SlideShare une entreprise Scribd logo
1  sur  20
Télécharger pour lire hors ligne
hsn.uk.net



                       Higher
                         Mathematics

HSN24400
Course Revi on Notes
           si
Thi docum ent was produced speci f the HSN.uk.net websi and we requi that any copi or deri ve
   s                            ally or                te,          re            es      vati
works attribute the work to us.
For m ore detai about the copyri on these notes, please see http://creati
               ls               ght                                      vecom m ons.org/licenses/by-nc-sa/2.0/
Higher Mathematics                           Course Revision Notes

Contents
   Unit 1 – Mathematics 1
      Straight Lines                                            1
      Functions and Graphs                                      2
      Differentiation                                           5
      Sequences                                                 6
   Unit 2 – Mathematics 2
      Polynomials and Quadratics                                7
      Integration                                               8
      Trigonometry                                              9
      Circles                                                  12
   Unit 3 – Mathematics 3
      Vectors                                                  12
      Further Calculus                                         15
      Exponentials and Logarithms                              16
      The Wave Function                                        18




   hsn.uk.net                       - ii -               HSN24400
Higher Mathematics                                                                   Course Revision Notes

                                              Straight Lines
Distance Formula
     stance =     ( x2 − x1 )       + ( y2 − y1 ) between poi ( x1, y1 ) and ( x2 , y2 )
                                2              2
    Di                                                       nts

Gradients
         y2 − y1
    m=            between the poi ( x1, y1 ) and ( x2 , y2 ) where x1 ≠ x2
                                 nts
         x 2 − x1
 Posi ve gradi
     ti       ents, negati gradi
                          ve    ents, zero gradients, undef ned gradi
                                                           i         ents

                                                                               eg x = 2
                                                            eg y = 4
 Li wi the sam e gradi are parallel
   nes th               ent
  eg The li parallel to 2 y + 3 x = 5
           ne
         has gradi m = − 3 si
                  ent    2 nce 2 y + 3 x = 5
                                     2 y = −3 x + 5
                                                    5
                                        y = − 3 x + 2 (m ust be i the f
                                              2                  n     orm y = mx + c )
 Perpendicular li have gradi
                 nes        ents such that m × mperp. = −1
     eg i m = 2 then mperp. = − 2
        f     3
                                3

    m = tan
     y
                                                 i the angle that the li m akes wi
                                                  s                     ne        th
               positive direction              the posi ve di on of the x-axi
                                                       ti    recti             s
                          x

Equation of a Straight Line
 The li passi through ( a, b ) wi gradi m has equati
       ne    ng                  th    ent          on:
                                                   y − b = m( x − a )

Medians
                  B                                                    x1 + x 2 y1 + y2
                                        M i the m i
                                           s       dpoi of AC, i M =
                                                       nt       e              ,
                                                                          2        2
                                        BM i not usually perpendi
                                             s                    cular to AC, so m1 × m2 = −1
A                          C            cannot be used
              M
                                        To work out the gradi of BM, use the gradi f ula
                                                            ent                    ent orm



     hsn.uk.net                                          Page 1                                  HSN24400
Higher Mathematics                                                             Course Revision Notes

Altitudes
                  B
                                   D i not usually the m i
                                      s                   dpoi of AC
                                                              nt
                                   BD i perpendi
                                       s          cular t AC, so m1 × m2 = −1 can be used t
                                                         o                                 o
A                             C    work out the gradi of BD
                                                     ent
                 D
Perpendicular Bisectors

                  D
                                   CD passes through m i
                                                       dpoi of AC
                                                           nt
A                              B
                 C                 CD i perpendi
                                         s         cular t AB, so m1 × m2 = −1 can be used t
                                                          o                                 o
        C                     B    f nd the gradi of CD
                                    i            ent
                                   Perpendicular bisectors do not necessari have to appear
                                                                           ly
                     D             wi n a tri
                                     thi     angle – they can occur wi st ght li
                                                                      th rai    nes
 A


                                   Functions and Graphs
Composite Functions
Example
If f ( x ) = x 2 − 2 and g ( x ) = 1 , f nd a f ula f
                                   x i         orm   or
     (a) h ( x ) = f ( g ( x ) )
     (b) k ( x ) = g ( f ( x ) )
and state a suitable dom ai f each.
                           n or
(a) h ( x ) = f ( g ( x ) )                      (b) k ( x ) = g ( f ( x ) )
             = f (1)
                  x                                          = g( x 2 − 2)

             =(1) −2
                      2                                            1
               x                                             =
                                                                 x −2
                                                                  2

                 1
             =      −2                           Dom ai { x : x ∈ , x ≠ ± 2 }
                                                       n:
                 x2
Dom ai { x : x ∈ , x ≠ 0}
      n:
 You wi probably only be asked f a dom ai i the f
       ll                       or         n f   uncti i
                                                      on nvolved a f on or an
                                                                    racti
 even root. Rem em ber that i a f on the denom i
                             n   racti            nator cannot be zero and any
 num ber bei square rooted cannot be negati
            ng                             ve
    eg f ( x ) = x + 1 could have dom ai { x : x ∈ , x ≥ −1}
                                        n:


     hsn.uk.net                                Page 2                                      HSN24400
Higher Mathematics                                                                              Course Revision Notes

Graphs of Inverses
 To draw the graph of an inverse functi ref
                                       on, lect the graph of the functi i the
                                                                       on n
 li y = x
   ne
    y                 y=x

            y = g( x )



                      y = g−1 ( x )

   O                                  x

Exponential and Logarithmic Functions
                                Exponential                                                    Logarithmic
       y                                               y                                   y            y = loga x
            y = ax, a >1                                    y = ax, 0 < a <1

                                                                                                          ( a ,1)
                                                                                       O                             x
      1              (1, a )                       1                 (1, a )                    1

       O                          x                O                           x

Trigonometric Functions
             y = si x
                   n                                       y = cos x                                y = tan x
   y                                       y                                           y
  1                                       1

  O                               x        O                                       x   O                             x
 –1                                       –1
               180°            360°                         180°         360°
                                                                                                     180°       360°
           Peri = 360°
              od                                   Peri = 360°
                                                      od                                       Peri = 180°
                                                                                                  od
                tude = 1
           Am pli                                       tude = 1
                                                   Am pli                              Am pli
                                                                                            tude i undef ned
                                                                                                  s     i

Graph Transformations
The next page shows the ef ect of transf ati on the two graphs shown below.
                          f             orm ons
                ( 2, 2 ) y = g ( x )
             y                                    y
                                                                               1

                                                                                O                           x
              –1 0                    3        x                               –1
                                                                                        180°           360°

   hsn.uk.net                                               Page 3                                              HSN24400
Higher Mathematics                                                                              Course Revision Notes

Function         Ef ect
                   f                     Ef ect on f ( x )
                                           f                                                Ef ect on si x °
                                                                                              f         n
f ( x ) + a Shi ts the graph
               f                         y                  y = g( x ) + 1          y                 y = si x ° + 1
                                                                                                           n
            a up the                          ( 2, 3 ) •                           2
            y-axis
                                                                                   1
                                    •                                 • ( 3,1)
                                ( −1,1)                                            0                            x
                                      0                                        x                 180°        360°

f ( x + a ) Shi ts the graph
               f                               y            y = g ( x + 1)          y            y = si ( x − 90 ) °
                                                                                                      n
            −a along the                                    •
                                                       (1, 2 )                     1
            x-axis
                                                                                    0                              x
                                    –2         0                      2        x   –1
                                                                                                  180°        360°
− f (x)    Reflects the                  y                                             y                y = − si x °
                                                                                                               n
                                                                y = − g( x )
           graph i the
                  n                      0                                          1
           x-axis                   –1                                3        x
                                                                                    0                              x
                                                            •    ( 2, − 2 )        –1
                                                                                                  180°         360°

f (−x )    Ref lects the       ( −2, 2 )               y         y = g( −x )       y = si ( − x ° )
                                                                                        n                      y
           graph i the
                   n                      •
                                                                                                                   1
           y-axi s
                                                                                                               0 x
                               –3                      0         1             x                                 –1
                                                                                   −360°         −180°
kf ( x )   Scales the graph              y ( 2, 4 ) y = 2 g ( x )                       y               y = 1 si x °
                                                                                                            2 n
           vertically                                       •
                                                                                    1
           Stretches if                                                             2
           k >1                                                                    −1
                                                                                            0                          x
                                                                               x    2
           Com presses if           –1 0                              3
           k <1                                                                                    180°        360°

f ( kx )   Scales the graph              y (1, 2 )               y = g(2x )             y                y = si 2 x °
                                                                                                              n
           horizontally                            •
                                                                                    1
           Com presses if
           k >1                                                                     0                                  x
           Stretches if                                                        x
                                    −1 0                3                          –1
           k <1                      2                  2                                          180°        360°
    hsn.uk.net                                     Page 4                                                    HSN24400
Higher Mathematics                                                         Course Revision Notes

                                         Differentiation
Differentiating
 If f ( x ) = ax n then f ′ ( x ) = anx n −1
 Bef you di f
     ore     f erenti all brackets should be m ulti ed out, and there should be no
                      ate,                         pli
 f ons wi an x term i the denom i
  racti   th               n        nator (bottom li f exam ple:
                                                    ne), or
                                     3                        1     −1
          1
              =  1 x −2                = 3x −2                   =x 2
         3x 2 3                     x2                         x

Equations of Tangents
 Tangents are strai li
                   ght nes, theref to f nd the equati of a tangent, you need a poi
                                  ore    i           on                           nt
 on the li and i gradi to substi
          ne     ts    ent          tute i y − b = m ( x − a )
                                          nto
 You wi always be gi one coordi
       ll           ven        nate of the poi whi the tangent touches
                                              nt ch
 Fi the other coordi
   nd              nate by solvi the equati of the curve
                                ng         on
   nd        ent   f erenti ng then substi ng i the x-coordi
 Fi the gradi by di f      ati            tuti n            nate of the point

Example

Fi the equati of the tangent to the graph of y = x 3 at the poi where x = 9 .
  nd         on                                                nt
    y = x3                     y = x3          At x = 9, m = 3 × 9 2
                                                                    1
                                                                           y − b = m(x − a)
                                                             2

      = 93                       = x2
                                     3
                                                           =3 9          y − 27 = 9 ( x − 9 )
                                                                                  2
                                                            2
                                                           = 3 ×3       2 y − 54 = 9 x − 81
      = 33                   dy 3 1
                                = 2 x2                       2
                                                                             2 y = 9 x − 27
      = 27                   dx                            =9
                                                            2
       ( 9, 27 )
                                     dy
 Stationary poi occur at poi where
               nts          nts         =0
                                     dx
 You m ust j f the nature of turni poi or poi of i lecti
            usti y                ng nts     nts  nf on




   hsn.uk.net                                  Page 5                                   HSN24400
Higher Mathematics                                                                 Course Revision Notes

Graphs of Derived Functions
           Quadratic                          Cubic                            Quartic
   y                                 y                                 y
                                                                                        0
                                          0                            0
       –                +
                                                                                   +            –
                                     +            –                +           –
                0                                          +
                            x                                  x                                       x
                                                  0                        0

   y                                 y                                 y


                    +                                                               +
                                                                   +
                            x                                              –                –          x
            –                        +                 +
                                                               x
                                              –
            Linear                        Quadratic                                Cubic

Optimisation
 These types of questions are usually practi problem s whi i
                                           cal            ch nvolve m axi um or
                                                                         m
 m i m um areas or volum es
    ni
 Rem em ber you m ust show that a m axi um or m i m um exi
                                       m         ni      sts

                                         Sequences
Linear Recurrence Relations
 A linear recurrence relati i i the f
                           on s n    orm un+1 = aun + b . Also be aware that thi m ay be
                                                                                s
 written as un = aun−1 + b
                                  b
 If −1 < a < 1 then a li i l =
                        m t           exi You m ust state thi whenever you use the li i
                                         sts.                s                       m t
                                 1− a
 f ula
  orm




   hsn.uk.net                                 Page 6                                                HSN24400
Higher Mathematics                                                    Course Revision Notes

                              Polynomials and Quadratics
Polynomials
 The degree of a polynom i i the value of the hi
                          al s                  ghest power, eg 3 x 4 + 3 has degree 4
 Syntheti di si (nested f ) can be used to f
         c vi on         orm                actori polynom i
                                                 se         als

Example
     4 x 3 − 7 x 2 + 11
Find                    .
           x +2
   –2     4      –7       0          11   Rem em ber to put i 0
                                                             n
                                          i there i no term
                                           f       s
                 –8       30     –60
          4     –15       30     –49

    4 x 3 − 7 x 2 + 11
                       = 4 x 2 − 15 x + 30 rem ainder − 49
          x +2
   i 4 x 3 − 7 x 2 + 11 = ( x + 2 ) ( 4 x 2 − 15 x + 30 ) − 49
    e

 If the di sor i a f
         vi s actor then the rem ainder i zero
                                         s
 If the rem ainder i zero then the di sor i a f
                    s                vi s actor

Completing the Square
 The x 2 term m ust have a coef i ent of one. If i does not, you m ust take out a com m on
                               f ci               t
                  2
 factor from the x and x term , but not the constant
         orm y = a ( x + p ) + q the turni poi of the graph i ( − p, q )
                                 2
 In the f                                 ng nt              s

Example
Wri 3 x 2 − 12 x + 7 i the f
   te                 n     orm a(x + p)2 + q .
    3 x 2 − 12 x + 7
    = 3( x 2 − 4x ) + 7
    = 3 ( x 2 − 4 x + ( −2 )2 − ( −2 )2 ) + 7
    = 3 ( ( x − 2 )2 − 4 ) + 7
    = 3 ( x − 2 )2 − 12 + 7
    = 3 ( x − 2 )2 − 5
Note that i thi exam ple, the graph i ∪ -shaped si the x 2 coef i ent i posi ve; and
           n s                       s            nce          f ci    s    ti
the turni poi i ( 2, − 5 ) .
         ng nt s

   hsn.uk.net                                     Page 7                          HSN24400
Higher Mathematics                                                             Course Revision Notes

The Discriminant
 The di m i
        scri nant i part of the quadrati f ula and can be used to i cate how m any
                   s                    c orm                      ndi
 roots a quadrati has. For the quadrati ax + bx + c :
                 c                    c   2




   If b 2 − 4 ac > 0 , the roots are real and unequal (di nct)
                                                         sti                            2 roots


   If b 2 − 4 ac = 0 , the roots are real and equal (i repeated roots)
                                                      e                                  1 root


   If b 2 − 4 ac < 0 , the roots are not real; they do not exist                        no roots

 The di m i
       scri nant can also be used to calculate the num ber of intersecti between a
                                                                        ons
 li and a curve. To use i you m ust f rst equate them and set equal to zero, bef
   ne                     t,           i                                        ore
 usi the di m i
    ng     scri nant
 Rem em ber i b 2 − 4 ac = 0 , the li i a tangent
             f                       ne s

                                       Integration
Integrating
                  ax n +1
   ax n dx =              +c
                  n +1
 As wi di f
        th f erenti on, all brackets m ust be m ulti ed out, and there m ust be no
                   ati                              pli
 f ons wi an x term i the denom i
  racti    th           n            nator

Examples
               dx                                      x 2 + 5x 7
1. Find                 .                        2.               dx
              8
                  x5                                       x2
      dx                1                              x 2 + 5x 7
              =               dx                             2
                                                                  dx = x −2 ( x 2 + 5 x 7 ) dx
     8
         x5         8
                         x5                                x
              = x
                        −5
                         8
                             dx                                      = x 0 + 5 x 5 dx

                  x8
                    3
                                                                       = 1 + 5 x 5 dx
              = 3 +c
                 8                                                     = x + 5 x6 + c
                                                                             6
                    3
              = 8 x8 + c
                3
              = 3 8 x3 + c
                8



   hsn.uk.net                                 Page 8                                        HSN24400
Higher Mathematics                                                                      Course Revision Notes

The Area under a Curve
                                                    b
 If F ( x ) i the i
             s     ntegral of f ( x ) , then            f ( x ) dx = F (b ) − F ( a )
                                                    a
     y
                       y = f (x)




           a               b       x

 Rem em ber that areas spli by the x-axi m ust be calculated separately and any negati
                           t            s                                             ve
 si i
   gns gnored; these j show that the area i under the axi
                      ust                   s              s.

The Area between two Curves
                                                                                         b
 The area between the graphs of y = f ( x ) and y = g ( x ) i def ned as
                                                             s i                         a
                                                                                             f ( x ) − g ( x ) dx
     y
                                       y = g( x )

                                                                               ven, f ( x ) and g ( x )
                                                          If the li i are not gi
                                                                   m ts
                                                          should be equated to f nd a and b
                                                                                i
                                   x
           a               b        y = f (x)



                                          Trigonometry
Background Knowledge
You should know how to use all of the i orm ati below:
                                       nf      on
 SOH CAH TOA
           si x
            n
 tan x =
           cos x
 si 2 x + cos2 x = 1
  n
                     a    b    c
 The si rule:
       ne              =    =
                   si A si B si C
                     n   n    n
                                                 b2 + c 2 − a2
 The cosi rule: a = b + c − 2bc cos A or cos A =
         ne            2       2   2

                                                     2bc


   hsn.uk.net                                           Page 9                                         HSN24400
Higher Mathematics                                                                      Course Revision Notes

 The area of a triangle, A = 1 ab si C
                             2     n
 CAST diagram s
 Exact values:


                                   2        30°
      2       45°                                 3
                    1
     45°                          60°
          1                             1

Radians
 You should know how to convert between radi and degrees:
                                            ans

 360° = 2               90° = 2                   45° = 4                       ÷ 180 × →
                                                                       Degrees  Radians
  180° =         60° = 3                          30° = 6                 ans × 180 ÷ →
                                                                       Radi  Degrees
          5 × 180
   eg 5 =
      6           = 150°
             6

Trigonometric Equations
 Look at the restri ons on the dom ai eg 0 ≤ x ° < 360, or 0 ≤ x <
                   cti               n,
 Be aware of whether the answer i requi i degrees or radi
                                 s     red n             ans
 Rem em ber a CAST diagram whenever you are asked to “solve”

Examples
1. Solve 3si 2 x° = 1 where 0 ≤ x ° < 360 .
           n
      3si 2 x ° = 1
        n
    3 ( si x ° ) = 1
                    2
         n
      ( si x ° )2 = 1
         n          3
           si x ° = ± 1
            n         3                                      S    A
                x ° = si
                       n   −1
                                (± 1 )
                                   3                        T C

       x° = 35.3°                  x° = 180 − 35.3                    x° = 180 + 35.3   x° = 360 − 35.3
                                        = 144.7°                        = 215.3°            = 324.7°
    Soluti set = {35.3°, 144.7°, 215.3°, 324.7°}
         on



   hsn.uk.net                                               Page 10                                 HSN24400
Higher Mathematics                                                      Course Revision Notes

2. Solve 2 si 2 x − 1 = 0 , 0 ≤ x < 2 .
             n
    2 si 2 x − 1 = 0
       n
        2si 2 x = 1
          n
         si 2 x = 1
          n       2                        S     A
             2 x = si −1 ( 1 )
                    n 2                    T C

    2 x ° = 30°                     2 x ° = 180° − 30°
      x ° = 15°                     2 x ° = 150°
                                     x ° = 75°
    2 x ° = 360° + 30°              2 x ° = 360° +180° − 30°
    2 x ° = 390°                    2 x ° = 510°
      x ° = 195°                     x ° = 255°
             15
      15° = 180                         75
                                 75° = 180                        195
                                                           195° = 180            255
                                                                          255° = 180
          = 36
             3                      = 15
                                      36                        = 36
                                                                  39              51
                                                                                = 36
          = 12                         5
                                    = 12                        = 12
                                                                  13            = 17
                                                                                  12

         ons          {
    Soluti set = 12 , 12 , 12 , 17
                       5   13
                                12           }
Compound Angle Formulae
 cos ( A ± B ) = cos A cos B     si A si B
                                  n n
 si ( A ± B ) = si A cos B ± cos A si B
  n              n                   n
 These are gi on the f ula sheet
             ven      orm

Double Angle Formulae
 si 2 A = 2si A cos A
  n         n
 cos 2 A = cos2 A − si 2 A
                     n
         = 1 − 2 si 2 A
                   n
         = 2 cos 2 A − 1
 These are gi on the f ula sheet
             ven      orm




   hsn.uk.net                                    Page 11                            HSN24400
Higher Mathematics                                                              Course Revision Notes

                                          Circles
Equations of Circles
 A ci wi centre ( a,b ) and radi r has the equati ( x − a )2 + ( y − b ) = r2
                                                                                     2
     rcle th                    us               on
 Note that i a ci has centre ( 0, 0 ) then the equati i x 2 + y 2 = r2
            f rcle                                   on s
 The equati can also be gi i the f
           on             ven n   orm x 2 + y 2 + 2 gx + 2 fy + c = 0 where the centre
 i ( − g,− f
  s            )   and the radi r = g2 + f 2 − c
                               us
 You do not have to rem em ber any of these equations, si they are all gi i the
                                                         nce             ven n
 exam

                                  stance f ula, d =        ( x2 − x1 )       + ( y2 − y1 ) , si thi
                                                                         2               2
 You wi have to rem em ber the di
        ll                                orm                                                  nce s
 i not gi
  s      ven, and i f
                   s requently used i ci questi
                                     n rcle     ons

Intersection of a Line and a Circle




     two intersections            one intersection (tangency)   no intersections
 Rem em ber, a tangent and a li f
                               ne rom the centre of a circle wi m eet at ri angles,
                                                               ll           ght
 whi m eans that m1 × m2 = −1 can be used
    ch


                                         Vectors
Basic Facts
 A vector i a quanti wi both m agni
           s        ty th          tude (si and di on
                                           ze)    recti
 A vector i nam ed ei
            s       ther by usi a di
                               ng   rected li segm ent (eg AB ) or a bold letter
                                             ne
 (eg u written u)
 A vector m ay also be def ned i term s of i, j and k, the uni vectors i three
                          i     n                             t         n
 perpendicular di ons:
                recti
                                1              0              0
                             i= 0           j= 1           k= 0
                                0              0              1

                               a
 The m agnitude of vector AB = b i def ned as AB = a 2 + b 2
                                  s i


   hsn.uk.net                               Page 12                                          HSN24400
Higher Mathematics                                                      Course Revision Notes

   a1   b1   a1 ± b1               a1   ka1                                           0
   a2 ± b2 = a2 ± b2             k a2 = ka2 where k i a scalar
                                                     s                  Z ero vector: 0
   a3   b3   a3 ± b3               a3   ka3                                           0

 OA i called the posi on vector of the poi A relati to the ori n, wri
     s               ti                   nt       ve         gi     tten a
  AB = b − a where a and b are the posi on vectors of A and B
                                       ti
 If AB = k BC where k i a scalar, then AB i parallel to BC . Si B i com m on to both
                       s                    s                  nce s
  AB and k BC , then A, B and C are collinear

Dividing Vectors in a Ratio
 The poi P can also be worked out f
        nt                         rom f rst pri ples, or
                                        i       nci
 U si the secti f ula. If P di des AB i the rati m : n , then:
     ng        on orm          vi         n         o
                                   n         m
                             p=       a+         b where p i the posi on vector OP
                                                            s        ti
                                m+n        m+n

Example
P i the poi ( −2, 4, − 1) and R i the poi ( 8, − 1,19 ) . Poi T di des PR i the rati
   s       nt                    s       nt                  nt   vi       n        o
2:3. Work out the coordinates of poi T.
                                    nt
                                         2:3
                             P                           R
                                         T
       U si the secti f ul
           ng         on orm a                           From fi pri pl
                                                                rst nci es
The rati i 2:3, so let m = 2 and n = 3
        o s                                                   PT 2
                                                                 =
     n       m                                                TR 3
t=       p+     r
   m+n      m+n                                              3PT = 2TR
 = 3 p + 2r
   5     5                                               (      )
                                                        3 t − p = 2 (r − t )

      (
 = 1 3 p + 2r
   5            )                                        3t − 3 p = 2r − 2t
                                                         3t + 2t = 2r + 3 p
          −6   16
 =1       12 + −2                                                  16   −6
  5
          −3   38                                             5t = −2 + 12
                                                                   38   −3
          10
 = 1 10                                                            10
   5
          35                                                  5t = 10
                                                                   35
   2
 = 2                                                               2
   7                                                            t= 2
                                                                   7
Theref T i the poi ( 2, 2, 7 ) .
      ore s       nt                           Theref T i the poi ( 2, 2, 7 ) .
                                                     ore s       nt


     hsn.uk.net                           Page 13                                   HSN24400
Higher Mathematics                                                  Course Revision Notes

The Scalar Product
 The scalar product a.b = a b cos , where i the sm allest angle between a and b
                                           s
 Rem em ber that both vectors m ust poi away f
                                       nt     rom the angle, eg

                                              a               b



        a1         b1
 If a = a2 and b = b2 then a.b = a1b1 + a2b2 + a3b3
        a3         b3
          a.b         ab +a b +a b
 cos =        or cos = 1 1 2 2 3 3
          ab               a b
 If a and b are perpendicular then a.b = 0
 If a.b = 0 then a and b are perpendicular

Example

       8         4
If u = 0 and v = 0 , calculate the angle between the vectors u + v and u − v .
       4         1

Let a = u + v                       Let b = u − v
       8   4                                8   4
    a= 0 + 0                             b= 0 − 0
       4   1                                4   1
       12                                   4
    a= 0                                 b= 0
        5                                   3

         a.b
cos =
         ab
          (12 × 4 ) + ( 0 × 0 ) + ( 5 × 3 )
     =
       122 + 02 + 52 4 2 + 02 + 32
         63
     =
       169 25
                    63
     = cos −1
                  169 25
     = 14· °
         3


   hsn.uk.net                                       Page 14                      HSN24400
Higher Mathematics                                                                         Course Revision Notes

                                       Further Calculus
Trigonometry
Differenti on
          ati
 Thi i strai orward, si the f ulae are gi on the f ula sheet:
     s s     ghtf      nce   orm         ven      orm

                                            f (x)             f ′( x )

                                           si ax
                                             n              a cos ax
                                           cos ax          − a si ax
                                                                 n
Integration
 Agai the f ulae are provi i the paper:
      n,    orm           ded n

                                         f (x)                f ( x ) dx

                                        si ax
                                          n            − 1 cos ax + c
                                                         a

                                        cos ax             1 si ax + c
                                                           a n

Examples
     f erenti x 3 + cos3 x wi respect to x.
1. Di f      ate             th
       (             )
   d x 3 + cos3 x = 3 x 2 − 3si x
   dx
                              n3

2. Find 4 x 3 + si x dx .
                 n3
                      4x 4 1
      4 x + si x dx =
           3
             n3             − 3 cos3 x + c
                        4
                    = x 4 − 1 cos3 x + c
                            3

Chain Rule Differentiation
                                                           n −1                     n −1
 If f ( x ) = ( ax + b )n then f ′ ( x ) = n ( ax + b )           × a = an ( ax + b )
 or
                                                       n −1
 If f ( x ) = ( p ( x ) ) then f ′ ( x ) = n ( p ( x ) )
                         n
                                                              × p′ ( x )
 “The power m ulti es to the f
                  pli         ront, the bracket stays the sam e, the power lowers by one
 and everythi i m ulti ed by the di f
             ng s     pli            f erenti of the bracket”
                                             al




   hsn.uk.net                                       Page 15                                            HSN24400
Higher Mathematics                                                   Course Revision Notes

Examples
                      1
1. G i f ( x ) =
      ven                + x − si x , f nd f ′ ( x ) .
                                n3 i
                      x2
                       1
     f ( x ) = x −2 + x 2 − si x
                             n3
                             −1
    f ′ ( x ) = −2 x −3 + 1 x 2 − 3cos3 x
                          2

                  2       1
              =− 3 +          − 3cos3 x
                 x      2 x

      ven f ( x ) = ( 3 x 2 + 2 x + 1) , f nd f ′ ( x ) .
                                            3
2. G i                                    i
    f ′ ( x ) = 3 ( 3 x 2 + 2 x + 1) × ( 6 x + 2 )
                                   2



            = 3 ( 6 x + 2 ) ( 3 x 2 + 2 x + 1)
                                                 2



     f erenti y = cos 2 x = ( cos x )2 wi respect to x.
3. Di f       ate                        th
   dy
      = 2 ( cos x ) × ( − si x )
                           n
   dx
      = −2cos x si x n
                                       n
Integration of (ax + b)
                       ( ax + b )n+1
   ( ax + b ) dx =
               n
                                           +c
                       ( n + 1) × a

Example
Find ( 3 x + 5 )4 dx .
                    ( 3 x + 5 )5            ( 3 x + 5 )5
 ( 3 x + 5 ) dx =
           4
                                   +c =                    +c
                       5× 3                     15
 It i possi f any type of ‘urther calculus’ to be exam i i the style of a standard
     s     ble or            f                           ned n
 calculus questi (eg opti i on, area under a curve, etc)
                on       m sati

                            Exponentials and Logarithms
 An exponenti i a f
             al s uncti i the f
                       on n    orm f ( x ) = a x
 Logari s and exponenti are i
       thm             als   nverses
  y = a x ⇔ loga y = x
 On a calculator, log i log10 and ln i loge
                      s               s




    hsn.uk.net                                             Page 16               HSN24400
Higher Mathematics                                               Course Revision Notes

Laws of Logarithms
 loga x + loga y = loga xy          (Squash)
 loga x − loga y = loga x
                        y           (Split)
 loga x n = n loga x                (Fly)

Examples
1. Evaluate log2 4 + log2 6 − log2 3
     log2 4 + log2 6 − log2 3
               4×6
    = log2
                3
    = log2 8
    =3       (si 23 = 8)
               nce
2. Below i a di
          s    agram of part of the graph of y = ke 0.7 x
                                  y
                                                y = ke 0.7 x



                                       3
                                         0         x =1   x

   (a) Fi the value of k
         nd
   (b) The li wi equati x = 1 i
             ne th       on    ntersects at R. Fi the coordi
                                                 nd         nates of R.
   (a) At ( 0, 3 ) , y = ke 0.7 x
                     3 = ke 0.7×0
                     3 = ke 0
                     k =3
   (b) x = 1      y = 3e 0.7×1
                     = 6.04

       So R i the poi (1, 6.04 ) .
             s       nt




   hsn.uk.net                                  Page 17                       HSN24400
Higher Mathematics                                                               Course Revision Notes

                                   The Wave Function
Example
1. Express     6 si x ° − 2 cos x ° i the f
                  n                  n     orm k cos ( x − a ) ° where 0 ≤ a ° < 360 .
   k cos ( x − a ) ° = k cos x ° cos a ° + k si x ° si a °
                                               n      n
                    = k cos a ° cos x ° + k si a ° si x °
                                              n     n
                                                                             k si a °
   k cos a ° = − 2                            (− 2 )                            n
                                                       2         2
                                     k=                    + 6       tan a ° =
                                                                             k cos a °
   k si a ° = 6
      n
                                       = 2+6                                     6
                                                                            =−
       S A                             = 8                                       2
      T C                              =2 2                                 =− 3
                                                                         a ° = 180° − tan −1 ( 3 )
                                                                            = 180° − 60°
                                                                            = 120°
   Therefore 6 si x ° − 2 cos x ° = 2 2 cos ( x − 120 ) ° .
                n

2. Express cos x − si x i the f
                     n n       orm k si ( x + ) where 0 ≤ < 2 .
                                      n
   k si ( x + ) = k si x cos + k cos x si
      n              n                  n
                  = k cos si x + k si cos x
                           n        n
   k cos = −1                        k = ( −1)2 + 12                         k si
                                                                                n
                                                                     tan =
   k si = 1
      n                                = 2
                                                                             k cos
                                                                           = −1
       S A
                                                                         ° = 180° − tan −1 (1)
      T C
                                                                           = 180° − 45°
                                                                           = 135°
                                                                             135
                                                                           = 180
                                                                           =3
                                                                            4

   Theref cos x − si x = 2 si x + 3
         ore       n         n    4       (         ).
 The m axi um value of an expressi i the f
              m                                on n        orm k cos ( x ± a ) occurs when
 cos ( x ± a ) = 1 ; and si ( x ± a ) = 1 f k si ( x ± a )
                           n               or n
 The m i m um value of an expressi
           ni                                 on i the f
                                                  n          orm k cos ( x ± a ) occurs when
 cos ( x ± a ) = −1 ; and si ( x ± a ) = −1 f k si ( x ± a )
                           n                 or n



   hsn.uk.net                                      Page 18                                   HSN24400

Contenu connexe

Tendances (20)

Sample0 mtechcs06
Sample0 mtechcs06Sample0 mtechcs06
Sample0 mtechcs06
 
005 ellipse
005 ellipse005 ellipse
005 ellipse
 
01 plain
01 plain01 plain
01 plain
 
Gráficas de ecuaciones (slide share)
Gráficas de ecuaciones (slide share)Gráficas de ecuaciones (slide share)
Gráficas de ecuaciones (slide share)
 
001 basic concepts
001 basic concepts001 basic concepts
001 basic concepts
 
Maths curriculum Poland
Maths curriculum PolandMaths curriculum Poland
Maths curriculum Poland
 
AMU - Mathematics - 2000
AMU - Mathematics  - 2000AMU - Mathematics  - 2000
AMU - Mathematics - 2000
 
Líneas rectas (slide share)
Líneas rectas (slide share)Líneas rectas (slide share)
Líneas rectas (slide share)
 
Add Maths 2
Add Maths 2Add Maths 2
Add Maths 2
 
Day 07
Day 07Day 07
Day 07
 
Remodulization of Congruences
Remodulization of CongruencesRemodulization of Congruences
Remodulization of Congruences
 
Complex numbers 2
Complex numbers 2Complex numbers 2
Complex numbers 2
 
Lesson 39b
Lesson 39bLesson 39b
Lesson 39b
 
Informe laboratorio n°1
Informe laboratorio n°1Informe laboratorio n°1
Informe laboratorio n°1
 
Multiple integrals
Multiple integralsMultiple integrals
Multiple integrals
 
009 solid geometry
009 solid geometry009 solid geometry
009 solid geometry
 
Math 1300: Section 5-2 Systems of Inequalities in two variables
Math 1300: Section 5-2 Systems of Inequalities in two variablesMath 1300: Section 5-2 Systems of Inequalities in two variables
Math 1300: Section 5-2 Systems of Inequalities in two variables
 
Complementary Sets of Systems of Congruences
Complementary Sets of Systems of CongruencesComplementary Sets of Systems of Congruences
Complementary Sets of Systems of Congruences
 
Assignment6
Assignment6Assignment6
Assignment6
 
Matrizes
MatrizesMatrizes
Matrizes
 

Similaire à Hsn course revision notes

Xmss ict lesson sec 2 qe wksheet
Xmss  ict lesson sec 2 qe wksheetXmss  ict lesson sec 2 qe wksheet
Xmss ict lesson sec 2 qe wksheetbryan
 
Straight line properties
Straight line propertiesStraight line properties
Straight line propertiesAwais Khan
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Nur Kamila
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Asad Bukhari
 
The gradient of a straight line
The gradient of a straight lineThe gradient of a straight line
The gradient of a straight lineAwais Khan
 
7.5 lines and_planes_in_space
7.5 lines and_planes_in_space7.5 lines and_planes_in_space
7.5 lines and_planes_in_spaceMahbub Alwathoni
 
Alg2 lesson 2.2 and 2.3
Alg2 lesson 2.2 and 2.3Alg2 lesson 2.2 and 2.3
Alg2 lesson 2.2 and 2.3Carol Defreese
 
Straight Line Graphs
Straight Line GraphsStraight Line Graphs
Straight Line GraphsTrishdooley
 
Pair of linear equations in 2 variables
Pair of linear equations in 2 variablesPair of linear equations in 2 variables
Pair of linear equations in 2 variablesgeet bajaj
 
Lesson 2 see lesson plans
Lesson 2   see lesson plansLesson 2   see lesson plans
Lesson 2 see lesson plansAngela Phillips
 
Calculus the way to do it | Free Sample eBook | Mathslearning.com | Mathemati...
Calculus the way to do it | Free Sample eBook | Mathslearning.com | Mathemati...Calculus the way to do it | Free Sample eBook | Mathslearning.com | Mathemati...
Calculus the way to do it | Free Sample eBook | Mathslearning.com | Mathemati...Mathslearning.com
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functionslgemgnani
 
4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functionslgemgnani
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdfAliEb2
 
51955900 form-4-chapter-5
51955900 form-4-chapter-551955900 form-4-chapter-5
51955900 form-4-chapter-5Ragulan Dev
 

Similaire à Hsn course revision notes (20)

Xmss ict lesson sec 2 qe wksheet
Xmss  ict lesson sec 2 qe wksheetXmss  ict lesson sec 2 qe wksheet
Xmss ict lesson sec 2 qe wksheet
 
Straight line properties
Straight line propertiesStraight line properties
Straight line properties
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01Spm add-maths-formula-list-form4-091022090639-phpapp01
Spm add-maths-formula-list-form4-091022090639-phpapp01
 
The gradient of a straight line
The gradient of a straight lineThe gradient of a straight line
The gradient of a straight line
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
7.5 lines and_planes_in_space
7.5 lines and_planes_in_space7.5 lines and_planes_in_space
7.5 lines and_planes_in_space
 
Alg2 lesson 2.2 and 2.3
Alg2 lesson 2.2 and 2.3Alg2 lesson 2.2 and 2.3
Alg2 lesson 2.2 and 2.3
 
Chapter 1 straight line
Chapter 1 straight lineChapter 1 straight line
Chapter 1 straight line
 
1602 parametric equations
1602 parametric equations1602 parametric equations
1602 parametric equations
 
Straight Line Graphs
Straight Line GraphsStraight Line Graphs
Straight Line Graphs
 
Pair of linear equations in 2 variables
Pair of linear equations in 2 variablesPair of linear equations in 2 variables
Pair of linear equations in 2 variables
 
Lesson 2 see lesson plans
Lesson 2   see lesson plansLesson 2   see lesson plans
Lesson 2 see lesson plans
 
Normal
NormalNormal
Normal
 
Calculus the way to do it | Free Sample eBook | Mathslearning.com | Mathemati...
Calculus the way to do it | Free Sample eBook | Mathslearning.com | Mathemati...Calculus the way to do it | Free Sample eBook | Mathslearning.com | Mathemati...
Calculus the way to do it | Free Sample eBook | Mathslearning.com | Mathemati...
 
Graphs of trigonometry functions
Graphs of trigonometry functionsGraphs of trigonometry functions
Graphs of trigonometry functions
 
4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions4.5 graphs of trigonometry functions
4.5 graphs of trigonometry functions
 
chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdf
 
51955900 form-4-chapter-5
51955900 form-4-chapter-551955900 form-4-chapter-5
51955900 form-4-chapter-5
 

Dernier

CapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptxCapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptxCapitolTechU
 
Human-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming ClassesHuman-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming ClassesMohammad Hassany
 
3.21.24 The Origins of Black Power.pptx
3.21.24  The Origins of Black Power.pptx3.21.24  The Origins of Black Power.pptx
3.21.24 The Origins of Black Power.pptxmary850239
 
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdfP4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdfYu Kanazawa / Osaka University
 
The basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptxThe basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptxheathfieldcps1
 
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptxSandy Millin
 
Patient Counselling. Definition of patient counseling; steps involved in pati...
Patient Counselling. Definition of patient counseling; steps involved in pati...Patient Counselling. Definition of patient counseling; steps involved in pati...
Patient Counselling. Definition of patient counseling; steps involved in pati...raviapr7
 
The Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George WellsThe Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George WellsEugene Lysak
 
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfMaximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfTechSoup
 
Patterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptxPatterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptxMYDA ANGELICA SUAN
 
5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...CaraSkikne1
 
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRADUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRATanmoy Mishra
 
How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17Celine George
 
Presentation on the Basics of Writing. Writing a Paragraph
Presentation on the Basics of Writing. Writing a ParagraphPresentation on the Basics of Writing. Writing a Paragraph
Presentation on the Basics of Writing. Writing a ParagraphNetziValdelomar1
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxAditiChauhan701637
 
Prescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxPrescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxraviapr7
 
Benefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationBenefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationMJDuyan
 
HED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdfHED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdfMohonDas
 
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxPISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxEduSkills OECD
 
Diploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfDiploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfMohonDas
 

Dernier (20)

CapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptxCapTechU Doctoral Presentation -March 2024 slides.pptx
CapTechU Doctoral Presentation -March 2024 slides.pptx
 
Human-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming ClassesHuman-AI Co-Creation of Worked Examples for Programming Classes
Human-AI Co-Creation of Worked Examples for Programming Classes
 
3.21.24 The Origins of Black Power.pptx
3.21.24  The Origins of Black Power.pptx3.21.24  The Origins of Black Power.pptx
3.21.24 The Origins of Black Power.pptx
 
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdfP4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
P4C x ELT = P4ELT: Its Theoretical Background (Kanazawa, 2024 March).pdf
 
The basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptxThe basics of sentences session 10pptx.pptx
The basics of sentences session 10pptx.pptx
 
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
2024.03.23 What do successful readers do - Sandy Millin for PARK.pptx
 
Patient Counselling. Definition of patient counseling; steps involved in pati...
Patient Counselling. Definition of patient counseling; steps involved in pati...Patient Counselling. Definition of patient counseling; steps involved in pati...
Patient Counselling. Definition of patient counseling; steps involved in pati...
 
The Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George WellsThe Stolen Bacillus by Herbert George Wells
The Stolen Bacillus by Herbert George Wells
 
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdfMaximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
Maximizing Impact_ Nonprofit Website Planning, Budgeting, and Design.pdf
 
Patterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptxPatterns of Written Texts Across Disciplines.pptx
Patterns of Written Texts Across Disciplines.pptx
 
5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...5 charts on South Africa as a source country for international student recrui...
5 charts on South Africa as a source country for international student recrui...
 
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRADUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
DUST OF SNOW_BY ROBERT FROST_EDITED BY_ TANMOY MISHRA
 
How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17How to Show Error_Warning Messages in Odoo 17
How to Show Error_Warning Messages in Odoo 17
 
Presentation on the Basics of Writing. Writing a Paragraph
Presentation on the Basics of Writing. Writing a ParagraphPresentation on the Basics of Writing. Writing a Paragraph
Presentation on the Basics of Writing. Writing a Paragraph
 
In - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptxIn - Vivo and In - Vitro Correlation.pptx
In - Vivo and In - Vitro Correlation.pptx
 
Prescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptxPrescribed medication order and communication skills.pptx
Prescribed medication order and communication skills.pptx
 
Benefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive EducationBenefits & Challenges of Inclusive Education
Benefits & Challenges of Inclusive Education
 
HED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdfHED Office Sohayok Exam Question Solution 2023.pdf
HED Office Sohayok Exam Question Solution 2023.pdf
 
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptxPISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
PISA-VET launch_El Iza Mohamedou_19 March 2024.pptx
 
Diploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdfDiploma in Nursing Admission Test Question Solution 2023.pdf
Diploma in Nursing Admission Test Question Solution 2023.pdf
 

Hsn course revision notes

  • 1. hsn.uk.net Higher Mathematics HSN24400 Course Revi on Notes si Thi docum ent was produced speci f the HSN.uk.net websi and we requi that any copi or deri ve s ally or te, re es vati works attribute the work to us. For m ore detai about the copyri on these notes, please see http://creati ls ght vecom m ons.org/licenses/by-nc-sa/2.0/
  • 2. Higher Mathematics Course Revision Notes Contents Unit 1 – Mathematics 1 Straight Lines 1 Functions and Graphs 2 Differentiation 5 Sequences 6 Unit 2 – Mathematics 2 Polynomials and Quadratics 7 Integration 8 Trigonometry 9 Circles 12 Unit 3 – Mathematics 3 Vectors 12 Further Calculus 15 Exponentials and Logarithms 16 The Wave Function 18 hsn.uk.net - ii - HSN24400
  • 3. Higher Mathematics Course Revision Notes Straight Lines Distance Formula stance = ( x2 − x1 ) + ( y2 − y1 ) between poi ( x1, y1 ) and ( x2 , y2 ) 2 2 Di nts Gradients y2 − y1 m= between the poi ( x1, y1 ) and ( x2 , y2 ) where x1 ≠ x2 nts x 2 − x1 Posi ve gradi ti ents, negati gradi ve ents, zero gradients, undef ned gradi i ents eg x = 2 eg y = 4 Li wi the sam e gradi are parallel nes th ent eg The li parallel to 2 y + 3 x = 5 ne has gradi m = − 3 si ent 2 nce 2 y + 3 x = 5 2 y = −3 x + 5 5 y = − 3 x + 2 (m ust be i the f 2 n orm y = mx + c ) Perpendicular li have gradi nes ents such that m × mperp. = −1 eg i m = 2 then mperp. = − 2 f 3 3 m = tan y i the angle that the li m akes wi s ne th positive direction the posi ve di on of the x-axi ti recti s x Equation of a Straight Line The li passi through ( a, b ) wi gradi m has equati ne ng th ent on: y − b = m( x − a ) Medians B x1 + x 2 y1 + y2 M i the m i s dpoi of AC, i M = nt e , 2 2 BM i not usually perpendi s cular to AC, so m1 × m2 = −1 A C cannot be used M To work out the gradi of BM, use the gradi f ula ent ent orm hsn.uk.net Page 1 HSN24400
  • 4. Higher Mathematics Course Revision Notes Altitudes B D i not usually the m i s dpoi of AC nt BD i perpendi s cular t AC, so m1 × m2 = −1 can be used t o o A C work out the gradi of BD ent D Perpendicular Bisectors D CD passes through m i dpoi of AC nt A B C CD i perpendi s cular t AB, so m1 × m2 = −1 can be used t o o C B f nd the gradi of CD i ent Perpendicular bisectors do not necessari have to appear ly D wi n a tri thi angle – they can occur wi st ght li th rai nes A Functions and Graphs Composite Functions Example If f ( x ) = x 2 − 2 and g ( x ) = 1 , f nd a f ula f x i orm or (a) h ( x ) = f ( g ( x ) ) (b) k ( x ) = g ( f ( x ) ) and state a suitable dom ai f each. n or (a) h ( x ) = f ( g ( x ) ) (b) k ( x ) = g ( f ( x ) ) = f (1) x = g( x 2 − 2) =(1) −2 2 1 x = x −2 2 1 = −2 Dom ai { x : x ∈ , x ≠ ± 2 } n: x2 Dom ai { x : x ∈ , x ≠ 0} n: You wi probably only be asked f a dom ai i the f ll or n f uncti i on nvolved a f on or an racti even root. Rem em ber that i a f on the denom i n racti nator cannot be zero and any num ber bei square rooted cannot be negati ng ve eg f ( x ) = x + 1 could have dom ai { x : x ∈ , x ≥ −1} n: hsn.uk.net Page 2 HSN24400
  • 5. Higher Mathematics Course Revision Notes Graphs of Inverses To draw the graph of an inverse functi ref on, lect the graph of the functi i the on n li y = x ne y y=x y = g( x ) y = g−1 ( x ) O x Exponential and Logarithmic Functions Exponential Logarithmic y y y y = loga x y = ax, a >1 y = ax, 0 < a <1 ( a ,1) O x 1 (1, a ) 1 (1, a ) 1 O x O x Trigonometric Functions y = si x n y = cos x y = tan x y y y 1 1 O x O x O x –1 –1 180° 360° 180° 360° 180° 360° Peri = 360° od Peri = 360° od Peri = 180° od tude = 1 Am pli tude = 1 Am pli Am pli tude i undef ned s i Graph Transformations The next page shows the ef ect of transf ati on the two graphs shown below. f orm ons ( 2, 2 ) y = g ( x ) y y 1 O x –1 0 3 x –1 180° 360° hsn.uk.net Page 3 HSN24400
  • 6. Higher Mathematics Course Revision Notes Function Ef ect f Ef ect on f ( x ) f Ef ect on si x ° f n f ( x ) + a Shi ts the graph f y y = g( x ) + 1 y y = si x ° + 1 n a up the ( 2, 3 ) • 2 y-axis 1 • • ( 3,1) ( −1,1) 0 x 0 x 180° 360° f ( x + a ) Shi ts the graph f y y = g ( x + 1) y y = si ( x − 90 ) ° n −a along the • (1, 2 ) 1 x-axis 0 x –2 0 2 x –1 180° 360° − f (x) Reflects the y y y = − si x ° n y = − g( x ) graph i the n 0 1 x-axis –1 3 x 0 x • ( 2, − 2 ) –1 180° 360° f (−x ) Ref lects the ( −2, 2 ) y y = g( −x ) y = si ( − x ° ) n y graph i the n • 1 y-axi s 0 x –3 0 1 x –1 −360° −180° kf ( x ) Scales the graph y ( 2, 4 ) y = 2 g ( x ) y y = 1 si x ° 2 n vertically • 1 Stretches if 2 k >1 −1 0 x x 2 Com presses if –1 0 3 k <1 180° 360° f ( kx ) Scales the graph y (1, 2 ) y = g(2x ) y y = si 2 x ° n horizontally • 1 Com presses if k >1 0 x Stretches if x −1 0 3 –1 k <1 2 2 180° 360° hsn.uk.net Page 4 HSN24400
  • 7. Higher Mathematics Course Revision Notes Differentiation Differentiating If f ( x ) = ax n then f ′ ( x ) = anx n −1 Bef you di f ore f erenti all brackets should be m ulti ed out, and there should be no ate, pli f ons wi an x term i the denom i racti th n nator (bottom li f exam ple: ne), or 3 1 −1 1 = 1 x −2 = 3x −2 =x 2 3x 2 3 x2 x Equations of Tangents Tangents are strai li ght nes, theref to f nd the equati of a tangent, you need a poi ore i on nt on the li and i gradi to substi ne ts ent tute i y − b = m ( x − a ) nto You wi always be gi one coordi ll ven nate of the poi whi the tangent touches nt ch Fi the other coordi nd nate by solvi the equati of the curve ng on nd ent f erenti ng then substi ng i the x-coordi Fi the gradi by di f ati tuti n nate of the point Example Fi the equati of the tangent to the graph of y = x 3 at the poi where x = 9 . nd on nt y = x3 y = x3 At x = 9, m = 3 × 9 2 1 y − b = m(x − a) 2 = 93 = x2 3 =3 9 y − 27 = 9 ( x − 9 ) 2 2 = 3 ×3 2 y − 54 = 9 x − 81 = 33 dy 3 1 = 2 x2 2 2 y = 9 x − 27 = 27 dx =9 2 ( 9, 27 ) dy Stationary poi occur at poi where nts nts =0 dx You m ust j f the nature of turni poi or poi of i lecti usti y ng nts nts nf on hsn.uk.net Page 5 HSN24400
  • 8. Higher Mathematics Course Revision Notes Graphs of Derived Functions Quadratic Cubic Quartic y y y 0 0 0 – + + – + – + – 0 + x x x 0 0 y y y + + + x – – x – + + x – Linear Quadratic Cubic Optimisation These types of questions are usually practi problem s whi i cal ch nvolve m axi um or m m i m um areas or volum es ni Rem em ber you m ust show that a m axi um or m i m um exi m ni sts Sequences Linear Recurrence Relations A linear recurrence relati i i the f on s n orm un+1 = aun + b . Also be aware that thi m ay be s written as un = aun−1 + b b If −1 < a < 1 then a li i l = m t exi You m ust state thi whenever you use the li i sts. s m t 1− a f ula orm hsn.uk.net Page 6 HSN24400
  • 9. Higher Mathematics Course Revision Notes Polynomials and Quadratics Polynomials The degree of a polynom i i the value of the hi al s ghest power, eg 3 x 4 + 3 has degree 4 Syntheti di si (nested f ) can be used to f c vi on orm actori polynom i se als Example 4 x 3 − 7 x 2 + 11 Find . x +2 –2 4 –7 0 11 Rem em ber to put i 0 n i there i no term f s –8 30 –60 4 –15 30 –49 4 x 3 − 7 x 2 + 11 = 4 x 2 − 15 x + 30 rem ainder − 49 x +2 i 4 x 3 − 7 x 2 + 11 = ( x + 2 ) ( 4 x 2 − 15 x + 30 ) − 49 e If the di sor i a f vi s actor then the rem ainder i zero s If the rem ainder i zero then the di sor i a f s vi s actor Completing the Square The x 2 term m ust have a coef i ent of one. If i does not, you m ust take out a com m on f ci t 2 factor from the x and x term , but not the constant orm y = a ( x + p ) + q the turni poi of the graph i ( − p, q ) 2 In the f ng nt s Example Wri 3 x 2 − 12 x + 7 i the f te n orm a(x + p)2 + q . 3 x 2 − 12 x + 7 = 3( x 2 − 4x ) + 7 = 3 ( x 2 − 4 x + ( −2 )2 − ( −2 )2 ) + 7 = 3 ( ( x − 2 )2 − 4 ) + 7 = 3 ( x − 2 )2 − 12 + 7 = 3 ( x − 2 )2 − 5 Note that i thi exam ple, the graph i ∪ -shaped si the x 2 coef i ent i posi ve; and n s s nce f ci s ti the turni poi i ( 2, − 5 ) . ng nt s hsn.uk.net Page 7 HSN24400
  • 10. Higher Mathematics Course Revision Notes The Discriminant The di m i scri nant i part of the quadrati f ula and can be used to i cate how m any s c orm ndi roots a quadrati has. For the quadrati ax + bx + c : c c 2 If b 2 − 4 ac > 0 , the roots are real and unequal (di nct) sti 2 roots If b 2 − 4 ac = 0 , the roots are real and equal (i repeated roots) e 1 root If b 2 − 4 ac < 0 , the roots are not real; they do not exist no roots The di m i scri nant can also be used to calculate the num ber of intersecti between a ons li and a curve. To use i you m ust f rst equate them and set equal to zero, bef ne t, i ore usi the di m i ng scri nant Rem em ber i b 2 − 4 ac = 0 , the li i a tangent f ne s Integration Integrating ax n +1 ax n dx = +c n +1 As wi di f th f erenti on, all brackets m ust be m ulti ed out, and there m ust be no ati pli f ons wi an x term i the denom i racti th n nator Examples dx x 2 + 5x 7 1. Find . 2. dx 8 x5 x2 dx 1 x 2 + 5x 7 = dx 2 dx = x −2 ( x 2 + 5 x 7 ) dx 8 x5 8 x5 x = x −5 8 dx = x 0 + 5 x 5 dx x8 3 = 1 + 5 x 5 dx = 3 +c 8 = x + 5 x6 + c 6 3 = 8 x8 + c 3 = 3 8 x3 + c 8 hsn.uk.net Page 8 HSN24400
  • 11. Higher Mathematics Course Revision Notes The Area under a Curve b If F ( x ) i the i s ntegral of f ( x ) , then f ( x ) dx = F (b ) − F ( a ) a y y = f (x) a b x Rem em ber that areas spli by the x-axi m ust be calculated separately and any negati t s ve si i gns gnored; these j show that the area i under the axi ust s s. The Area between two Curves b The area between the graphs of y = f ( x ) and y = g ( x ) i def ned as s i a f ( x ) − g ( x ) dx y y = g( x ) ven, f ( x ) and g ( x ) If the li i are not gi m ts should be equated to f nd a and b i x a b y = f (x) Trigonometry Background Knowledge You should know how to use all of the i orm ati below: nf on SOH CAH TOA si x n tan x = cos x si 2 x + cos2 x = 1 n a b c The si rule: ne = = si A si B si C n n n b2 + c 2 − a2 The cosi rule: a = b + c − 2bc cos A or cos A = ne 2 2 2 2bc hsn.uk.net Page 9 HSN24400
  • 12. Higher Mathematics Course Revision Notes The area of a triangle, A = 1 ab si C 2 n CAST diagram s Exact values: 2 30° 2 45° 3 1 45° 60° 1 1 Radians You should know how to convert between radi and degrees: ans 360° = 2 90° = 2 45° = 4 ÷ 180 × → Degrees  Radians 180° = 60° = 3 30° = 6 ans × 180 ÷ → Radi  Degrees 5 × 180 eg 5 = 6 = 150° 6 Trigonometric Equations Look at the restri ons on the dom ai eg 0 ≤ x ° < 360, or 0 ≤ x < cti n, Be aware of whether the answer i requi i degrees or radi s red n ans Rem em ber a CAST diagram whenever you are asked to “solve” Examples 1. Solve 3si 2 x° = 1 where 0 ≤ x ° < 360 . n 3si 2 x ° = 1 n 3 ( si x ° ) = 1 2 n ( si x ° )2 = 1 n 3 si x ° = ± 1 n 3 S A x ° = si n −1 (± 1 ) 3 T C x° = 35.3° x° = 180 − 35.3 x° = 180 + 35.3 x° = 360 − 35.3 = 144.7° = 215.3° = 324.7° Soluti set = {35.3°, 144.7°, 215.3°, 324.7°} on hsn.uk.net Page 10 HSN24400
  • 13. Higher Mathematics Course Revision Notes 2. Solve 2 si 2 x − 1 = 0 , 0 ≤ x < 2 . n 2 si 2 x − 1 = 0 n 2si 2 x = 1 n si 2 x = 1 n 2 S A 2 x = si −1 ( 1 ) n 2 T C 2 x ° = 30° 2 x ° = 180° − 30° x ° = 15° 2 x ° = 150° x ° = 75° 2 x ° = 360° + 30° 2 x ° = 360° +180° − 30° 2 x ° = 390° 2 x ° = 510° x ° = 195° x ° = 255° 15 15° = 180 75 75° = 180 195 195° = 180 255 255° = 180 = 36 3 = 15 36 = 36 39 51 = 36 = 12 5 = 12 = 12 13 = 17 12 ons { Soluti set = 12 , 12 , 12 , 17 5 13 12 } Compound Angle Formulae cos ( A ± B ) = cos A cos B si A si B n n si ( A ± B ) = si A cos B ± cos A si B n n n These are gi on the f ula sheet ven orm Double Angle Formulae si 2 A = 2si A cos A n n cos 2 A = cos2 A − si 2 A n = 1 − 2 si 2 A n = 2 cos 2 A − 1 These are gi on the f ula sheet ven orm hsn.uk.net Page 11 HSN24400
  • 14. Higher Mathematics Course Revision Notes Circles Equations of Circles A ci wi centre ( a,b ) and radi r has the equati ( x − a )2 + ( y − b ) = r2 2 rcle th us on Note that i a ci has centre ( 0, 0 ) then the equati i x 2 + y 2 = r2 f rcle on s The equati can also be gi i the f on ven n orm x 2 + y 2 + 2 gx + 2 fy + c = 0 where the centre i ( − g,− f s ) and the radi r = g2 + f 2 − c us You do not have to rem em ber any of these equations, si they are all gi i the nce ven n exam stance f ula, d = ( x2 − x1 ) + ( y2 − y1 ) , si thi 2 2 You wi have to rem em ber the di ll orm nce s i not gi s ven, and i f s requently used i ci questi n rcle ons Intersection of a Line and a Circle two intersections one intersection (tangency) no intersections Rem em ber, a tangent and a li f ne rom the centre of a circle wi m eet at ri angles, ll ght whi m eans that m1 × m2 = −1 can be used ch Vectors Basic Facts A vector i a quanti wi both m agni s ty th tude (si and di on ze) recti A vector i nam ed ei s ther by usi a di ng rected li segm ent (eg AB ) or a bold letter ne (eg u written u) A vector m ay also be def ned i term s of i, j and k, the uni vectors i three i n t n perpendicular di ons: recti 1 0 0 i= 0 j= 1 k= 0 0 0 1 a The m agnitude of vector AB = b i def ned as AB = a 2 + b 2 s i hsn.uk.net Page 12 HSN24400
  • 15. Higher Mathematics Course Revision Notes a1 b1 a1 ± b1 a1 ka1 0 a2 ± b2 = a2 ± b2 k a2 = ka2 where k i a scalar s Z ero vector: 0 a3 b3 a3 ± b3 a3 ka3 0 OA i called the posi on vector of the poi A relati to the ori n, wri s ti nt ve gi tten a AB = b − a where a and b are the posi on vectors of A and B ti If AB = k BC where k i a scalar, then AB i parallel to BC . Si B i com m on to both s s nce s AB and k BC , then A, B and C are collinear Dividing Vectors in a Ratio The poi P can also be worked out f nt rom f rst pri ples, or i nci U si the secti f ula. If P di des AB i the rati m : n , then: ng on orm vi n o n m p= a+ b where p i the posi on vector OP s ti m+n m+n Example P i the poi ( −2, 4, − 1) and R i the poi ( 8, − 1,19 ) . Poi T di des PR i the rati s nt s nt nt vi n o 2:3. Work out the coordinates of poi T. nt 2:3 P R T U si the secti f ul ng on orm a From fi pri pl rst nci es The rati i 2:3, so let m = 2 and n = 3 o s PT 2 = n m TR 3 t= p+ r m+n m+n 3PT = 2TR = 3 p + 2r 5 5 ( ) 3 t − p = 2 (r − t ) ( = 1 3 p + 2r 5 ) 3t − 3 p = 2r − 2t 3t + 2t = 2r + 3 p −6 16 =1 12 + −2 16 −6 5 −3 38 5t = −2 + 12 38 −3 10 = 1 10 10 5 35 5t = 10 35 2 = 2 2 7 t= 2 7 Theref T i the poi ( 2, 2, 7 ) . ore s nt Theref T i the poi ( 2, 2, 7 ) . ore s nt hsn.uk.net Page 13 HSN24400
  • 16. Higher Mathematics Course Revision Notes The Scalar Product The scalar product a.b = a b cos , where i the sm allest angle between a and b s Rem em ber that both vectors m ust poi away f nt rom the angle, eg a b a1 b1 If a = a2 and b = b2 then a.b = a1b1 + a2b2 + a3b3 a3 b3 a.b ab +a b +a b cos = or cos = 1 1 2 2 3 3 ab a b If a and b are perpendicular then a.b = 0 If a.b = 0 then a and b are perpendicular Example 8 4 If u = 0 and v = 0 , calculate the angle between the vectors u + v and u − v . 4 1 Let a = u + v Let b = u − v 8 4 8 4 a= 0 + 0 b= 0 − 0 4 1 4 1 12 4 a= 0 b= 0 5 3 a.b cos = ab (12 × 4 ) + ( 0 × 0 ) + ( 5 × 3 ) = 122 + 02 + 52 4 2 + 02 + 32 63 = 169 25 63 = cos −1 169 25 = 14· ° 3 hsn.uk.net Page 14 HSN24400
  • 17. Higher Mathematics Course Revision Notes Further Calculus Trigonometry Differenti on ati Thi i strai orward, si the f ulae are gi on the f ula sheet: s s ghtf nce orm ven orm f (x) f ′( x ) si ax n a cos ax cos ax − a si ax n Integration Agai the f ulae are provi i the paper: n, orm ded n f (x) f ( x ) dx si ax n − 1 cos ax + c a cos ax 1 si ax + c a n Examples f erenti x 3 + cos3 x wi respect to x. 1. Di f ate th ( ) d x 3 + cos3 x = 3 x 2 − 3si x dx n3 2. Find 4 x 3 + si x dx . n3 4x 4 1 4 x + si x dx = 3 n3 − 3 cos3 x + c 4 = x 4 − 1 cos3 x + c 3 Chain Rule Differentiation n −1 n −1 If f ( x ) = ( ax + b )n then f ′ ( x ) = n ( ax + b ) × a = an ( ax + b ) or n −1 If f ( x ) = ( p ( x ) ) then f ′ ( x ) = n ( p ( x ) ) n × p′ ( x ) “The power m ulti es to the f pli ront, the bracket stays the sam e, the power lowers by one and everythi i m ulti ed by the di f ng s pli f erenti of the bracket” al hsn.uk.net Page 15 HSN24400
  • 18. Higher Mathematics Course Revision Notes Examples 1 1. G i f ( x ) = ven + x − si x , f nd f ′ ( x ) . n3 i x2 1 f ( x ) = x −2 + x 2 − si x n3 −1 f ′ ( x ) = −2 x −3 + 1 x 2 − 3cos3 x 2 2 1 =− 3 + − 3cos3 x x 2 x ven f ( x ) = ( 3 x 2 + 2 x + 1) , f nd f ′ ( x ) . 3 2. G i i f ′ ( x ) = 3 ( 3 x 2 + 2 x + 1) × ( 6 x + 2 ) 2 = 3 ( 6 x + 2 ) ( 3 x 2 + 2 x + 1) 2 f erenti y = cos 2 x = ( cos x )2 wi respect to x. 3. Di f ate th dy = 2 ( cos x ) × ( − si x ) n dx = −2cos x si x n n Integration of (ax + b) ( ax + b )n+1 ( ax + b ) dx = n +c ( n + 1) × a Example Find ( 3 x + 5 )4 dx . ( 3 x + 5 )5 ( 3 x + 5 )5 ( 3 x + 5 ) dx = 4 +c = +c 5× 3 15 It i possi f any type of ‘urther calculus’ to be exam i i the style of a standard s ble or f ned n calculus questi (eg opti i on, area under a curve, etc) on m sati Exponentials and Logarithms An exponenti i a f al s uncti i the f on n orm f ( x ) = a x Logari s and exponenti are i thm als nverses y = a x ⇔ loga y = x On a calculator, log i log10 and ln i loge s s hsn.uk.net Page 16 HSN24400
  • 19. Higher Mathematics Course Revision Notes Laws of Logarithms loga x + loga y = loga xy (Squash) loga x − loga y = loga x y (Split) loga x n = n loga x (Fly) Examples 1. Evaluate log2 4 + log2 6 − log2 3 log2 4 + log2 6 − log2 3 4×6 = log2 3 = log2 8 =3 (si 23 = 8) nce 2. Below i a di s agram of part of the graph of y = ke 0.7 x y y = ke 0.7 x 3 0 x =1 x (a) Fi the value of k nd (b) The li wi equati x = 1 i ne th on ntersects at R. Fi the coordi nd nates of R. (a) At ( 0, 3 ) , y = ke 0.7 x 3 = ke 0.7×0 3 = ke 0 k =3 (b) x = 1 y = 3e 0.7×1 = 6.04 So R i the poi (1, 6.04 ) . s nt hsn.uk.net Page 17 HSN24400
  • 20. Higher Mathematics Course Revision Notes The Wave Function Example 1. Express 6 si x ° − 2 cos x ° i the f n n orm k cos ( x − a ) ° where 0 ≤ a ° < 360 . k cos ( x − a ) ° = k cos x ° cos a ° + k si x ° si a ° n n = k cos a ° cos x ° + k si a ° si x ° n n k si a ° k cos a ° = − 2 (− 2 ) n 2 2 k= + 6 tan a ° = k cos a ° k si a ° = 6 n = 2+6 6 =− S A = 8 2 T C =2 2 =− 3 a ° = 180° − tan −1 ( 3 ) = 180° − 60° = 120° Therefore 6 si x ° − 2 cos x ° = 2 2 cos ( x − 120 ) ° . n 2. Express cos x − si x i the f n n orm k si ( x + ) where 0 ≤ < 2 . n k si ( x + ) = k si x cos + k cos x si n n n = k cos si x + k si cos x n n k cos = −1 k = ( −1)2 + 12 k si n tan = k si = 1 n = 2 k cos = −1 S A ° = 180° − tan −1 (1) T C = 180° − 45° = 135° 135 = 180 =3 4 Theref cos x − si x = 2 si x + 3 ore n n 4 ( ). The m axi um value of an expressi i the f m on n orm k cos ( x ± a ) occurs when cos ( x ± a ) = 1 ; and si ( x ± a ) = 1 f k si ( x ± a ) n or n The m i m um value of an expressi ni on i the f n orm k cos ( x ± a ) occurs when cos ( x ± a ) = −1 ; and si ( x ± a ) = −1 f k si ( x ± a ) n or n hsn.uk.net Page 18 HSN24400