1. Lecture 1
Design Loads
Dr. Morsaleen Chowdhury
Civil Engineering & Quantity Surveying
Military Technological College
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
2. Lecture Outline
Introduction
Design philosophy, limit state design, design codes.
Types of Loads
Dead, live, snow, lateral, load configurations.
Load Paths
Load Factors of Safety
Factors for SLS and ULS, load cases.
Example 1, Example 2
Tributary Area
Square floors, 1-way and 2-way slabs.
Example 3
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
3. MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
Introduction to
Structural Engineering
4. Structural Engineering
Structural Engineering is the…
the science and art of designing and constructing buildings,
bridges, roads, airports, and many other infrastructures,
with economy and elegance, so that they safely resist the
forces to which they are subjected to…
Structural Engineers are primarily involved in two major fields:
Structural Analysis
Structural Design
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
5. Structural Analysis is the study of the loads on physical structures and
the ‘response’ of each of its elements
Some of the responses that engineers need to study are:
Deflections
Axial Forces
Shear Forces
Moments
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
6. Structural Design is the process of determining the location, material,
and size of the ‘structural elements’
Structural elements or members include:
Primary Beam
Secondary Beam
Column
Slab
Foundation
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
8. Limit State Design
Limit State Design (LSD) is a design method or analysis used in
structural engineering
The ‘limit state’ refers to the condition of the structure when it
can no longer satisfy the service requirements
LSD requires the structure to satisfy two principal criteria:
Ultimate Limit State
Serviceability Limit State
The aim of this analysis is to ensure that neither limiting state
will appear in the structure during it entire service life
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
9. Ultimate Limit State
Ultimate Limit State is related to the maximum capacity of the
structure under ‘extreme’ loading conditions
Design criteria: Strength, Safety, Stability and Durability
General design equation:
Reduce the capacity (φ - reduction factor)
Increase the design loads
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
10. Ultimate Limit State
‘Loads’: uniformly distributed loads (UDL) or concentrated loads
‘Load effects’ are the resultant forces on the structure: Axial
Force N*, Shear Force V* and Bending Moment M*
Structural Analysis
Capacity is the strength of the structure: Axial Capacity φNu,
Shear Capacity φVu and Bending Moment Capacity φMu
Structural Design
The specific design equation for each case MUST be satisfied:
Axial Force: φNu ≥ N*
Shear Force: φVu ≥ V*
Bending Moment: φMu ≥ M*
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
11. Serviceability Limit State
Serviceability Limit State is related to the capacity of the
structure under ‘normal (everyday)’ loading conditions
Design criteria: Deformation, Vibrations and Cracks
For most buildings, controlling deflections will also limit
vibrations & cracks
Need to consider stiffness rather than strength
Deflection limits for beams:
Appearance (sagging), fitness for
purpose (machinery, pipes),
structural (avoid unintended load
paths)
Need to define acceptable
Deflection Limit!
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
12. Structural Design Codes
A guideline is needed to design a structure in satisfaction of
Ultimate & Serviceability Limit States, e.g.:
Design loads & load factors
Capacity (strength) & reduction factors
Deflection limits
Structural Design Codes provide a basis for designing all types
of structures, e.g. international standards:
Australia – e.g. AS3600, AS4100
America – e.g. AISC 360-10, ACI 318
Europe – Eurocodes
This Module will focus on the Eurocodes for the design of
structural elements
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
14. Eurocodes
Each Eurocode may consist of several parts, e.g. EN1991
Eurocode 1: Actions on Structures
EN1991-1-1: Densities, Self-Weight, Imposed Loads for Buildings
EN1991-1-2: Actions on Structures Exposed to Fire
EN1991-1-3: General Actions – Snow Loads
This Module will apply the following Eurocodes:
EN1990: Basis of Structural Design
EN1991-1-1: Densities, Self-Weight, Imposed Loads for Buildings
EN1992-1-1: General Rules and Rules for Buildings (Concrete)
EN1993-1-1: General Rules and Rules for Buildings (Steel)
MUST have a copy of each of these Eurocodes!
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
16. Types of Loads
Design loads that need to be considered in Eurocode 1
EN1991-1-1 can be categorized into:
G – Dead Load
Q – Live Load due to UDL or PL
W – Live Load due to Wind
S – Live Load due to Snow
E – Live Load due to Earthquake
The structure must be adequately designed so as to safely
withstand all of these loads
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
17. Dead Loads are loads that are permanent (fixed):
Always act vertically on the structure
Self-Weight – weight of the actual structural members
Superimposed – objects that are permanently attached to the
structure (floors, roofs, decks)
Concrete slab, stationary equipment, partitions, etc.
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
Dead Loads
18. Live Loads are loads that change with time or can move:
People, furniture, and occupancy
Any Uniformly Distributed Load (UDL) or Point Load (PL) on top of
the slab
Movable equipment, snow, rain, wind, impact, earthquake
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
Live Loads
19. Snow Loads are loads developed due to heavy snow fall:
Forces of accumulated snow on a roof
Load values are usually specified in building codes
Depends on e.g. location, exposure to wind, roof slope
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
Snow Loads
20. Lateral Loads are loads that act horizontally to the structure:
Wind Loads
Earthquake Loads
Flood or Rain Water Loads
Soil Pressure Loads
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
Lateral Loads
21. Types of loads applied to structures:
Types of actions exerted on structural members:
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
Load Configuations
23. Load Paths
The Load Path is the term used to describe the actual path that
a load travels through the structural system
Every structure MUST have a load path to transfer the applied
loads SAFELY to the foundation
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
24. The load path for a typical multi-storey building:
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
25. The load path for a typical underground car park:
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
26. Different structures have different load paths
Some structures have only one load path
Some have several – redundancy (extra)
Redundancy is very important to the structural stability!
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
28. Load Factors for ULS
EN1990, Section 6.4 – Ultimate Limit State (ULS) examples of load
combination using Eq. 6.10:
1. Dead Load 1.35G
2. Dead Load + Live Load 1.35G +1.5Q
3. Dead Load + Live Load + Wind Load 1.35G + 1.5Q + 1.5×0.6×W
4. Dead Load + Live Load + Snow Load 1.35G + 1.5Q + 1.5×0.5×S
From EN1990, Annex A1 – Table A1.1
Domestic, residential, office, congregation, shopping areas Ψ0 = 0.7
Storage areas Ψ0 = 1.0, Wind Load Ψ0 = 0.6, Snow Load Ψ0 = 0.5
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
29. Load Factors for SLS
EN1990, Section 6.5 – Serviceability Limit State (SLS) :
EN1990, Section 6.5, Eq.6.14 – Characteristic Combination :
Irreversible limit states, i.e. where the results of loads exceeding the
specified service requirements remain after the loads are removed
Factor for ‘combination’ value of Imposed Load: Ψ0 (Table A1.1)
EN1990, Section 6.5, Eq. 6.15 – Frequent Combination:
Used for frequent loading cases and reversible limit states:
Factor for ‘frequent’ value of Imposed Load: Ψ1
Factor for ‘quasi-permanent’ value of Imposed Load: Ψ2
EN1990, Section 6.5, Eq. 6.16 – Quasi-permanent Combination:
Used for long-term effects, e.g. checking cracking or deflection
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
30. EN 1990, Annex A1 – Table A1.1
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
31. Load Cases
Simply Supported Beam
LOAD CASE 1
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
• The Dead Load 1.35G is applied on the
whole structure because of its self-
weight
• The Live Load 1.5Q is applied to a part
or the whole structure
32. Load Cases
Overhanging Beam
LOAD CASE 1
LOAD CASE 2
LOAD CASE 3
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
33. Load Cases
Continuous Beam
LOAD CASE 1
LOAD CASE 2
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
34. Example 1
The figure shows a 4m long simply supported beam shown. The beam
is to carry a self-weight UDL of 25 kN/m, a concentrated dead load of
40 kN at the mid-span, and a distributed UDL live load of 10 kN/m.
(a) Calculate the design loads of w and P for the ultimate limit state (ULS).
(b) Draw the shear force diagram (SFD) and bending moment diagram (BMD).
(c) What are the maximum design shear force and bending moment?
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
36. Example 2
The continuous beam below supports a uniformly distributed load. The
self-weight is 25 kN/m and the live load is 10 kN/m.
(a) Analyze the different load cases for the continuous beam.
(b) Draw the SFD and BMD for each load case.
(c) From part (b), develop the SFD and BMD envelops.
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
41. Tributary Area
The distribution of the floor loads on the beams is based on the
geometric configuration of the beams forming the grid
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
Load distribution for a typical office floor
42. Square Floor
Case 1: Square Floor System
All the edge beams will support the same triangular load
The area of the slab portion that is supported by a particular beam
is called the Tributary Area
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
Load Distribution:
• Weight density of concrete slab γ=24kN/m3
• Length of beam L
• Pressure distribution of slab ω= γt,
t=thickness of slab
• Height of the triangular load is ωL/2
Concrete Slab
43. 1-Way Slab
Case 2: 1-Way Rectangular Floor System
The floor is supported by two longer beams length LB and two
shorter beams length Ls
If LB/Ls > 2, then the load is only carried by the longer beams
This is called a 1-Way Slab
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
Load Distribution:
• Weight density of concrete slab γ=24kN/m3
• Length of beam LB
• Pressure distribution of slab ω= γt,
t=thickness of slab
• Height of the uniform load is ωLs/2
44. 2-Way Slab
Case 3: 2-Way Rectangular Floor System
The floor is supported by two longer beams length LB and two
shorter beams length Ls
If LB/Ls ≤ 2, the longer beams will carry a trapezoidal load
distribution and the shorter beams will carry a triangular load
This is called a 2-Way Slab
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS
45. Example 3
A typical office floor structure is shown with the concrete slab, steel
beam, and steel column. The floor needs to carry the following loads:
Live load = 4 kPa;
Superimposed dead load = 1 kPa
Slab thickness = 225 mm; Density of concrete slab = 2400 kg/m3;
Density of steel beams = 7850 kg/m3; Ψ1 = 0.5, Ψ2 = 0.3.
(a) Calculate Design loads on beams B1 and B2 for the ULS and SLS.
(b) Draw the SFD and BMD for each load case.
MTCC5020: DESIGN OF STRUCTURAL ELEMENTS