SlideShare une entreprise Scribd logo

Big Data : buzz ou opportunité ?

Big data est un sujet d'actualité! Dans cette session, nous reviendrons sur ce que l'on entend par Big Data, où ce sujet trouve sa source et quelles ont été les premières approches. Nous verrons ensuite des projets actuellement menés par Microsoft sur ce domaine.

1  sur  39
Télécharger pour lire hors ligne
palais des
congrès
Paris



7, 8 et 9
février 2012
Big Data
Buzz ou opportunité pour les entreprises ?
Code Session : RDI203

Bernard Ourghanlian
Directeur Technique et Sécurité
Microsoft France
In 2011, the amount of information created and replicated
will surpass 1.8 zettabytes (1.8 trillion gigabytes) -
growing by a factor of 9 in just five years. […] and more
than doubling every two years. That's nearly as many bits
of information in the digital universe as stars in our
physical universe.

                                 John Gantz and David Reinsel
                                  Extracting Value from Chaos
Explosion généralisée des
données

 ―[by 2020] data use is   ―Flickr members         ―AT&T has about 19    ―We now have well
 expected to grow by      upload more than        petabytes of data     over a thousand
 as much as 44            3,000 images every      transferred through   customers in the ever-
                          minute, and yesterday   their networks each   growing EMC
 times, amounting to
                          yeoaaron uploaded       day.‖                 Petabyte Club.
 some 35.2ZB              the five billionth                            They—or frequently
 (zettabytes—a billion    photo…‖                                       many more—
 terabytes) globally.‖                                                  petabytes of EMC
                                                                        storage in production.
                                                                        By 2012 or so, we're
                                                                        forecasting that we'll
                                                                        have to start a
                                                                        new, informal club—
                                                                        the EMC Exabyte
                                                                        Club.‖
Big Data : buzz ou opportunité ?
La nature changeante de la
recherche
  Des milliers d’années auparavant – Science expérimentale
     Description des phénomènes naturels
  Les quelques derniers siècles – Science théorique          .   2

     Lois de Newton, équations de Maxwell                   a       4 G   c2
                                                                           a2
  Les dernières décennies – Science computationnelle         a         3

     Simulation de phénomènes complexes
  Aujourd’hui – Science centrée sur les données
     Unifier la théorie, l’expérience et la simulation
     En utilisant l’exploration et la fouille de données
           Données capturées par des instruments
           Données générées par des simulations
           Données générées par des réseaux de capteurs
           Données générées par les humains

Recommandé

Clip Asie Sud Est
Clip Asie Sud EstClip Asie Sud Est
Clip Asie Sud EstGIA VER
 
Les activités de Veni Vidi Ludi
Les activités de Veni Vidi LudiLes activités de Veni Vidi Ludi
Les activités de Veni Vidi LudiVeni Vidi Ludi
 
Fiche médiateurs Dynamo Fukushima 17 et 18 septembre GRAND PALAIS
Fiche médiateurs Dynamo Fukushima 17 et 18 septembre GRAND PALAISFiche médiateurs Dynamo Fukushima 17 et 18 septembre GRAND PALAIS
Fiche médiateurs Dynamo Fukushima 17 et 18 septembre GRAND PALAISRaphaëlle Wulfman
 
Q&R 3 : Actualité du chef d'entreprise
Q&R 3 : Actualité du chef d'entrepriseQ&R 3 : Actualité du chef d'entreprise
Q&R 3 : Actualité du chef d'entrepriseFirst_Finance
 
Les Crayons - Describing people
Les Crayons - Describing peopleLes Crayons - Describing people
Les Crayons - Describing peopleMattcuzner
 
La composicio
La composicioLa composicio
La composiciomluque3
 
L'hôpital, nouvel objet connecté du système de santé
L'hôpital, nouvel objet connecté du système de santéL'hôpital, nouvel objet connecté du système de santé
L'hôpital, nouvel objet connecté du système de santéMicrosoft Ideas
 

Contenu connexe

En vedette

Xml un panorama
Xml un panoramaXml un panorama
Xml un panoramacamelus
 
Présentation gea
Présentation geaPrésentation gea
Présentation geaecomgea
 
Mon album de famille jesil
Mon album de famille jesilMon album de famille jesil
Mon album de famille jesilYesenia Amezcua
 
Simon Lighting Points de lumière solaire - Cedrus Solar
Simon Lighting Points de lumière solaire - Cedrus SolarSimon Lighting Points de lumière solaire - Cedrus Solar
Simon Lighting Points de lumière solaire - Cedrus SolarMktlighting
 
14 05-26 blocparc presentation-aeroport gare-light
14 05-26 blocparc presentation-aeroport gare-light14 05-26 blocparc presentation-aeroport gare-light
14 05-26 blocparc presentation-aeroport gare-lightjeanfouriscot
 
Jean yves boulin
Jean yves boulinJean yves boulin
Jean yves boulinIRI
 
ACHETER UNE OEUVRE INSTRUMENTALE SUR RITM
ACHETER UNE OEUVRE INSTRUMENTALE SUR RITMACHETER UNE OEUVRE INSTRUMENTALE SUR RITM
ACHETER UNE OEUVRE INSTRUMENTALE SUR RITMnextelevel
 
Mi trbajo de pintura nª4
Mi trbajo de pintura nª4Mi trbajo de pintura nª4
Mi trbajo de pintura nª4cristinachip
 
Comentarios a ¿Quien mira desde mi ventana? (de M.A. Pérez Oca)
Comentarios a ¿Quien mira desde mi ventana? (de M.A. Pérez Oca)Comentarios a ¿Quien mira desde mi ventana? (de M.A. Pérez Oca)
Comentarios a ¿Quien mira desde mi ventana? (de M.A. Pérez Oca)raalbe autor
 
Répondre aux attentes des touristonautes
Répondre aux attentes des touristonautesRépondre aux attentes des touristonautes
Répondre aux attentes des touristonautesLudovic Dublanchet
 
Pronumericom archamps marché et tendance du e tourisme jean-claude morand 070510
Pronumericom archamps marché et tendance du e tourisme jean-claude morand 070510Pronumericom archamps marché et tendance du e tourisme jean-claude morand 070510
Pronumericom archamps marché et tendance du e tourisme jean-claude morand 070510Jean-Claude MORAND
 
Legreenm
LegreenmLegreenm
LegreenmCeliaCh
 
Introduccion 1º
Introduccion 1ºIntroduccion 1º
Introduccion 1ºaimorales
 

En vedette (19)

Xml un panorama
Xml un panoramaXml un panorama
Xml un panorama
 
Armando patron
Armando patronArmando patron
Armando patron
 
Vagues
VaguesVagues
Vagues
 
Présentation gea
Présentation geaPrésentation gea
Présentation gea
 
Mon album de famille jesil
Mon album de famille jesilMon album de famille jesil
Mon album de famille jesil
 
Présentation 1001pharmacies
Présentation 1001pharmaciesPrésentation 1001pharmacies
Présentation 1001pharmacies
 
Simon Lighting Points de lumière solaire - Cedrus Solar
Simon Lighting Points de lumière solaire - Cedrus SolarSimon Lighting Points de lumière solaire - Cedrus Solar
Simon Lighting Points de lumière solaire - Cedrus Solar
 
14 05-26 blocparc presentation-aeroport gare-light
14 05-26 blocparc presentation-aeroport gare-light14 05-26 blocparc presentation-aeroport gare-light
14 05-26 blocparc presentation-aeroport gare-light
 
Jean yves boulin
Jean yves boulinJean yves boulin
Jean yves boulin
 
Oui Mais
Oui MaisOui Mais
Oui Mais
 
ACHETER UNE OEUVRE INSTRUMENTALE SUR RITM
ACHETER UNE OEUVRE INSTRUMENTALE SUR RITMACHETER UNE OEUVRE INSTRUMENTALE SUR RITM
ACHETER UNE OEUVRE INSTRUMENTALE SUR RITM
 
Mi trbajo de pintura nª4
Mi trbajo de pintura nª4Mi trbajo de pintura nª4
Mi trbajo de pintura nª4
 
Comentarios a ¿Quien mira desde mi ventana? (de M.A. Pérez Oca)
Comentarios a ¿Quien mira desde mi ventana? (de M.A. Pérez Oca)Comentarios a ¿Quien mira desde mi ventana? (de M.A. Pérez Oca)
Comentarios a ¿Quien mira desde mi ventana? (de M.A. Pérez Oca)
 
Répondre aux attentes des touristonautes
Répondre aux attentes des touristonautesRépondre aux attentes des touristonautes
Répondre aux attentes des touristonautes
 
Pronumericom archamps marché et tendance du e tourisme jean-claude morand 070510
Pronumericom archamps marché et tendance du e tourisme jean-claude morand 070510Pronumericom archamps marché et tendance du e tourisme jean-claude morand 070510
Pronumericom archamps marché et tendance du e tourisme jean-claude morand 070510
 
Campana esperanza de vihda
Campana esperanza de vihdaCampana esperanza de vihda
Campana esperanza de vihda
 
Legreenm
LegreenmLegreenm
Legreenm
 
Introduccion 1º
Introduccion 1ºIntroduccion 1º
Introduccion 1º
 
Fonctionner en réseau
Fonctionner en réseauFonctionner en réseau
Fonctionner en réseau
 

Similaire à Big Data : buzz ou opportunité ?

OCTO 2012 : l'analyse décisionnelle en temps réel - BigData, Complex
OCTO 2012 : l'analyse décisionnelle en temps réel - BigData, ComplexOCTO 2012 : l'analyse décisionnelle en temps réel - BigData, Complex
OCTO 2012 : l'analyse décisionnelle en temps réel - BigData, ComplexOCTO Technology
 
Bigdata, small decision and smart organisation
Bigdata, small decision and smart organisationBigdata, small decision and smart organisation
Bigdata, small decision and smart organisationChristophe Benavent
 
OWF12/BIG DATA Presentation big data owf ysance
OWF12/BIG DATA Presentation big data owf ysanceOWF12/BIG DATA Presentation big data owf ysance
OWF12/BIG DATA Presentation big data owf ysanceParis Open Source Summit
 
Big Analytics : les usages avant tout
Big Analytics : les usages avant toutBig Analytics : les usages avant tout
Big Analytics : les usages avant toutSAS FRANCE
 
Splunk live paris_overview_02_07_2013 v2.1
Splunk live paris_overview_02_07_2013 v2.1Splunk live paris_overview_02_07_2013 v2.1
Splunk live paris_overview_02_07_2013 v2.1jenny_splunk
 
Assurtech : Big Data & Plateformes
Assurtech : Big Data & PlateformesAssurtech : Big Data & Plateformes
Assurtech : Big Data & PlateformesSerrerom
 
Big Data Des méandres des outils au potentiel business
Big Data   Des méandres des outils au potentiel businessBig Data   Des méandres des outils au potentiel business
Big Data Des méandres des outils au potentiel businessMouhsine LAKHDISSI
 
Du texte à la connaissance : annotation sémantique et peuplement d'ontologie ...
Du texte à la connaissance : annotation sémantique et peuplement d'ontologie ...Du texte à la connaissance : annotation sémantique et peuplement d'ontologie ...
Du texte à la connaissance : annotation sémantique et peuplement d'ontologie ...Conférence IC 2009
 
Valtech - Big Data : Détails d’une mise en œuvre
Valtech - Big Data : Détails d’une mise en œuvreValtech - Big Data : Détails d’une mise en œuvre
Valtech - Big Data : Détails d’une mise en œuvreValtech
 
Introduction sur le concept d'Entreprise Augmentée et les projets que cela pe...
Introduction sur le concept d'Entreprise Augmentée et les projets que cela pe...Introduction sur le concept d'Entreprise Augmentée et les projets que cela pe...
Introduction sur le concept d'Entreprise Augmentée et les projets que cela pe...Minnovarc
 
NoSQL User Group Paris - 21 Juin 2011 - GigaSpaces
NoSQL User Group Paris - 21 Juin 2011 - GigaSpacesNoSQL User Group Paris - 21 Juin 2011 - GigaSpaces
NoSQL User Group Paris - 21 Juin 2011 - GigaSpacesFastConnect
 
Le Data Engineer qui veut se faire aussi gros que le Data Scientist
Le Data Engineer qui veut se faire aussi gros que le Data ScientistLe Data Engineer qui veut se faire aussi gros que le Data Scientist
Le Data Engineer qui veut se faire aussi gros que le Data ScientistBachir Aitmbarek
 
L’internet des objets
L’internet des objetsL’internet des objets
L’internet des objetsYijun CHEN
 
Démat cloud computing -d-barbarossa
Démat cloud computing -d-barbarossaDémat cloud computing -d-barbarossa
Démat cloud computing -d-barbarossaIFEC
 
Gamma Soft. L'entreprise Temps-Réel
Gamma Soft. L'entreprise Temps-RéelGamma Soft. L'entreprise Temps-Réel
Gamma Soft. L'entreprise Temps-RéelGamma Soft
 
Presentation corporate hitachi data systems 2012
Presentation corporate hitachi data systems 2012Presentation corporate hitachi data systems 2012
Presentation corporate hitachi data systems 2012Hitachi Data Systems France
 
Quelle organisation interne pour assurer la gouvernance des outils numériques...
Quelle organisation interne pour assurer la gouvernance des outils numériques...Quelle organisation interne pour assurer la gouvernance des outils numériques...
Quelle organisation interne pour assurer la gouvernance des outils numériques...Cap'Com
 
Livre Blanc ALTARES: La Data, nouveau disrupteur du business model des entrep...
Livre Blanc ALTARES: La Data, nouveau disrupteur du business model des entrep...Livre Blanc ALTARES: La Data, nouveau disrupteur du business model des entrep...
Livre Blanc ALTARES: La Data, nouveau disrupteur du business model des entrep...Altares D&B
 
Morning Tech#1 BigData - Oxalide Academy
Morning Tech#1 BigData - Oxalide AcademyMorning Tech#1 BigData - Oxalide Academy
Morning Tech#1 BigData - Oxalide AcademyOxalide
 

Similaire à Big Data : buzz ou opportunité ? (20)

OCTO 2012 : l'analyse décisionnelle en temps réel - BigData, Complex
OCTO 2012 : l'analyse décisionnelle en temps réel - BigData, ComplexOCTO 2012 : l'analyse décisionnelle en temps réel - BigData, Complex
OCTO 2012 : l'analyse décisionnelle en temps réel - BigData, Complex
 
I love BIG DATA
I love BIG DATAI love BIG DATA
I love BIG DATA
 
Bigdata, small decision and smart organisation
Bigdata, small decision and smart organisationBigdata, small decision and smart organisation
Bigdata, small decision and smart organisation
 
OWF12/BIG DATA Presentation big data owf ysance
OWF12/BIG DATA Presentation big data owf ysanceOWF12/BIG DATA Presentation big data owf ysance
OWF12/BIG DATA Presentation big data owf ysance
 
Big Analytics : les usages avant tout
Big Analytics : les usages avant toutBig Analytics : les usages avant tout
Big Analytics : les usages avant tout
 
Splunk live paris_overview_02_07_2013 v2.1
Splunk live paris_overview_02_07_2013 v2.1Splunk live paris_overview_02_07_2013 v2.1
Splunk live paris_overview_02_07_2013 v2.1
 
Assurtech : Big Data & Plateformes
Assurtech : Big Data & PlateformesAssurtech : Big Data & Plateformes
Assurtech : Big Data & Plateformes
 
Big Data Des méandres des outils au potentiel business
Big Data   Des méandres des outils au potentiel businessBig Data   Des méandres des outils au potentiel business
Big Data Des méandres des outils au potentiel business
 
Du texte à la connaissance : annotation sémantique et peuplement d'ontologie ...
Du texte à la connaissance : annotation sémantique et peuplement d'ontologie ...Du texte à la connaissance : annotation sémantique et peuplement d'ontologie ...
Du texte à la connaissance : annotation sémantique et peuplement d'ontologie ...
 
Valtech - Big Data : Détails d’une mise en œuvre
Valtech - Big Data : Détails d’une mise en œuvreValtech - Big Data : Détails d’une mise en œuvre
Valtech - Big Data : Détails d’une mise en œuvre
 
Introduction sur le concept d'Entreprise Augmentée et les projets que cela pe...
Introduction sur le concept d'Entreprise Augmentée et les projets que cela pe...Introduction sur le concept d'Entreprise Augmentée et les projets que cela pe...
Introduction sur le concept d'Entreprise Augmentée et les projets que cela pe...
 
NoSQL User Group Paris - 21 Juin 2011 - GigaSpaces
NoSQL User Group Paris - 21 Juin 2011 - GigaSpacesNoSQL User Group Paris - 21 Juin 2011 - GigaSpaces
NoSQL User Group Paris - 21 Juin 2011 - GigaSpaces
 
Le Data Engineer qui veut se faire aussi gros que le Data Scientist
Le Data Engineer qui veut se faire aussi gros que le Data ScientistLe Data Engineer qui veut se faire aussi gros que le Data Scientist
Le Data Engineer qui veut se faire aussi gros que le Data Scientist
 
L’internet des objets
L’internet des objetsL’internet des objets
L’internet des objets
 
Démat cloud computing -d-barbarossa
Démat cloud computing -d-barbarossaDémat cloud computing -d-barbarossa
Démat cloud computing -d-barbarossa
 
Gamma Soft. L'entreprise Temps-Réel
Gamma Soft. L'entreprise Temps-RéelGamma Soft. L'entreprise Temps-Réel
Gamma Soft. L'entreprise Temps-Réel
 
Presentation corporate hitachi data systems 2012
Presentation corporate hitachi data systems 2012Presentation corporate hitachi data systems 2012
Presentation corporate hitachi data systems 2012
 
Quelle organisation interne pour assurer la gouvernance des outils numériques...
Quelle organisation interne pour assurer la gouvernance des outils numériques...Quelle organisation interne pour assurer la gouvernance des outils numériques...
Quelle organisation interne pour assurer la gouvernance des outils numériques...
 
Livre Blanc ALTARES: La Data, nouveau disrupteur du business model des entrep...
Livre Blanc ALTARES: La Data, nouveau disrupteur du business model des entrep...Livre Blanc ALTARES: La Data, nouveau disrupteur du business model des entrep...
Livre Blanc ALTARES: La Data, nouveau disrupteur du business model des entrep...
 
Morning Tech#1 BigData - Oxalide Academy
Morning Tech#1 BigData - Oxalide AcademyMorning Tech#1 BigData - Oxalide Academy
Morning Tech#1 BigData - Oxalide Academy
 

Plus de Microsoft Ideas

37 editeurs de logiciels et startups marketing
37 editeurs de logiciels et startups marketing 37 editeurs de logiciels et startups marketing
37 editeurs de logiciels et startups marketing Microsoft Ideas
 
Blockchain au-delà de la finance : pourquoi toutes les industries sont concer...
Blockchain au-delà de la finance : pourquoi toutes les industries sont concer...Blockchain au-delà de la finance : pourquoi toutes les industries sont concer...
Blockchain au-delà de la finance : pourquoi toutes les industries sont concer...Microsoft Ideas
 
L'évolution du métier du DAF induite par la transformation digitale
L'évolution du métier du DAF induite par la transformation digitale L'évolution du métier du DAF induite par la transformation digitale
L'évolution du métier du DAF induite par la transformation digitale Microsoft Ideas
 
Bureau du futur - Campus Connecté : état des lieux !
Bureau du futur - Campus Connecté : état des lieux !Bureau du futur - Campus Connecté : état des lieux !
Bureau du futur - Campus Connecté : état des lieux !Microsoft Ideas
 
Mobilité, opportunités et risques, comment mettre la DSI de votre côté ?
Mobilité, opportunités et risques,  comment mettre la DSI de votre côté ?Mobilité, opportunités et risques,  comment mettre la DSI de votre côté ?
Mobilité, opportunités et risques, comment mettre la DSI de votre côté ?Microsoft Ideas
 
La révolution io t au service des opérations des aéroports
La révolution io t au service des opérations des aéroportsLa révolution io t au service des opérations des aéroports
La révolution io t au service des opérations des aéroportsMicrosoft Ideas
 
Mulhouse ville de toutes les intelligences
Mulhouse ville de toutes les intelligencesMulhouse ville de toutes les intelligences
Mulhouse ville de toutes les intelligencesMicrosoft Ideas
 
Le "Yoga collaboratif" : catalyseur de transformation pour les entreprises
Le "Yoga collaboratif" : catalyseur de transformation pour les entreprisesLe "Yoga collaboratif" : catalyseur de transformation pour les entreprises
Le "Yoga collaboratif" : catalyseur de transformation pour les entreprisesMicrosoft Ideas
 
ERP dans le Cloud, cette union fera-t-elle votre force demain ?
ERP dans le Cloud,  cette union fera-t-elle votre force demain ? ERP dans le Cloud,  cette union fera-t-elle votre force demain ?
ERP dans le Cloud, cette union fera-t-elle votre force demain ? Microsoft Ideas
 
Réalité augmentée, réalité virtuelle comment vont-elles changer notre vie ?
Réalité augmentée, réalité virtuelle comment vont-elles changer notre vie ? Réalité augmentée, réalité virtuelle comment vont-elles changer notre vie ?
Réalité augmentée, réalité virtuelle comment vont-elles changer notre vie ? Microsoft Ideas
 
Pourquoi le collaboratif bouleverse le management ? 
Pourquoi le collaboratif bouleverse le management ? Pourquoi le collaboratif bouleverse le management ? 
Pourquoi le collaboratif bouleverse le management ? Microsoft Ideas
 
Transformation numérique d’un client dans le secteur de l’industrie avec Offi...
Transformation numérique d’un client dans le secteur de l’industrie avec Offi...Transformation numérique d’un client dans le secteur de l’industrie avec Offi...
Transformation numérique d’un client dans le secteur de l’industrie avec Offi...Microsoft Ideas
 
Platypus un nouvel objet des mers – Une experience sous-marine inédite !
Platypus un nouvel objet des mers – Une experience sous-marine inédite !Platypus un nouvel objet des mers – Une experience sous-marine inédite !
Platypus un nouvel objet des mers – Une experience sous-marine inédite !Microsoft Ideas
 
L'impact de l'innovation Data sur le monde du médico-social
L'impact de l'innovation Data sur le monde du médico-socialL'impact de l'innovation Data sur le monde du médico-social
L'impact de l'innovation Data sur le monde du médico-socialMicrosoft Ideas
 
Digital Meeting : la Digital Workplace appliquée aux réunions.
Digital Meeting : la Digital Workplace appliquée aux réunions.Digital Meeting : la Digital Workplace appliquée aux réunions.
Digital Meeting : la Digital Workplace appliquée aux réunions.Microsoft Ideas
 
33 éditeurs de logiciel avec solutions marketing
33 éditeurs de logiciel avec solutions marketing33 éditeurs de logiciel avec solutions marketing
33 éditeurs de logiciel avec solutions marketingMicrosoft Ideas
 
Les enjeux de la gestion des actifs logiciels à l’heure du cloud
Les enjeux de la gestion des actifs logiciels à l’heure du cloudLes enjeux de la gestion des actifs logiciels à l’heure du cloud
Les enjeux de la gestion des actifs logiciels à l’heure du cloudMicrosoft Ideas
 
Un business agile avec des systèmes agiles, comment s'appuyer sur un cloud hy...
Un business agile avec des systèmes agiles, comment s'appuyer sur un cloud hy...Un business agile avec des systèmes agiles, comment s'appuyer sur un cloud hy...
Un business agile avec des systèmes agiles, comment s'appuyer sur un cloud hy...Microsoft Ideas
 
Le business veut tout, tout de suite ? Etes-vous passé en mode IT as a Service ?
Le business veut tout, tout de suite ? Etes-vous passé en mode IT as a Service ?Le business veut tout, tout de suite ? Etes-vous passé en mode IT as a Service ?
Le business veut tout, tout de suite ? Etes-vous passé en mode IT as a Service ?Microsoft Ideas
 

Plus de Microsoft Ideas (20)

37 editeurs de logiciels et startups marketing
37 editeurs de logiciels et startups marketing 37 editeurs de logiciels et startups marketing
37 editeurs de logiciels et startups marketing
 
Présentation inwink
Présentation inwink  Présentation inwink
Présentation inwink
 
Blockchain au-delà de la finance : pourquoi toutes les industries sont concer...
Blockchain au-delà de la finance : pourquoi toutes les industries sont concer...Blockchain au-delà de la finance : pourquoi toutes les industries sont concer...
Blockchain au-delà de la finance : pourquoi toutes les industries sont concer...
 
L'évolution du métier du DAF induite par la transformation digitale
L'évolution du métier du DAF induite par la transformation digitale L'évolution du métier du DAF induite par la transformation digitale
L'évolution du métier du DAF induite par la transformation digitale
 
Bureau du futur - Campus Connecté : état des lieux !
Bureau du futur - Campus Connecté : état des lieux !Bureau du futur - Campus Connecté : état des lieux !
Bureau du futur - Campus Connecté : état des lieux !
 
Mobilité, opportunités et risques, comment mettre la DSI de votre côté ?
Mobilité, opportunités et risques,  comment mettre la DSI de votre côté ?Mobilité, opportunités et risques,  comment mettre la DSI de votre côté ?
Mobilité, opportunités et risques, comment mettre la DSI de votre côté ?
 
La révolution io t au service des opérations des aéroports
La révolution io t au service des opérations des aéroportsLa révolution io t au service des opérations des aéroports
La révolution io t au service des opérations des aéroports
 
Mulhouse ville de toutes les intelligences
Mulhouse ville de toutes les intelligencesMulhouse ville de toutes les intelligences
Mulhouse ville de toutes les intelligences
 
Le "Yoga collaboratif" : catalyseur de transformation pour les entreprises
Le "Yoga collaboratif" : catalyseur de transformation pour les entreprisesLe "Yoga collaboratif" : catalyseur de transformation pour les entreprises
Le "Yoga collaboratif" : catalyseur de transformation pour les entreprises
 
ERP dans le Cloud, cette union fera-t-elle votre force demain ?
ERP dans le Cloud,  cette union fera-t-elle votre force demain ? ERP dans le Cloud,  cette union fera-t-elle votre force demain ?
ERP dans le Cloud, cette union fera-t-elle votre force demain ?
 
Réalité augmentée, réalité virtuelle comment vont-elles changer notre vie ?
Réalité augmentée, réalité virtuelle comment vont-elles changer notre vie ? Réalité augmentée, réalité virtuelle comment vont-elles changer notre vie ?
Réalité augmentée, réalité virtuelle comment vont-elles changer notre vie ?
 
Pourquoi le collaboratif bouleverse le management ? 
Pourquoi le collaboratif bouleverse le management ? Pourquoi le collaboratif bouleverse le management ? 
Pourquoi le collaboratif bouleverse le management ? 
 
Transformation numérique d’un client dans le secteur de l’industrie avec Offi...
Transformation numérique d’un client dans le secteur de l’industrie avec Offi...Transformation numérique d’un client dans le secteur de l’industrie avec Offi...
Transformation numérique d’un client dans le secteur de l’industrie avec Offi...
 
Platypus un nouvel objet des mers – Une experience sous-marine inédite !
Platypus un nouvel objet des mers – Une experience sous-marine inédite !Platypus un nouvel objet des mers – Une experience sous-marine inédite !
Platypus un nouvel objet des mers – Une experience sous-marine inédite !
 
L'impact de l'innovation Data sur le monde du médico-social
L'impact de l'innovation Data sur le monde du médico-socialL'impact de l'innovation Data sur le monde du médico-social
L'impact de l'innovation Data sur le monde du médico-social
 
Digital Meeting : la Digital Workplace appliquée aux réunions.
Digital Meeting : la Digital Workplace appliquée aux réunions.Digital Meeting : la Digital Workplace appliquée aux réunions.
Digital Meeting : la Digital Workplace appliquée aux réunions.
 
33 éditeurs de logiciel avec solutions marketing
33 éditeurs de logiciel avec solutions marketing33 éditeurs de logiciel avec solutions marketing
33 éditeurs de logiciel avec solutions marketing
 
Les enjeux de la gestion des actifs logiciels à l’heure du cloud
Les enjeux de la gestion des actifs logiciels à l’heure du cloudLes enjeux de la gestion des actifs logiciels à l’heure du cloud
Les enjeux de la gestion des actifs logiciels à l’heure du cloud
 
Un business agile avec des systèmes agiles, comment s'appuyer sur un cloud hy...
Un business agile avec des systèmes agiles, comment s'appuyer sur un cloud hy...Un business agile avec des systèmes agiles, comment s'appuyer sur un cloud hy...
Un business agile avec des systèmes agiles, comment s'appuyer sur un cloud hy...
 
Le business veut tout, tout de suite ? Etes-vous passé en mode IT as a Service ?
Le business veut tout, tout de suite ? Etes-vous passé en mode IT as a Service ?Le business veut tout, tout de suite ? Etes-vous passé en mode IT as a Service ?
Le business veut tout, tout de suite ? Etes-vous passé en mode IT as a Service ?
 

Big Data : buzz ou opportunité ?

  • 1. palais des congrès Paris 7, 8 et 9 février 2012
  • 2. Big Data Buzz ou opportunité pour les entreprises ? Code Session : RDI203 Bernard Ourghanlian Directeur Technique et Sécurité Microsoft France
  • 3. In 2011, the amount of information created and replicated will surpass 1.8 zettabytes (1.8 trillion gigabytes) - growing by a factor of 9 in just five years. […] and more than doubling every two years. That's nearly as many bits of information in the digital universe as stars in our physical universe. John Gantz and David Reinsel Extracting Value from Chaos
  • 4. Explosion généralisée des données ―[by 2020] data use is ―Flickr members ―AT&T has about 19 ―We now have well expected to grow by upload more than petabytes of data over a thousand as much as 44 3,000 images every transferred through customers in the ever- minute, and yesterday their networks each growing EMC times, amounting to yeoaaron uploaded day.‖ Petabyte Club. some 35.2ZB the five billionth They—or frequently (zettabytes—a billion photo…‖ many more— terabytes) globally.‖ petabytes of EMC storage in production. By 2012 or so, we're forecasting that we'll have to start a new, informal club— the EMC Exabyte Club.‖
  • 6. La nature changeante de la recherche Des milliers d’années auparavant – Science expérimentale  Description des phénomènes naturels Les quelques derniers siècles – Science théorique . 2  Lois de Newton, équations de Maxwell a 4 G c2 a2 Les dernières décennies – Science computationnelle a 3  Simulation de phénomènes complexes Aujourd’hui – Science centrée sur les données  Unifier la théorie, l’expérience et la simulation  En utilisant l’exploration et la fouille de données  Données capturées par des instruments  Données générées par des simulations  Données générées par des réseaux de capteurs  Données générées par les humains
  • 7. Le quatrième paradigme Modèles complexes  Interactions multidisciplinaires  Larges échelles temporelles et spatiales Large ensemble de données multidisciplinaires  Flux temps réel  Structuré et non structuré Communautés distribuées  Organisations virtuelles  Socialisation et management Diverses attentes  Centrées client ou infrastructure http://research.microsoft.com/en-us/collaboration/fourthparadigm/
  • 8. Pourtant, Big Data ce n’est pas que cela… Il y d’autres dimensions au phénomène Big Data… 4/10/201
  • 9. Les besoins en diminution de temps de latence augmentent de plus en plus Réordonnancer la flotte Contrôle réglementaire Opérations, Administration et maintenance Transactionnel OLTP Contrôle de niveau de service Value At Risk 0 micro- milli- seconde minute heure jour semaine • Le temps effectif pour comprendre a été considérablement réduit • Poussé par des facteurs réglementaires et de calcul de risque dans de nombreuses industries
  • 10. La hiérarchie de la connaissance Structure / Valeur Compréhension Connaissance Action Valeur Information Donnée Signal Nous voulons transformer le « signal » en « valeur » Effort / Latence
  • 11. Cycle de vie standard de l’analyse de données (Entrepôt de données) Temps  Souvent des semaines voire des mois
  • 12. Le cycle de vie de l’analyse de données en environnement Big Data Temps  Jours à semaines
  • 13. La hiérarchie de la connaissance Structure / Valeur Connaissance Information Donnée Signal Effort / Latence
  • 14. Objectif : Repenser l’équation signal – valeur • Trouver une nouvelle valeur Structure / Valeur • Réduire de façon spectaculaire Connaissance le temps de création de valeur Valeur Information Donnée Ceci n’a pas grand-chose à voir avec la taille de la donnée ! … mais … de nouveaux signaux peuvent se Signal trouver dans les « données ambiantes » Effort / Latence
  • 15. Perspicacité et création de sens Perspicacité 1. La capacité à discerner la véritable nature d'une situation ; la pénétration. 2. L'acte ou le résultat de saisir la nature intime ou cachée des choses ou de percevoir d’une manière intuitive. Création de sens Le processus par lequel les individus (ou les organisations) créent une compréhension afin qu'ils puissent agir de façon raisonnée et éclairée.
  • 16. Création de sens sur un plus large spectre Les systèmes existants permettent de donner du sens à des données Structure / Valeur modélisées Connaissance Information Donnée Signal Il y a une énorme valeur potentielle dans le fait de donner un sens aux données ambiantes Effort / Latence
  • 17. Le rôle des technologies « Big Data » Les technologies « Big Data » tout à la fois recréent et complémentent les workflows d’analyse existants en :  Simplifiant la production d’information structurée à partir de sources de données « ambiantes » émergentes (Signal  Donnée  Information)  Permettant rapidement la création de sens à partir de données non enrichies et non modélisées  Permettant l’analyse à l’échelle sur des données « ambiantes »  Permettant la création de modèles à partir de données « ambiantes »
  • 18. Le monde des données (relationelles) est en train de changer Passage à Temps réel l’échelle Relational Data Non Scructurées
  • 19. Qu’est-ce que Big Data ? Types de données Gros volume de données  100aine TO à 10aine de PO Nouvelles questions et non traditionnelles nouvelles inférences  Non structurées  Quelle est la popularité de mon produit ?  Schéma relationnel faible  Quelle est la meilleure publicité à servir ?  Texte, Images, Vidéos, Logs  Est-ce une transaction frauduleuse ? Big Data Nouvelles Technologies  Cadre de traitement distribué Nouvelles sources de parallèle  Facile à faire passer à Nouvelle économie données  Capteurs l’échelle sur du hardware  Traitement à large échelle et  Terminaux standard analyse à un coût sans  Applications traditionnelles  Modèles de programmation précédent (hardware et  Serveurs Web de style MapReduce software)  Données publiques
  • 20. Qu’est-ce que Big Data ? Big Data consiste avant tout à réduire le temps pour comprendre en permettant aux utilisateurs de poser des questions ad-hoc sur des données non structurées et souvent mal comprises
  • 21. Les pionniers de Big Data : Twitter Problème : Exemple : Twitter Concepts clés :  Stocke 12 TO de données/jour  Stocke les données telles quelles ; • Nécessité de stocker de  Analyse pour : les conserve comme des fichiers très grands volumes de journaux non structurés, n’essaye TENDANCES : nouvelles données tous Justin Bieber pas de les analyser et de les stocker dans un entrepôt de données les jours Egypt • Nécessité de fournir plus Snowpocalypse  Traite des très gros volumes de données rapidement grâce à des de valeur que de REPERTITION GEOGRAPHIQUE : requêtes ad-hoc et programmées seulement stocker et retrouver les tweets Ramifications: QU INFLUENCE RETWEETS? • Dans un mode de tweeters et d’analyse rapide, Twitter peut fournir une meilleure alerte IDENTIFICATION DES SPAMS : • Akshf#$/lajsdf précoce pour un conflit régional ou une épidémie qu’une surveillance classique
  • 22. Systèmes de gestion des risques Problème : • La surveillance et les QUE POUVEZ-VOUS VRAIMENT ESPERER DE VOTRE simulations fournissent une PORTEFEUILLE ? grande quantité de données utiles pour la gestion des risques mais il est impossible SIMULATION DU PERTES FUTURES PORTEFEUILLE de les traiter toutes DOMMAGE ATTENDUES ASSURE PREVISIONNEL • Prix des contrats, gestion • Millions • +20 milliards de risque, affectation de d’emplacements d’évaluations de capital, structure prix du avec des risque transfert de paramètres risque, conformité affectant la stabilité réglementaire structurelle • Requêtes complexes basées sur les contrats actuels Ramifications: MODELE DE CATASTROPHE • La possibilité d’exécuter des centaines de Simulations de douzaines de simulations sur une douzaine de types de périls et types de périls dans différentes de calculer le risque pour chaque adresse zones géographiques individuelle dans un portefeuille
  • 23. Analyse de Sentiment QUI A DIT QUOI ? QUAND ? OU ? POURQUOI ? Problème : • Les conversations client peuvent Sentiment survenir n’importe où et les propos négatifs peuvent rapidement « partir en vrille » Blogs REPARTITION REPARTITION Twitter GÉOGRAPHIQUE DÉMOGRAPHIQUE Facebook Ramifications : • Une analyse de sentiment en temps réel vous News permet de non seulement connaitre ce qui a été dit mais aussi qui l’a dit, vous fournissant YouTube ainsi les informations dont vous avez besoin pour participer à la conversation
  • 24. Scénarios clients Big Data Industrie Scénario  Modélisation des risques  Analyse des menaces Services financiers  Détection des fraudes  Surveillance du trading  Analyse et notation de crédit  Moteurs de recommandation  Ciblage publicitaire Web & E-Tailing  Qualité de la recherche  Détection des abus et de la fraude au clic  Analyse des transactions du point de vente Distribution  Taux de roulement des clients  Analyse de sentiment  Prévention des désabonnements  Optimisation des performances réseau Télécommunications  Analyse des détails des appels  Analyse de réseau pour prédire les défaillances Gouvernement  Détection de fraude et cyber-sécurité Général  ETL et moteur de traitement
  • 25. Stratégie Big Data de Microsoft Se connecter facilement • Données privées, publiques et dérivées au monde des données • Données Microsoft Se connecter aux • Management intégré, qualité des données structurées et données, nettoyage, outils ETL non structurées • Connecteurs pour déplacement de données • Utilisation des outils BI familiers La BI pour tous (Excel, Power*) Nouvelles expériences • Visualisation des données d’analyse • Analyse prédictive
  • 26. Microsoft Big Data Accessible à tous les utilisateurs en supportant de nouveaux types de données
  • 27. Hadoop : la face visible de Big Data Permet l’analyse de données semi et non cructurées distribuées sur un cluster standard Basé sur le papier MapReduce de Google et sur le Google File system (GFS) Programs = Séquence de tâches « map » et « reduce » Simplifie l’écriture d’applications distribuées Hautement tolérante aux pannes – copies multiples Déplace les calculs au plus près des données Implémenté en Java et optimisé pour Linux 33
  • 28. L’écosystème Hadoop HBase / Cassandra Oozie Outils BI traditionnels (Bases de données orientées colonnes (Workflow) et NoSQL) Hive Karmasphere Pig (Data Flow) (Warehouse and (Outil de Apache Mahout Flume Sqoop Data Access) développement) Zookeeper (Coordination) Avro (Sérialisation) HBase (Base de données orientée colonne) MapReduce (Ordonnancement des tâches / Système d’Exécusion) Hadoop = MapReduce + HDFS HDFS (Hadoop Distributed File System)
  • 29. Stratégie Hadoop Microsoft Notre propre distribution de Hadoop Optimisée pour Windows et Azure Focalisation sur les développeurs .NET Differentiation à travers • Performance et passage à l’échelle le support de • Haute disponibilité l’entreprise • Facilité d’utilisation
  • 30. Hadoop as a Service : Azure Elastic Map Reduce Facturation basée sur la tâche Facile à administrer Pas d’installation Support d’une large variété de types de jobs  Machine Learning (mahout), Graph Mining (Pegasus), HIVE, Pig, Java, JS, etc. IHM grandement simplifiée GO Bon marché Rapide
  • 31. Hadoop sur Windows et Azure
  • 32. Exemple : Big Data chez Yahoo! Cas d’usage : Analyse d’un très gros volume de données non structurées en provenance de journaux Web SSAS Cube de 24 TO Analyse ad hoc des journaux Web pour prototyper des patterns Les données Hadoop alimentent un gros cube de 24 TO
  • 33. Hadoop sur Windows BIG DATA Démocratiser Big Data via l’intégration avec l’offre BI de Microsoft POUR TOUS Fournir de nouveaux services Big Data à valeur ajoutée pour les DIFFERENTIATION développeurs PRÊT POUR Choix du déploiement sur Windows Server + Windows Azure L’ENTERPRISE Intégration avec les composants Windows (AD, System Center) Installation et configuration faciles d’Hadoop sur Windows ACCES PLUS Programmation simplifiée avec l’intégration de .Net et Javascript LARGE Intégration avec les fonctionnalités de Data Warehousing de SQL Server Contributions proposées en retour à la communauté
  • 34. Les annonces Big Data lors de PASS BIG DATA Driver ODBC pour Hive et Add-in Hive pour Excel POUR TOUS Intégration avec Microsoft PowerPivot PRÊT POUR Distribution Hadoop pour Windows Server et Azure L’ENTERPRISE Partenariat stratégique avec Hortonworks ACCES PLUS Framework JavaScript pour Hadoop LARGE Disponibilité de la version finale des connecteurs Hadoop pour SQL Server et PDW
  • 35. Vision : Créer une nouvelle plateforme de données Big Data OPERATIONELLE MOBILE SELF-SERVICE ANALYSE TEMPS-REEL PREDICTIVE COLLABORATIVE ENRICHISSEMENT DES DONNEES ET PLACE DE MARCHE DECOUVRIR TRANSFORMER PARTAGER ET ET ET RECOMMANDER NETTOYER GOUVERNER GESTION DES DONNEES RELATIONNEL NON RELATIONNEL MULTIDIMENSIONNEL STREAMING
  • 36. Solution Big Data de Microsoft Power View Excel avec Analyse prédictive BI intégré Outils utilisateur final familiers PowerPivot SSAS SSRS Platerfome BI Hadoop Connecteurs SQL Server Capteurs Terminaux Bots Crawlers ERP CRM LOB APPs Données non structurées et stucturées
  • 37. Hadoop sur Windows Coeur d’Hadoop Hadoop HDFS Hadoop Common (utilitaires, sécurité, sérialisation des flux) Moteur MapReduce Hadoop Programmer et Apache Pig requêter Apache Hive (y compris le support de Thrift) Framework Javascript et Webshell for Hadoop Kit Azure (pour Visual Studio) Clustering & Déploiement Cluster et outil d’installation Management Surveillance et management du cluster basé web standard d’Hadoop Portail Azure pour Elastic Map Reduce (intégré avec le portail Azure) Drivers & Driver ODBC Hive Connectors Add-in Excel Hive pour Microsoft Office Connecteur Apache SQOOP pour SQL Server et PDW Installers & MSI pour les composants Serveur (Hadoop et systèmes reliés) (MSI) Loaders MSI pour les composants Client (Driver Hive et Add-in, Kit Azure Kit pour VS Moteurs de chargement en volume FTP et HTTP
  • 39. Microsoft France 39, quai du président Roosevelt 92130 Issy-Les-Moulineaux www.microsoft.com/france