennel
 
National Academy of Science - Restructuring US Climate Change research
National Academy of Science - Restructuring US Climate Change researchNational Academy of Science - Restructuring US Climate Change research
National Academy of Science - Restructuring US Climate Change researchSteve Wittrig
 
Next Generation Citizen Science
Next Generation Citizen ScienceNext Generation Citizen Science
Next Generation Citizen ScienceLea Shanley
 
Planet Under Pressure 2012: State of the Planet Declaration
Planet Under Pressure 2012: State of the Planet DeclarationPlanet Under Pressure 2012: State of the Planet Declaration
Planet Under Pressure 2012: State of the Planet Declarationuncsd2012
 
Introduction to Environmental Science, Foodtech
Introduction to Environmental Science, FoodtechIntroduction to Environmental Science, Foodtech
Introduction to Environmental Science, FoodtechAngelTiangson
 
PROVIA-led research prioritization for vulnerability, impacts and adaptation
PROVIA-led research prioritization for vulnerability, impacts and adaptationPROVIA-led research prioritization for vulnerability, impacts and adaptation
PROVIA-led research prioritization for vulnerability, impacts and adaptationPROVIA
 
FY 2013 R&D REPORT January 6 2014 - US Global Change Research Program
FY 2013 R&D REPORT January 6 2014 - US Global Change Research ProgramFY 2013 R&D REPORT January 6 2014 - US Global Change Research Program
FY 2013 R&D REPORT January 6 2014 - US Global Change Research ProgramLyle Birkey
 
Nairobi Informal Settlements_CC_Final Report_22Apr2016 (1)
Nairobi Informal Settlements_CC_Final Report_22Apr2016 (1)Nairobi Informal Settlements_CC_Final Report_22Apr2016 (1)
Nairobi Informal Settlements_CC_Final Report_22Apr2016 (1)Sharon Barasa
 
@@Cam Anthro; CA31_1_11_Kennel
@@Cam Anthro; CA31_1_11_Kennel@@Cam Anthro; CA31_1_11_Kennel
@@Cam Anthro; CA31_1_11_KennelCharlie Kennel
 
FY 2013 R&D REPORT January 6 2014 - National Science Foundation
FY 2013 R&D REPORT January 6 2014 - National Science FoundationFY 2013 R&D REPORT January 6 2014 - National Science Foundation
FY 2013 R&D REPORT January 6 2014 - National Science FoundationLyle Birkey
 
US Globalchange Research Program
US Globalchange Research ProgramUS Globalchange Research Program
US Globalchange Research ProgramAaron Smith
 
Petes 2014 science integration into us climate and ocean policy discussion
Petes 2014 science integration into us climate and ocean policy discussionPetes 2014 science integration into us climate and ocean policy discussion
Petes 2014 science integration into us climate and ocean policy discussionLoretta Roberson
 
Community level adaptation_to_climate_change_the_p
Community level adaptation_to_climate_change_the_pCommunity level adaptation_to_climate_change_the_p
Community level adaptation_to_climate_change_the_pSirPatrick Mark Nonato
 
NASA Advancing Climate Strategy 2023
 NASA Advancing Climate Strategy 2023 NASA Advancing Climate Strategy 2023
NASA Advancing Climate Strategy 2023Dr. Pankaj Dhussa
 
Unit 10 water and sanitation
Unit 10 water and sanitationUnit 10 water and sanitation
Unit 10 water and sanitationben wesley
 

Similaire à Abdelrahim, s. (2017). using citizen based observations to plan.. (20)

Climate literacy highres_english
Climate literacy highres_englishClimate literacy highres_english
Climate literacy highres_english
 
Resource Guide for Advanced Learning on the Scientific Fundamentals of Climat...
Resource Guide for Advanced Learning on the Scientific Fundamentals of Climat...Resource Guide for Advanced Learning on the Scientific Fundamentals of Climat...
Resource Guide for Advanced Learning on the Scientific Fundamentals of Climat...
 
SIo 209-2013 Knowledge Action Networks, 2010
SIo 209-2013 Knowledge Action Networks, 2010SIo 209-2013 Knowledge Action Networks, 2010
SIo 209-2013 Knowledge Action Networks, 2010
 
National Academy of Science - Restructuring US Climate Change research
National Academy of Science - Restructuring US Climate Change researchNational Academy of Science - Restructuring US Climate Change research
National Academy of Science - Restructuring US Climate Change research
 
Next Generation Citizen Science
Next Generation Citizen ScienceNext Generation Citizen Science
Next Generation Citizen Science
 
Planet Under Pressure 2012: State of the Planet Declaration
Planet Under Pressure 2012: State of the Planet DeclarationPlanet Under Pressure 2012: State of the Planet Declaration
Planet Under Pressure 2012: State of the Planet Declaration
 
Introduction to Environmental Science, Foodtech
Introduction to Environmental Science, FoodtechIntroduction to Environmental Science, Foodtech
Introduction to Environmental Science, Foodtech
 
PROVIA-led research prioritization for vulnerability, impacts and adaptation
PROVIA-led research prioritization for vulnerability, impacts and adaptationPROVIA-led research prioritization for vulnerability, impacts and adaptation
PROVIA-led research prioritization for vulnerability, impacts and adaptation
 
FY 2013 R&D REPORT January 6 2014 - US Global Change Research Program
FY 2013 R&D REPORT January 6 2014 - US Global Change Research ProgramFY 2013 R&D REPORT January 6 2014 - US Global Change Research Program
FY 2013 R&D REPORT January 6 2014 - US Global Change Research Program
 
Nairobi Informal Settlements_CC_Final Report_22Apr2016 (1)
Nairobi Informal Settlements_CC_Final Report_22Apr2016 (1)Nairobi Informal Settlements_CC_Final Report_22Apr2016 (1)
Nairobi Informal Settlements_CC_Final Report_22Apr2016 (1)
 
Planetary Health Event Summary
Planetary Health Event SummaryPlanetary Health Event Summary
Planetary Health Event Summary
 
modelling_workshop-final_report
modelling_workshop-final_reportmodelling_workshop-final_report
modelling_workshop-final_report
 
@@Cam Anthro; CA31_1_11_Kennel
@@Cam Anthro; CA31_1_11_Kennel@@Cam Anthro; CA31_1_11_Kennel
@@Cam Anthro; CA31_1_11_Kennel
 
FY 2013 R&D REPORT January 6 2014 - National Science Foundation
FY 2013 R&D REPORT January 6 2014 - National Science FoundationFY 2013 R&D REPORT January 6 2014 - National Science Foundation
FY 2013 R&D REPORT January 6 2014 - National Science Foundation
 
US Globalchange Research Program
US Globalchange Research ProgramUS Globalchange Research Program
US Globalchange Research Program
 
Civil Engineering PhD
Civil Engineering PhDCivil Engineering PhD
Civil Engineering PhD
 
Petes 2014 science integration into us climate and ocean policy discussion
Petes 2014 science integration into us climate and ocean policy discussionPetes 2014 science integration into us climate and ocean policy discussion
Petes 2014 science integration into us climate and ocean policy discussion
 
Community level adaptation_to_climate_change_the_p
Community level adaptation_to_climate_change_the_pCommunity level adaptation_to_climate_change_the_p
Community level adaptation_to_climate_change_the_p
 
NASA Advancing Climate Strategy 2023
 NASA Advancing Climate Strategy 2023 NASA Advancing Climate Strategy 2023
NASA Advancing Climate Strategy 2023
 
Unit 10 water and sanitation
Unit 10 water and sanitationUnit 10 water and sanitation
Unit 10 water and sanitation
 

Dernier

Your Compost Is Not Compostable -- Tips on What Best Rots
Your Compost Is Not Compostable -- Tips on What Best RotsYour Compost Is Not Compostable -- Tips on What Best Rots
Your Compost Is Not Compostable -- Tips on What Best RotsDeidre Pike
 
Winter Springs Sediment Removal: A Major Step Forward
Winter Springs Sediment Removal: A Major Step ForwardWinter Springs Sediment Removal: A Major Step Forward
Winter Springs Sediment Removal: A Major Step ForwardVictoriaColangelo
 
CCXG global forum, April 2024, Mia Ryan
CCXG global forum, April 2024,  Mia RyanCCXG global forum, April 2024,  Mia Ryan
CCXG global forum, April 2024, Mia RyanOECD Environment
 
Tech-Session-5c-Applying-Equator-Principles.pptx
Tech-Session-5c-Applying-Equator-Principles.pptxTech-Session-5c-Applying-Equator-Principles.pptx
Tech-Session-5c-Applying-Equator-Principles.pptxJulieDash5
 
CCXG global forum, April 2024, MJ Mace
CCXG global forum, April 2024,   MJ MaceCCXG global forum, April 2024,   MJ Mace
CCXG global forum, April 2024, MJ MaceOECD Environment
 
Issues regarding the provision of the Convention. Introduction to the Text an...
Issues regarding the provision of the Convention. Introduction to the Text an...Issues regarding the provision of the Convention. Introduction to the Text an...
Issues regarding the provision of the Convention. Introduction to the Text an...pensoftservices
 
Little Green Ranger ESG Sustainability Report
Little Green Ranger ESG Sustainability ReportLittle Green Ranger ESG Sustainability Report
Little Green Ranger ESG Sustainability ReportKennethOng48
 
Insights regarding EU Coordination. Hendrik Segers.. The main challenges of C...
Insights regarding EU Coordination. Hendrik Segers.. The main challenges of C...Insights regarding EU Coordination. Hendrik Segers.. The main challenges of C...
Insights regarding EU Coordination. Hendrik Segers.. The main challenges of C...pensoftservices
 
Biodiversity in CEE countries CBD challenges and opportunities for implement...
Biodiversity in CEE countries CBD challenges and opportunities for implement...Biodiversity in CEE countries CBD challenges and opportunities for implement...
Biodiversity in CEE countries CBD challenges and opportunities for implement...pensoftservices
 
Discussing how the scientific mechanisms of the CBD work. CBD mechanisms, pro...
Discussing how the scientific mechanisms of the CBD work. CBD mechanisms, pro...Discussing how the scientific mechanisms of the CBD work. CBD mechanisms, pro...
Discussing how the scientific mechanisms of the CBD work. CBD mechanisms, pro...pensoftservices
 
CCXG global forum, April 2024, Delio Rincon
CCXG global forum, April 2024,  Delio RinconCCXG global forum, April 2024,  Delio Rincon
CCXG global forum, April 2024, Delio RinconOECD Environment
 
Get inspired by SYMBA Project: promoting Industrial Symbiosis
Get inspired by SYMBA Project: promoting Industrial SymbiosisGet inspired by SYMBA Project: promoting Industrial Symbiosis
Get inspired by SYMBA Project: promoting Industrial Symbiosissymbaprojecteu
 
CCXG global forum, April 2024, Geert Fremout
CCXG global forum, April 2024,  Geert FremoutCCXG global forum, April 2024,  Geert Fremout
CCXG global forum, April 2024, Geert FremoutOECD Environment
 
CCXG global forum, April 2024, Chiara Falduto
CCXG global forum, April 2024, Chiara FaldutoCCXG global forum, April 2024, Chiara Falduto
CCXG global forum, April 2024, Chiara FaldutoOECD Environment
 
The Entropy Law and the Economic Process
The Entropy Law and the Economic ProcessThe Entropy Law and the Economic Process
The Entropy Law and the Economic ProcessJoão Soares
 
The KM-GBF monitoring framework –status & key messages. Joachim Töpper and Ha...
The KM-GBF monitoring framework –status & key messages. Joachim Töpper and Ha...The KM-GBF monitoring framework –status & key messages. Joachim Töpper and Ha...
The KM-GBF monitoring framework –status & key messages. Joachim Töpper and Ha...pensoftservices
 
Poly-_and_perfluoroalkyl_substances_-sources_pathways_and_environmental_data_...
Poly-_and_perfluoroalkyl_substances_-sources_pathways_and_environmental_data_...Poly-_and_perfluoroalkyl_substances_-sources_pathways_and_environmental_data_...
Poly-_and_perfluoroalkyl_substances_-sources_pathways_and_environmental_data_...Eric Liu
 
Biodiversity and Health. Prof. Richard Kock.
Biodiversity and Health. Prof. Richard Kock.Biodiversity and Health. Prof. Richard Kock.
Biodiversity and Health. Prof. Richard Kock.pensoftservices
 
Planning and Designing Green buildings-.issues, options and strategies
Planning and Designing Green buildings-.issues, options and strategiesPlanning and Designing Green buildings-.issues, options and strategies
Planning and Designing Green buildings-.issues, options and strategiesJIT KUMAR GUPTA
 

Dernier (20)

Your Compost Is Not Compostable -- Tips on What Best Rots
Your Compost Is Not Compostable -- Tips on What Best RotsYour Compost Is Not Compostable -- Tips on What Best Rots
Your Compost Is Not Compostable -- Tips on What Best Rots
 
Winter Springs Sediment Removal: A Major Step Forward
Winter Springs Sediment Removal: A Major Step ForwardWinter Springs Sediment Removal: A Major Step Forward
Winter Springs Sediment Removal: A Major Step Forward
 
CCXG global forum, April 2024, Mia Ryan
CCXG global forum, April 2024,  Mia RyanCCXG global forum, April 2024,  Mia Ryan
CCXG global forum, April 2024, Mia Ryan
 
Tech-Session-5c-Applying-Equator-Principles.pptx
Tech-Session-5c-Applying-Equator-Principles.pptxTech-Session-5c-Applying-Equator-Principles.pptx
Tech-Session-5c-Applying-Equator-Principles.pptx
 
CCXG global forum, April 2024, MJ Mace
CCXG global forum, April 2024,   MJ MaceCCXG global forum, April 2024,   MJ Mace
CCXG global forum, April 2024, MJ Mace
 
Issues regarding the provision of the Convention. Introduction to the Text an...
Issues regarding the provision of the Convention. Introduction to the Text an...Issues regarding the provision of the Convention. Introduction to the Text an...
Issues regarding the provision of the Convention. Introduction to the Text an...
 
Little Green Ranger ESG Sustainability Report
Little Green Ranger ESG Sustainability ReportLittle Green Ranger ESG Sustainability Report
Little Green Ranger ESG Sustainability Report
 
Insights regarding EU Coordination. Hendrik Segers.. The main challenges of C...
Insights regarding EU Coordination. Hendrik Segers.. The main challenges of C...Insights regarding EU Coordination. Hendrik Segers.. The main challenges of C...
Insights regarding EU Coordination. Hendrik Segers.. The main challenges of C...
 
Biodiversity in CEE countries CBD challenges and opportunities for implement...
Biodiversity in CEE countries CBD challenges and opportunities for implement...Biodiversity in CEE countries CBD challenges and opportunities for implement...
Biodiversity in CEE countries CBD challenges and opportunities for implement...
 
Discussing how the scientific mechanisms of the CBD work. CBD mechanisms, pro...
Discussing how the scientific mechanisms of the CBD work. CBD mechanisms, pro...Discussing how the scientific mechanisms of the CBD work. CBD mechanisms, pro...
Discussing how the scientific mechanisms of the CBD work. CBD mechanisms, pro...
 
CCXG global forum, April 2024, Delio Rincon
CCXG global forum, April 2024,  Delio RinconCCXG global forum, April 2024,  Delio Rincon
CCXG global forum, April 2024, Delio Rincon
 
Get inspired by SYMBA Project: promoting Industrial Symbiosis
Get inspired by SYMBA Project: promoting Industrial SymbiosisGet inspired by SYMBA Project: promoting Industrial Symbiosis
Get inspired by SYMBA Project: promoting Industrial Symbiosis
 
CCXG global forum, April 2024, Geert Fremout
CCXG global forum, April 2024,  Geert FremoutCCXG global forum, April 2024,  Geert Fremout
CCXG global forum, April 2024, Geert Fremout
 
CCXG global forum, April 2024, Chiara Falduto
CCXG global forum, April 2024, Chiara FaldutoCCXG global forum, April 2024, Chiara Falduto
CCXG global forum, April 2024, Chiara Falduto
 
The Entropy Law and the Economic Process
The Entropy Law and the Economic ProcessThe Entropy Law and the Economic Process
The Entropy Law and the Economic Process
 
Biopesticide. pptx.
Biopesticide. pptx.Biopesticide. pptx.
Biopesticide. pptx.
 
The KM-GBF monitoring framework –status & key messages. Joachim Töpper and Ha...
The KM-GBF monitoring framework –status & key messages. Joachim Töpper and Ha...The KM-GBF monitoring framework –status & key messages. Joachim Töpper and Ha...
The KM-GBF monitoring framework –status & key messages. Joachim Töpper and Ha...
 
Poly-_and_perfluoroalkyl_substances_-sources_pathways_and_environmental_data_...
Poly-_and_perfluoroalkyl_substances_-sources_pathways_and_environmental_data_...Poly-_and_perfluoroalkyl_substances_-sources_pathways_and_environmental_data_...
Poly-_and_perfluoroalkyl_substances_-sources_pathways_and_environmental_data_...
 
Biodiversity and Health. Prof. Richard Kock.
Biodiversity and Health. Prof. Richard Kock.Biodiversity and Health. Prof. Richard Kock.
Biodiversity and Health. Prof. Richard Kock.
 
Planning and Designing Green buildings-.issues, options and strategies
Planning and Designing Green buildings-.issues, options and strategiesPlanning and Designing Green buildings-.issues, options and strategies
Planning and Designing Green buildings-.issues, options and strategies
 

Abdelrahim, s. (2017). using citizen based observations to plan..

  • 1. I t is well documented that climate change is already affecting regions across the globe. Even if the global community can successfully limit greenhouse gas emissions, the impacts of climate change will still last decades into the future. In addition to implementing mitigation efforts, many communities are already planning for climate change and adopting measures to adapt to projected scenarios and prepare for potential surprises. While national governments and international organizations have a major role to play in supporting climate adaptation efforts at all levels of governance, these efforts ultimately should be tailored to the local level, as the type and magnitude of climate change impacts vary greatly across regions. To prepare for climate change at the local level, it is important to engage local citizens. Input from local citizens can help verify the impacts of this phenomenon on the ground and ensure that identified solutions fit the specific conditions and needs of that location. Furthermore, engaging local citizens in climate adaptation efforts increases the capacity of communities to adjust to future changes. One way to engage local communities is through citizen-based observation networks. This strategy improves the adaptation process by allowing for the collection and sharing of crucial environmental data across communities and regions. These networks encourage members of the public to submit observations about their local environments, which can then typically be accessed using a public online platform. By making these observations public, researchers, decision-makers, and citizens are able to view and analyze information gathered across space and time. In the European Union (EU), the term “citizens’ observatory” is often used to refer to such information networks. Citizen-based observation is a form of “citizen science,” a more readily understood term that has grown in popularity in recent years. According to the US National Oceanic and Atmospheric Administration, citizen science is “a form of open collaboration where members of the Using Citizen-Based Observations to Plan for Climate Change The Emerging Leaders in Energy and Environmental Policy (ELEEP) Network is a joint project of the Atlantic Council’s Millennium Leadership Program and the Ecologic Institute, an independent nonprofit think tank and applied research organization focused on environmental policy. The Millennium Leadership Program provides exceptional leaders aged thirty-five and under with unique opportunities to build a global network, engage directly with world leaders at flagship Atlantic Council events, develop key professional skills, and collaborate to have a global impact. ISSUE BRIEF SEPTEMBER 2017 SARAH ABDELRAHIM Atlantic Council MILLENNIUM LEADERSHIP PROGRAM A Look at the United States and Europe
  • 2. 2 ATLANTIC COUNCIL ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change public participate in the scientific process to address real-world problems in ways that include identifying research questions, collecting and analyzing data, interpreting results, making new discoveries, developing technologies and applications, and solving complex problems.”1 With advances in technology, crowdsourcing has become a popular way to share and pool information for diverse applications—from spreading new ideas to navigating traffic—in real time. Citizen-based observation networks build on the concepts of citizen science and crowdsourcing. With respect to climate change, citizen-based observation networks have great potential to help scientists, decision-makers, and the public understand its varied impacts across regions. These networks also have the potential to increase information-sharing across local and international boundaries to support continued learning in light of new, and sometimes unexpected, challenges. This paper explores the potential of citizen-based observation networks when used as a tool for sharing information in ways that can help local communities prepare for the impacts of climate change. The first section presents several examples of these networks in the United States and Europe and the second uses these examples to explore the networks’ potential benefits and challenges. The third part describes recent policies and initiatives that support the increase of these networks in the United States and Europe. The issue brief ends with three overarching recommendations to expand the use of community-based observation networks in local, regional, national, and international climate adaptation efforts. Citizen-Based Observation Networks: Examples from the United States and Europe There are numerous examples of citizen-based observation networks throughout the United States and across Europe. These networks help local communities and decision-makers in all levels of government prepare for the ramifications of a changing climate. 1 “Citizen Science and Crowdsourcing,” National Oceanic and Atmospheric Administration, http://www.noaa.gov/office-educa- tion/citizen-science-crowdsourcing. USA National Phenology Network The USA National Phenology Network (USA-NPN)2 — whose activities are supported by several federal government agencies and academic partners3 — promotes enhanced understanding of plant and animal phenology4 and highlights changes to these phenologies over short and long timescales. To achieve its goals, the USA-NPN maintains Nature’s Notebook, a network that allows members of the public to submit observations online or through a mobile application. Users can track events, such as the autumnal arrival of migratory birds at a specific site, or the appearance of sunflowers as they emerge from the soil, produce leaves, and flower.5 USA-NPN also offers a tool to visualize and analyze data across seasons, regions, and species. The network tries to standardize its monitoring approach and improve the quality of data that it collects by offering detailed protocols and training materials to its citizen scientists. Phenology is a key indicator of climate change impacts. Changes in phenological life cycles of plants and animals are already observed anecdotally by people around the world. Therefore, formalizing these observations through established networks will allow for a more systematic method of tracking, comparing, and analyzing these changes. To this end, the US Global Change Research Program has proposed a prototype set of national climate change indicators,6 including the “start of spring” indicator, which is calculated and validated using data from USA-NPN and Nature’s Notebook. The results have the potential to support many decision-makers and resource managers who must account for changing environmental variables such as fire seasons and flora and fauna ranges.7 2 USA National Phenology Network, https://www.usanpn.org. 3 “About Us,” USA National Phenology Network, https://www.usan- pn.org/about. 4 According to the USA National Phenology Network, phenology refers to recurring plant and animal life cycle stages. It is also the study of these recurring life cycle stages, especially their timing and relationships with weather and climate. 5 US Geological Survey (USGS) and the USA National Phenology Network, “The USA National Phenology Network - Taking the Pulse of Our Planet,” 2011, https://www.usanpn.org/files/shared/ files/USA-NPN_factsheet_March2011.pdf. 6 “Indicators,” U.S. Global Change Research Program, http://www. globalchange.gov/explore/indicators. 7 “Phenology: A National Indicator,” USA National Phenology Net- work, https://www.usanpn.org/about/national-indicator.
  • 3. 3ATLANTIC COUNCIL ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change iNaturalist iNaturalist is a global network that allows citizen scientists to submit observations of biodiversity, either online or through a mobile app. iNaturalist also allows experts to crowdsource identifications of observed organisms. The quality of an observation is “graded” based on its levels of verification. A submitted observation is classified as “research-grade” when it includes coordinates, a photo, and a date, and when the community agrees on the identification of the species that has been observed.8 iNaturalist also allows users to create “projects,” or iNaturalist sub-communities, in order to track more specific types of information. Several existing projects, for example, are aimed at improving global understanding of coral reefs, and how they might be impacted by climate change. Developed at the University of California, Berkeley, in 2008, iNaturalist was acquired by the California 8 “Help,” iNaturalist, http://www.inaturalist.org/pages/help. Academy of Sciences in 2014.9 The network shares its data with a number of other platforms. For example, Biodiversity Information Serving Our Nation (BISON)10 builds on research-grade iNaturalist data and a range of other sources (e.g., monitoring programs, peer- reviewed literature) to share millions of plant and animal species’ observation records publicly.11 BISON, maintained by the US Geological Survey, is a useful tool for visualizing species’ occurrences and distribution. Moreover, it can be used to analyze how species’ ranges and population sizes are shifting with a changing climate. Users can search for species within a specific geographical area (e.g., state, county, customized location) to see how occurrence is changing over time. The range of data offered by BISON is enhanced by the addition of iNaturalist citizen science data. 9 “About Us,” iNaturalist, https://www.inaturalist.org/pages/about. 10 “Home,” USGS, Biodiversity Information Serving Our Nation (BI- SON), https://bison.usgs.gov. 11 “Data Providers,” USGS, BISON, https://bison.usgs.gov/#providers. La Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), based in Mexico, is an organizational node of the iNaturalist Network. CONABIO operates the NaturaLista website, which connects to the iNaturalist software. Photo credit: www.naturalista.mx/.
  • 4. 4 ATLANTIC COUNCIL ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change iNaturalist is a global community that enables information-sharing across national boundaries, and consists of organizational “nodes” that operate in the United States, Canada, Mexico, New Zealand, and Colombia.12 Collectively, these organizational nodes are known as the iNaturalist Network, and they manage nationally tailored websites (e.g., inaturalist.ca or naturalista.conabio.gob.mx) that connect to the iNaturalist software. The iNaturalist Network allows organizations to more effectively engage the public by tailoring the software’s features and interface to their respective national contexts. WeSenseIt Citizen Water Observatories In 2012, as part of the European Union’s Seventh Framework Programme for Research and Technological Development (2007-2013), five citizens’ observatory projects received funding under the topic “developing community-based environmental systems using innovative and novel earth observations applications.”13 One of these projects, WeSenseIt Citizen Water Observatories, began in October 2012 and developed crowdsourcing applications in different pilot regions. One of the project’s pilot areas was the densely populated Delfland region of the Netherlands, home to 1.4 million people. The applications allow citizens to submit observations about various aspects of the water environment (e.g., flooding occurrence, water quality, and the built infrastructure) in their respective locations.14 Today, the applications from WeSenseIt help decision- makers access and visualize a range of information. For example, the WaterDetective application allows observers to submit photos of a clogged drain or a ditch that has overflowed. These types of observations can serve as quick references for water managers preparing for extreme weather events. As such events rise in frequency and intensity, and as climate change increasingly impacts water quality, tools like those produced by the WeSenseIt initiative can prove valuable for ensuring the resilience of water environments and the communities around them. 12 “What Is It,” iNaturalist, https://www.inaturalist.org/pages/ what+is+it. 13 European Commission, FP7 Work Programme 2012: Environ- ment; European Biodiversity Observation Network, “Citizens’ Observatories: Five EU FP7 Projects Focused on Citizen Science,” September 23, 2014, http://www.eubon.eu/news/11594_cit- izens%E2%80%99-observatories-five-eu-fp7-projects-fo- cused-on-citizen-science-/. 14 WeSenseIt, http://www.wesenseit.com/. GROW Observatory Other citizens’ observatories are emerging or in the early stages of development throughout Europe. The EU’s Horizon 2020 research and innovation program (2014-2018) provided funding to four more citizens’ observatory projects in 2016.15 One of these initiatives, the GROW Observatory,16 aims to share land, water, and soil resource information across Europe. By encouraging the collection of local soil moisture observations, the GROW project hopes to validate the soil moisture data provided remotely by satellites. Soil moisture is an important indicator of extreme climate events, such as flooding, drought, and heat waves.17 GROW also explores ways to support participants with monitoring protocols, soil testing kits, and low- cost sensing technology. As the GROW network expands, the aim is to establish an active online community of growers and land managers that share not only data, but knowledge and advice on best practices for managing soil and growing food. In addition to providing important data for dealing with extreme events, GROW will also establish a network of people equipped to preserve the quality of land and soil resources in the face of climate change.18 Soil quality is an important factor in carbon sequestration and ensuring the production of high-quality food— challenges that will grow with climate change.19 LEO Network The Local Environmental Observer (LEO) Network20 is a community-based observation network with origins in Alaska that is poised to expand across the United States, Mexico, and the circumpolar Arctic.21 In Alaska 15 “About,” Citizens’ Observatories, http://citizen-obs.eu/about/. 16 GROW Observatory, http://growobservatory.org/. 17 Kirien Whan, Jakob Zscheischler, Rene Orth, Mxolisi Shongwe et al., “Impact of Soil Moisture on Extreme Maximum Temperatures in Europe,” Weather and Climate Extremes 9, 2015: 57-67. 18 University of Dundee Centre for Environmental Change and Hu- man Resilience, The GROW Observatory – An EU-Wide “Citizen Science” Project, September 5, 2016, https://www.dundee.ac.uk/ cechr/news/2016/articles/the-grow-observatory--an-eu-wide-cit- izen-science-project.php. 19 R. Victoria et al., “The Benefits of Soil Carbon,” in UNEP Year Book 2012, United Nations Environment Programme, Nairobi, http:// staging.unep.org/yearbook/2012/pdfs/UYB_2012_CH_2.pdf. 20 Local Environmental Observer Network, https://www.leonetwork. org/en/. 21 “Local Environmental Observer Network (LEO),” Commission for Environmental Cooperation, http://www.cec.org/our-work/ projects/local-environmental-observer-network-leo; Arctic Con- taminants Action Program, “Circumpolar Local Environmental
  • 5. 5ATLANTIC COUNCIL ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change and the Arctic, temperatures are rising at twice the global average rate.22 As a result, communities in the region are already experiencing deep impacts to their environment and way of life. The LEO Network engages communities on the front lines of climate change by collecting information on anomalous environmental events. For example, observers can report when sea ice melts earlier than seasonally normal or when mass numbers of a particular species die at once, the latter of which can be an early indicator of disease related to a changing climate. These observations are important contributions in a region where data availability is often quite poor. Many of the communities that contribute to the LEO Network have a deep connection to the land. Thus, continuous monitoring of the surrounding environment is crucial to ensuring the health of these communities. LEO members can submit observations, with added commentary, using a mobile application. Attaching notes allows participants to put their observations into context, which is particularly important for observers from indigenous communities. These groups can add indigenous and/or local knowledge,23 particularly with respect to their communities’ own experiences and historical observations. The LEO Network also engages scientists and other experts, who advise community members on observations of concern. The LEO Network, maintained by the Alaska Native Tribal Health Consortium and supported in part by the US Environmental Protection Agency, has also been actively identifying partner organizations in order to expand. Due to the program’s success in Alaska, the White House announced in September 2016 that the program will expand both to the lower forty-eight US states, as well as across international borders.24 The Commission for Environmental Cooperation, a Observer Network,” February 23, 2016, https://www.arctic-coun- cil.org/images/PDF_attachments/CLEO_meeting_docs/2016-02- 23-v3-ACAP-CLEO-one-pager.pdf. 22 J. Overland et al., “Surface Air Temperature” in Arctic Report Card 2016, Arctic Program, http://www.arctic.noaa.gov/Re- port-Card. 23 According to the United Nations Educational, Scientific, and Cul- tural Organization, indigenous and local knowledge refers to the understandings, skills, and philosophies developed by societies with long histories of interaction with their natural surroundings. 24 The White House (archived), “Fact Sheet: The 8th Annual White House Tribal Nations Conference,” September 26, 2016, https:// obamawhitehouse.archives.gov/the-press-office/2016/09/26/ fact-sheet-8th-annual-white-house-tribal-nations-conference. trinational organization consisting of the United States, Canada, and Mexico, has announced its support for expanding the LEO Network across North America.25 Under the Arctic Council, partners are working to establish a foundation for a Circumpolar Local Environmental Observer Network (CLEO).26 A CLEO would cover both the North American and European Arctic and provide a mechanism for communities to share observations about their changing environments across international borders. Sharing information and experiences is an important pillar of a region-wide Arctic approach to adaptation and resilience. Given that communities in the same region often face similar challenges, a CLEO could help establish stronger networks and share information across the Arctic. Benefits and Challenges Supporting citizen-based observation efforts could have many benefits for climate change adaptation and resilience. In remote areas, such as the Arctic, the public availability of physical and biological data can be sparse, while the costs and time associated with collecting these data can be significant. However, planning for climate change and undertaking adaptation measures are difficult without proper baseline observations and consideration of additional trends. Citizen-based observation efforts can increase the availability of data in remote areas. Along with indigenous and/or local knowledge of historical events and trends, projects such as the LEO Network can provide an opportunity for community members to integrate individual observations into the broader context. Citizen-based observation networks also increase local engagement and preparedness. Participants in the networks become invested in the information they collect and are therefore more likely to understand environmental trends and plan for the future. Because effective adaptation requires locally tailored solutions, it is important to support the capacity of local citizens to understand and address the changes they observe. Additionally, citizen-based observation networks connect people. iNaturalist brings citizen observers and experts together to discuss observations and crowdsource species identifications. The GROW 25 “Local Environmental Observer Network (LEO),” Commission for Environmental Cooperation. 26 Arctic Contaminants Action Program, “Circumpolar Local Envi- ronmental Observer Network.”
  • 6. 6 ATLANTIC COUNCIL ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change initiative will eventually result in an EU-wide network that will share information and best practices for the conservation of soil quality. The LEO Network has the potential to connect observers across all of North America and the circumpolar Arctic. Sharing information and connecting citizens can spur learning between regions and lead to innovation. Finally, citizen-based observation initiatives allow communities to monitor the effectiveness of adaptation programs and adjust accordingly. When developing adaptation plans, communities can consider how citizen-based observation networks can be used as part of a monitoring and evaluation plan. Of course, citizen-based observation networks can also face a few challenges. While they can be especially beneficial in remote areas, internet connectivity in these places can be limited, making it difficult to submit data points in real time. Additionally, as these networks expand, approaches become more decentralized, which could lead to observer bias or variations in data quality. To alleviate these issues, many networks have implemented standardized guidelines and provide training opportunities for observers, both online and in person. The training encourages a higher level of data quality and enhances decision-makers’ ability to compare data across observation points. Furthermore, organizations such as the Citizen Science Association are emerging to provide monitoring guidelines and best practice recommendations across citizen- based observation initiatives. Despite the challenges associated with these networks, recent policies suggest a growing acknowledgment that the advantages outweigh the potential risks. Top-Down Support for Participatory Monitoring While citizen-based observation networks are often developed from the bottom up, national and multilateral organizations have taken note of their potential. The US federal government has long supported the development of several citizen-based observation networks. The benefits of citizen science and crowdsourcing were more formally recognized by law in January 2017 through the American Innovation and Competitiveness Act,27 which granted federal agencies the explicit authority to use crowdsourcing and citizen 27 “S.3084—American Innovation and Competitiveness Act of 2017,” Congress.gov, United States Government, 114th Congress, https:// www.congress.gov/bill/114th-congress/senate-bill/3084. science. The law acknowledged that these methods help advance the federal government’s responsibilities, and recognized the ability of citizen science and crowdsourcing to increase effective spending, address societal issues, and engage members of the public. In addition, the law formalized the position of a US chief technology officer (CTO). It is too soon to tell if and how the Donald Trump administration plans to advance crowdsourcing and citizen science efforts, but further top-down policies may be influenced by the appointment of a CTO. A CTO had not been nominated at the time of publication. Countries across Europe are adopting programs or outlining citizen science approaches at the national level.28 While the EU has not formalized citizen science policies,29 theEuropeanCommissionhasshownsupport for the concept through initiatives such as FP7 (2007- 2013) and Horizon 2020, the European Commission’s research and innovation program. The current 2016- 2017 Work Programme (climate action, environment, resource efficiency, and raw materials) for Horizon 2020 identifies the coordination of community-based environmental monitoring initiatives—again referred to as citizens’ observatories—and promotion of best practices as priorities.30 It envisions a coordinated network of environmental monitoring initiatives that can be integrated with traditional Earth observation systems and contribute to more informed decision- making actions by local environmental and emergency managers. As shown by the expansion of the LEO Network, many multilateral organizations such as the Arctic Council and the Commission for Environmental Cooperation support citizen-based observation networks. Outside of government, nonprofit organizations also support the coordination of citizen-based observations and citizen science efforts. The Citizen Science 28 A. Bonn et al., Citizen Science Strategy 2020 for Germany, Bürg- er Schaffen Wissen, 2016, http://www.buergerschaffenwissen.de/ sites/default/files/assets/dokumente/gewiss_cs_strategy_en- glisch.pdf. 29 Muki Haklay, Citizen Science and Policy: A European Perspective, Woodrow Wilson International Center for Scholars, 2015, https:// www.wilsoncenter.org/sites/default/files/Citizen_Science_Poli- cy_European_Perspective_Haklay.pdf. 30 European Commission, Horizon 2020, Work Programme 2016- 2017, Climate Action, Environment, Resource Efficiency and Raw Materials, April 24, 2017, https://ec.europa.eu/research/partici- pants/data/ref/h2020/wp/2016_2017/main/h2020-wp1617-cli- mate_en.pdf.
  • 7. 7ATLANTIC COUNCIL ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change Association31 isanonprofitorganizationthatcoordinates citizen science activities, connects practitioners, and offers guidelines and best practices. Furthermore, the European Citizen Science Association,32 established in 2013, coordinates citizen science activities across the EU in hopes of encouraging and increasing citizen science efforts, while connecting actors across Europe that are involved in planning and promoting citizen science programs. Recommendations Citizen-based observation networks are growing in the United States and Europe and present opportunities for the development of relevant programs. Governments at all levels, international organizations, networking organizations, and even citizen-based observation networks themselves all have a role to play in supporting the expansion of these networks. 31 Citizen Science Association, http://citizenscience.org/. 32 European Citizen Science Association, https://ecsa.citizen-sci- ence.net/. The following overarching recommendations should be considered to expand the use of citizen-based observation networks to better plan for and address climate change impacts. 1. Policy makers, planners, and decision-makers should consider using citizen-based observation networks as an integral part of local, regional, and national climate adaptation strategies. The benefits of participatory monitoring and its contribution to the climate adaptation and resilience-building process of local communities are increasingly recognized. To maximize the benefits of these methods, policy makers and planners should consider integrating citizen- based observation efforts into their adaptation and resilience strategies. Doing so would prioritize support for citizen-based observation networks and ensure their connection to other adaptation and resilience activities. The Local Environmental Observer (LEO) Network website includes an interactive mapping tool to view observations by location. Photo credit: www.leonetwork.org.
  • 8. 8 ATLANTIC COUNCIL ISSUE BRIEF Using Citizen-Based Observations to Plan for Climate Change 2. Governments at all levels, along with multilateral organizations, should consider formalizing the use of citizen science and citizen-based observation networks through policies. While the decentralized nature of citizen science may lead to some hesitation on its formal endorsement from policy makers, it is important to recognize the potential benefits and cost savings, especially in the face of increasing climate change impacts. Formal policies can further promote citizen science and citizen- based observations as useful and authoritative tools for solving problems. These policies should be considered at the international, regional, national, and sub-national levels. 3. Where feasible, governments, peer-to-peer learning organizations, and observation networks themselves should work together to connect citizen observation networks. As the use of participatory monitoring efforts grows, it is important that these efforts are coordinated to the maximum extent possible. Collaboration saves resources and raises awareness among users about the information available through various networks. There is also potential to share experiences and observations of local environmental changes across international borders. Communities, nations, and regions of the world will need to be flexible and adapt their climate adaptation approaches to the changing conditions and challenges. Using citizen observation networks is one way to ensure that people across the world can learn from each other and better prepare for and adapt to changes brought about by climate change. Conclusion The establishment and use of citizen observation networks is growing across the United States and Europe. These networks can and should be used as tools for understanding climate change impacts and building local communities’ capacity for adaptation and resilience to environmental changes. As the benefits of citizen science are increasingly recognized at the national and international levels, there is great potential for linking citizen observation networks to facilitate knowledge-sharing across both local communities and international borders. There is no one-size-fits- all approach to prepare for climate change—rather, climate change adaptation undoubtedly requires a wide range of solutions. Citizen observation networks are critical tools for helping communities and countries become better prepared for climate change impacts now and in the future. Sarah Abdelrahim is a 2016-2017 Emerging Leaders in Energy and Environmental Policy Fellow.
  • 9. Atlantic Council Board of Directors CHAIRMAN *Jon M. Huntsman, Jr. CHAIRMAN EMERITUS, INTERNATIONAL ADVISORY BOARD Brent Scowcroft PRESIDENT AND CEO *Frederick Kempe EXECUTIVE VICE CHAIRS *Adrienne Arsht *Stephen J. Hadley VICE CHAIRS *Robert J. Abernethy *Richard Edelman *C. Boyden Gray *George Lund *Virginia A. Mulberger *W. DeVier Pierson *John Studzinski TREASURER *Brian C. McK. Henderson SECRETARY *Walter B. Slocombe DIRECTORS Stéphane Abrial Odeh Aburdene *Peter Ackerman Timothy D. Adams Bertrand-Marc Allen John R. Allen *Michael Andersson David D. Aufhauser *Rafic A. Bizri Dennis C. Blair *Thomas L. Blair Philip M. Breedlove Reuben E. Brigety II Myron Brilliant *Esther Brimmer R. Nicholas Burns *Richard R. Burt Michael Calvey James E. Cartwright John E. Chapoton Ahmed Charai Melanie Chen Michael Chertoff George Chopivsky Wesley K. Clark David W. Craig *Ralph D. Crosby, Jr. Nelson W. Cunningham Ivo H. Daalder Ankit N. Desai *Paula J. Dobriansky Christopher J. Dodd Conrado Dornier Thomas J. Egan, Jr. *Stuart E. Eizenstat Thomas R. Eldridge Julie Finley Lawrence P. Fisher, II *Alan H. Fleischmann *Ronald M. Freeman Laurie S. Fulton Courtney Geduldig *Robert S. Gelbard Gianni Di Giovanni T homas H. Glocer Sherri W. Goodman Ian Hague Amir A. Handjani John D. Harris, II Frank Haun Michael V. Hayden Annette Heuser Ed Holland *Karl V. Hopkins Robert D. Hormats Miroslav Hornak *Mary L. Howell Wolfgang F. Ischinger Deborah Lee James Reuben Jeffery, III Joia M. Johnson *James L. Jones, Jr. Stephen R. Kappes *Maria Pica Karp *Zalmay M. Khalilzad Robert M. Kimmitt Henry A. Kissinger Franklin D. Kramer Richard L. Lawson *Jan M. Lodal *Jane Holl Lute William J. Lynn Wendy W. Makins Zaza Mamulaishvili Mian M. Mansha Gerardo Mato William E. Mayer T. Allan McArtor John M. McHugh Eric D.K. Melby Franklin C. Miller James N. Miller Judith A. Miller *Alexander V. Mirtchev Susan Molinari Michael J. Morell Richard Morningstar Georgette Mosbacher Thomas R. Nides Franco Nuschese Joseph S. Nye Hilda Ochoa-Brillem- bourg Sean C. O’Keefe Ahmet M. Oren Sally A. Painter *Ana I. Palacio Carlos Pascual Alan Pellegrini David H. Petraeus Thomas R. Pickering Daniel B. Poneman Arnold L. Punaro Robert Rangel Thomas J. Ridge Charles O. Rossotti Robert O. Rowland Harry Sachinis Rajiv Shah Stephen Shapiro Kris Singh James G. Stavridis Richard J.A. Steele Paula Stern Robert J. Stevens Robert L. Stout, Jr. *Ellen O. Tauscher Nathan D. Tibbits Frances M. Townsend Clyde C. Tuggle Paul Twomey Melanne Verveer Charles F. Wald Michael F. Walsh Maciej Witucki Neal S. Wolin Mary C. Yates Dov S. Zakheim HONORARY DIRECTORS David C. Acheson Madeleine K. Albright James A. Baker, III Harold Brown Frank C. Carlucci, III Ashton B. Carter Robert M. Gates Michael G. Mullen Leon E. Panetta William J. Perry Colin L. Powell Condoleezza Rice Edward L. Rowny George P. Shultz Horst Teltschik John W. Warner William H. Webster *Executive Committee Members List as of September 18, 2017
  • 10. The Atlantic Council is a nonpartisan organization that ­promotes constructive US leadership and engagement in ­international ­affairs based on the central role of the Atlantic community in ­meeting today’s global ­challenges. © 2017 The Atlantic Council of the United States. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without permission in writing from the Atlantic Council, except in the case of brief quotations in news articles, critical articles, or reviews. Please direct inquiries to: Atlantic Council 1030 15th Street, NW, 12th Floor, Washington, DC 20005 (202) 463-7226, www.AtlanticCouncil.org