Laws of exponents

Learning Targets:
• I can define exponent;
• I can do laws of exponents; and
• I can determined different
kinds of laws of exponents.
Laws of exponents
Exponents
 3
5
Power
base
exponent
3 3
means that is the exponential
form of t
Example:
he number
125 5 5
.
125

53 means 3 factors of 5 or 5 x 5 x 5
The Laws of Exponents:
#1: Exponential form: The exponent of a power indicates
how many times the base multiplies itself.
n
n times
x x x x x x x x

      
3
Example: 5 5 5 5
  
n factors of x
#2: Multiplying Powers: If you are multiplying Powers
with the same base, KEEP the BASE & ADD the EXPONENTS!
m n m n
x x x 
 
So, I get it!
When you
multiply
Powers, you
add the
exponents!
512
2
2
2
2 9
3
6
3
6



 
#3: Dividing Powers: When dividing Powers with the
same base, KEEP the BASE & SUBTRACT the EXPONENTS!
m
m n m n
n
x
x x x
x

  
So, I get it!
When you
divide
Powers, you
subtract the
exponents!
16
2
2
2
2 4
2
6
2
6


 
Try these:

 2
2
3
3
.
1

 4
2
5
5
.
2

 2
5
.
3 a
a

 7
2
4
2
.
4 s
s



 3
2
)
3
(
)
3
(
.
5

 3
7
4
2
.
6 t
s
t
s

4
12
.
7
s
s

5
9
3
3
.
8

4
4
8
12
.
9
t
s
t
s

5
4
8
5
4
36
.
10
b
a
b
a

 2
2
3
3
.
1

 4
2
5
5
.
2

 2
5
.
3 a
a

 7
2
4
2
.
4 s
s



 3
2
)
3
(
)
3
(
.
5

 3
7
4
2
.
6 t
s
t
s
81
3
3 4
2
2



7
2
5
a
a 

9
7
2
8
4
2 s
s 

 
SOLUTIONS
6
4
2
5
5 

243
)
3
(
)
3
( 5
3
2




 
7
9
3
4
7
2
t
s
t
s 



4
12
.
7
s
s

5
9
3
3
.
8

4
4
8
12
.
9
t
s
t
s

5
4
8
5
4
36
.
10
b
a
b
a
SOLUTIONS
8
4
12
s
s 

81
3
3 4
5
9



4
8
4
8
4
12
t
s
t
s 


3
5
8
4
5
9
4
36 ab
b
a 

 

#4: Power of a Power: If you are raising a Power to an
exponent, you multiply the exponents!
 
n
m mn
x x

So, when I
take a Power
to a power, I
multiply the
exponents
5
2
3
2
3
5
5
)
5
( 
 
#5: Product Law of Exponents: If the product of the
bases is powered by the same exponent, then the result is a
multiplication of individual factors of the product, each powered
by the given exponent.
 
n n n
xy x y
 
So, when I take
a Power of a
Product, I apply
the exponent to
all factors of
the product.
2
2
2
)
( b
a
ab 
#6: Quotient Law of Exponents: If the quotient of the
bases is powered by the same exponent, then the result is both
numerator and denominator , each powered by the given exponent.
n n
n
x x
y y
 

 
 
So, when I take a
Power of a
Quotient, I apply
the exponent to
all parts of the
quotient.
81
16
3
2
3
2
4
4
4








Try these:
  
5
2
3
.
1
  
4
3
.
2 a
  
3
2
2
.
3 a
  
2
3
5
2
2
.
4 b
a

 2
2
)
3
(
.
5 a
  
3
4
2
.
6 t
s







5
.
7
t
s









2
5
9
3
3
.
8









2
4
8
.
9
rt
st









2
5
4
8
5
4
36
.
10
b
a
b
a
  
5
2
3
.
1
  
4
3
.
2 a
  
3
2
2
.
3 a
  
2
3
5
2
2
.
4 b
a

 2
2
)
3
(
.
5 a
  
3
4
2
.
6 t
s
SOLUTIONS
10
3
12
a
6
3
2
3
8
2 a
a 

6
10
6
10
4
2
3
2
5
2
2
16
2
2 b
a
b
a
b
a 




  4
2
2
2
9
3 a
a 

 
12
6
3
4
3
2
t
s
t
s 









5
.
7
t
s









2
5
9
3
3
.
8









2
4
8
.
9
rt
st









2
5
4
8
5
4
36
10
b
a
b
a
SOLUTIONS
  6
2
2
3
2
2
2
3
81
9
9 b
a
b
a
ab 
 
2
8
2
2
4
r
t
s
r
st









  8
2
4
3
3 
5
5
t
s
#7: Negative Law of Exponents: If the base is powered
by the negative exponent, then the base becomes reciprocal with the
positive exponent.
1
m
m
x
x


So, when I have a
Negative Exponent, I
switch the base to its
reciprocal with a
Positive Exponent.
Ha Ha!
If the base with the
negative exponent is in
the denominator, it
moves to the
numerator to lose its
negative sign!
9
3
3
1
125
1
5
1
5
2
2
3
3






and
#8: Zero Law of Exponents: Any base powered by zero
exponent equals one.
0
1
x 
1
)
5
(
1
1
5
0
0
0



a
and
a
and
So zero
factors of a
base equals 1.
That makes
sense! Every
power has a
coefficient
of 1.
Try these:
  
0
2
2
.
1 b
a

 4
2
.
2 y
y
  
1
5
.
3 a


 7
2
4
.
4 s
s
  

 4
3
2
3
.
5 y
x
  
0
4
2
.
6 t
s









1
2
2
.
7
x









2
5
9
3
3
.
8









2
4
4
2
2
.
9
t
s
t
s









2
5
4
5
4
36
.
10
b
a
a
SOLUTIONS
  
0
2
2
.
1 b
a
  
1
5
.
3 a


 7
2
4
.
4 s
s
  

 4
3
2
3
.
5 y
x
  
0
4
2
.
6 t
s
1
5
1
a
5
4s
  12
8
12
8
4
81
3
y
x
y
x 


1









1
2
2
.
7
x









2
5
9
3
3
.
8









2
4
4
2
2
.
9
t
s
t
s









2
5
4
5
4
36
.
10
b
a
a
SOLUTIONS
4
4
1
x
x








  8
8
2
4
3
1
3
3 
 

  4
4
2
2
2
t
s
t
s 



2
10
10
2
2
81
9
a
b
b
a 


1 sur 20

Recommandé

Rational expressions ppt par
Rational expressions pptRational expressions ppt
Rational expressions pptDoreen Mhizha
4.6K vues30 diapositives
Rational Expressions par
Rational ExpressionsRational Expressions
Rational ExpressionsVer Louie Gautani
27.8K vues84 diapositives
Laws Of Exponents par
Laws Of ExponentsLaws Of Exponents
Laws Of ExponentsPhil Saraspe
178.3K vues13 diapositives
Evaluating Algebraic Expressions par
Evaluating Algebraic ExpressionsEvaluating Algebraic Expressions
Evaluating Algebraic Expressionsbizarregirl
41.4K vues17 diapositives
Properties of equality par
Properties of equalityProperties of equality
Properties of equalitysalvie alvaro
7.1K vues37 diapositives
Multiplying & dividing rational algebraic expressions par
Multiplying & dividing rational algebraic expressionsMultiplying & dividing rational algebraic expressions
Multiplying & dividing rational algebraic expressionsmyla gambalan
1.4K vues14 diapositives

Contenu connexe

Tendances

Factoring Perfect Square Trinomial par
Factoring Perfect Square TrinomialFactoring Perfect Square Trinomial
Factoring Perfect Square TrinomialDhenz Lorenzo
15.8K vues14 diapositives
Proportion par
ProportionProportion
Proportiontvierra
13.1K vues15 diapositives
Polynomials par
PolynomialsPolynomials
PolynomialsVer Louie Gautani
24.6K vues33 diapositives
Factoring Sum and Difference of Two Cubes par
Factoring Sum and Difference of Two CubesFactoring Sum and Difference of Two Cubes
Factoring Sum and Difference of Two CubesFree Math Powerpoints
2.6K vues11 diapositives
Combined variation par
Combined variationCombined variation
Combined variationMartinGeraldine
962 vues10 diapositives
Adding and subtracting polynomials par
Adding and subtracting polynomialsAdding and subtracting polynomials
Adding and subtracting polynomialsholmsted
7.9K vues8 diapositives

Tendances(20)

Factoring Perfect Square Trinomial par Dhenz Lorenzo
Factoring Perfect Square TrinomialFactoring Perfect Square Trinomial
Factoring Perfect Square Trinomial
Dhenz Lorenzo15.8K vues
Proportion par tvierra
ProportionProportion
Proportion
tvierra13.1K vues
Adding and subtracting polynomials par holmsted
Adding and subtracting polynomialsAdding and subtracting polynomials
Adding and subtracting polynomials
holmsted7.9K vues
Probability of Simple and Compound Events par Joey Valdriz
Probability of Simple and Compound EventsProbability of Simple and Compound Events
Probability of Simple and Compound Events
Joey Valdriz8.5K vues
Multiplication and division of fractions par Nancy Madarang
Multiplication and division of fractionsMultiplication and division of fractions
Multiplication and division of fractions
Nancy Madarang11.6K vues
Quadratic inequality par Brian Mary
Quadratic inequalityQuadratic inequality
Quadratic inequality
Brian Mary11.3K vues
Linear Equations in Two Variables par sheisirenebkm
Linear Equations in Two VariablesLinear Equations in Two Variables
Linear Equations in Two Variables
sheisirenebkm15.7K vues
Mathematics 9 Lesson 4-C: Joint and Combined Variation par Juan Miguel Palero
Mathematics 9 Lesson 4-C: Joint and Combined VariationMathematics 9 Lesson 4-C: Joint and Combined Variation
Mathematics 9 Lesson 4-C: Joint and Combined Variation
Juan Miguel Palero11.8K vues
7.7 Solving Radical Equations par swartzje
7.7 Solving Radical Equations7.7 Solving Radical Equations
7.7 Solving Radical Equations
swartzje31.7K vues
Adding Polynomials par chulitt
Adding PolynomialsAdding Polynomials
Adding Polynomials
chulitt8.1K vues
Simplifying algebraic expressions par manswag123
Simplifying algebraic expressionsSimplifying algebraic expressions
Simplifying algebraic expressions
manswag1236.4K vues

Similaire à Laws of exponents

laws_of_exponents_student_use.ppt par
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.pptIzah Catli
17 vues19 diapositives
laws_of_exponents_student_use.ppt par
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.pptJennilynBalusdan2
1 vue19 diapositives
laws_of_exponents_student_use.ppt par
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.pptBrianMary2
6 vues19 diapositives
laws_of_exponents_student_use.ppt par
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.pptJenilynEspejo1
6 vues19 diapositives
laws_of_exponents_student_use.ppt par
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.pptmikeebio1
14 vues19 diapositives
Exponents and powers by arjun rastogi par
Exponents and powers by arjun rastogiExponents and powers by arjun rastogi
Exponents and powers by arjun rastogiARJUN RASTOGI
3.2K vues20 diapositives

Similaire à Laws of exponents(20)

laws_of_exponents_student_use.ppt par Izah Catli
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.ppt
Izah Catli17 vues
laws_of_exponents_student_use.ppt par BrianMary2
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.ppt
BrianMary26 vues
laws_of_exponents_student_use.ppt par mikeebio1
laws_of_exponents_student_use.pptlaws_of_exponents_student_use.ppt
laws_of_exponents_student_use.ppt
mikeebio114 vues
Exponents and powers by arjun rastogi par ARJUN RASTOGI
Exponents and powers by arjun rastogiExponents and powers by arjun rastogi
Exponents and powers by arjun rastogi
ARJUN RASTOGI3.2K vues
Exponents Intro with Practice.ppt par Izah Catli
Exponents Intro with Practice.pptExponents Intro with Practice.ppt
Exponents Intro with Practice.ppt
Izah Catli36 vues
The Laws of Exponents par IshalKhan6
The Laws of Exponents  The Laws of Exponents
The Laws of Exponents
IshalKhan6111 vues
Feb. 14th, 2014 par khyps13
Feb. 14th, 2014Feb. 14th, 2014
Feb. 14th, 2014
khyps13950 vues
Laws of exponents and Power par chandkec
Laws of exponents and PowerLaws of exponents and Power
Laws of exponents and Power
chandkec74 vues
Mathtest 01 par leoscotch
Mathtest 01Mathtest 01
Mathtest 01
leoscotch2.5K vues

Dernier

MIXING OF PHARMACEUTICALS.pptx par
MIXING OF PHARMACEUTICALS.pptxMIXING OF PHARMACEUTICALS.pptx
MIXING OF PHARMACEUTICALS.pptxAnupkumar Sharma
82 vues35 diapositives
How to empty an One2many field in Odoo par
How to empty an One2many field in OdooHow to empty an One2many field in Odoo
How to empty an One2many field in OdooCeline George
72 vues8 diapositives
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively par
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyPECB
598 vues18 diapositives
Psychology KS4 par
Psychology KS4Psychology KS4
Psychology KS4WestHatch
90 vues4 diapositives
Sociology KS5 par
Sociology KS5Sociology KS5
Sociology KS5WestHatch
76 vues23 diapositives
Narration lesson plan par
Narration lesson planNarration lesson plan
Narration lesson planTARIQ KHAN
59 vues11 diapositives

Dernier(20)

How to empty an One2many field in Odoo par Celine George
How to empty an One2many field in OdooHow to empty an One2many field in Odoo
How to empty an One2many field in Odoo
Celine George72 vues
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively par PECB
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
PECB 598 vues
Narration lesson plan par TARIQ KHAN
Narration lesson planNarration lesson plan
Narration lesson plan
TARIQ KHAN59 vues
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant... par Ms. Pooja Bhandare
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Pharmaceutical Inorganic Chemistry Unit IVMiscellaneous compounds Expectorant...
Education and Diversity.pptx par DrHafizKosar
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptx
DrHafizKosar177 vues
Structure and Functions of Cell.pdf par Nithya Murugan
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan701 vues
11.30.23 Poverty and Inequality in America.pptx par mary850239
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptx
mary850239167 vues
Ch. 8 Political Party and Party System.pptx par Rommel Regala
Ch. 8 Political Party and Party System.pptxCh. 8 Political Party and Party System.pptx
Ch. 8 Political Party and Party System.pptx
Rommel Regala53 vues
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx par ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP379 vues
11.28.23 Social Capital and Social Exclusion.pptx par mary850239
11.28.23 Social Capital and Social Exclusion.pptx11.28.23 Social Capital and Social Exclusion.pptx
11.28.23 Social Capital and Social Exclusion.pptx
mary850239304 vues
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB... par Nguyen Thanh Tu Collection
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...
BÀI TẬP BỔ TRỢ TIẾNG ANH 11 THEO ĐƠN VỊ BÀI HỌC - CẢ NĂM - CÓ FILE NGHE (GLOB...

Laws of exponents

  • 1. Learning Targets: • I can define exponent; • I can do laws of exponents; and • I can determined different kinds of laws of exponents.
  • 3. Exponents  3 5 Power base exponent 3 3 means that is the exponential form of t Example: he number 125 5 5 . 125  53 means 3 factors of 5 or 5 x 5 x 5
  • 4. The Laws of Exponents: #1: Exponential form: The exponent of a power indicates how many times the base multiplies itself. n n times x x x x x x x x         3 Example: 5 5 5 5    n factors of x
  • 5. #2: Multiplying Powers: If you are multiplying Powers with the same base, KEEP the BASE & ADD the EXPONENTS! m n m n x x x    So, I get it! When you multiply Powers, you add the exponents! 512 2 2 2 2 9 3 6 3 6     
  • 6. #3: Dividing Powers: When dividing Powers with the same base, KEEP the BASE & SUBTRACT the EXPONENTS! m m n m n n x x x x x     So, I get it! When you divide Powers, you subtract the exponents! 16 2 2 2 2 4 2 6 2 6    
  • 7. Try these:   2 2 3 3 . 1   4 2 5 5 . 2   2 5 . 3 a a   7 2 4 2 . 4 s s     3 2 ) 3 ( ) 3 ( . 5   3 7 4 2 . 6 t s t s  4 12 . 7 s s  5 9 3 3 . 8  4 4 8 12 . 9 t s t s  5 4 8 5 4 36 . 10 b a b a
  • 8.   2 2 3 3 . 1   4 2 5 5 . 2   2 5 . 3 a a   7 2 4 2 . 4 s s     3 2 ) 3 ( ) 3 ( . 5   3 7 4 2 . 6 t s t s 81 3 3 4 2 2    7 2 5 a a   9 7 2 8 4 2 s s     SOLUTIONS 6 4 2 5 5   243 ) 3 ( ) 3 ( 5 3 2       7 9 3 4 7 2 t s t s   
  • 10. #4: Power of a Power: If you are raising a Power to an exponent, you multiply the exponents!   n m mn x x  So, when I take a Power to a power, I multiply the exponents 5 2 3 2 3 5 5 ) 5 (   
  • 11. #5: Product Law of Exponents: If the product of the bases is powered by the same exponent, then the result is a multiplication of individual factors of the product, each powered by the given exponent.   n n n xy x y   So, when I take a Power of a Product, I apply the exponent to all factors of the product. 2 2 2 ) ( b a ab 
  • 12. #6: Quotient Law of Exponents: If the quotient of the bases is powered by the same exponent, then the result is both numerator and denominator , each powered by the given exponent. n n n x x y y        So, when I take a Power of a Quotient, I apply the exponent to all parts of the quotient. 81 16 3 2 3 2 4 4 4        
  • 13. Try these:    5 2 3 . 1    4 3 . 2 a    3 2 2 . 3 a    2 3 5 2 2 . 4 b a   2 2 ) 3 ( . 5 a    3 4 2 . 6 t s        5 . 7 t s          2 5 9 3 3 . 8          2 4 8 . 9 rt st          2 5 4 8 5 4 36 . 10 b a b a
  • 14.    5 2 3 . 1    4 3 . 2 a    3 2 2 . 3 a    2 3 5 2 2 . 4 b a   2 2 ) 3 ( . 5 a    3 4 2 . 6 t s SOLUTIONS 10 3 12 a 6 3 2 3 8 2 a a   6 10 6 10 4 2 3 2 5 2 2 16 2 2 b a b a b a        4 2 2 2 9 3 a a     12 6 3 4 3 2 t s t s   
  • 16. #7: Negative Law of Exponents: If the base is powered by the negative exponent, then the base becomes reciprocal with the positive exponent. 1 m m x x   So, when I have a Negative Exponent, I switch the base to its reciprocal with a Positive Exponent. Ha Ha! If the base with the negative exponent is in the denominator, it moves to the numerator to lose its negative sign! 9 3 3 1 125 1 5 1 5 2 2 3 3       and
  • 17. #8: Zero Law of Exponents: Any base powered by zero exponent equals one. 0 1 x  1 ) 5 ( 1 1 5 0 0 0    a and a and So zero factors of a base equals 1. That makes sense! Every power has a coefficient of 1.
  • 18. Try these:    0 2 2 . 1 b a   4 2 . 2 y y    1 5 . 3 a    7 2 4 . 4 s s      4 3 2 3 . 5 y x    0 4 2 . 6 t s          1 2 2 . 7 x          2 5 9 3 3 . 8          2 4 4 2 2 . 9 t s t s          2 5 4 5 4 36 . 10 b a a
  • 19. SOLUTIONS    0 2 2 . 1 b a    1 5 . 3 a    7 2 4 . 4 s s      4 3 2 3 . 5 y x    0 4 2 . 6 t s 1 5 1 a 5 4s   12 8 12 8 4 81 3 y x y x    1