SlideShare une entreprise Scribd logo
1  sur  50
Télécharger pour lire hors ligne
INTEGRAL CALCULUS
Integration
or
Anti-derivatives
Definition Indefinite Integral
The set of all antiderivatives of a function f(x) is the
indefinite integral of f with respect to x and is denoted by

∫ f ( x)dx
∫ f ( x)dx = F ( x) + C
Definite Integration
b

f
∫
a

'

(x )dx

=f (b ) −f (a )
Antiderivatives with Slope Fields
1. ∫ x dx =
n

dx
2. ∫ =
x

x n+1
+ C , n ≠ −1
n +1

ln x + C

3. ∫ e dx = e + C
x

x

4. ∫ sin x dx = − cos x + C
Antiderivatives with Slope Fields
5. ∫ cos x dx =

sin x + C

6. ∫ sec x dx =

tan x + C

7. ∫ csc 2 x dx =

− cot x + C

8. ∫ sec x tan x dx =

sec x + C

2

9. ∫ csc x cot x dx = − csc x + C
Antiderivatives with Slope Fields

∫ (x

∫x

3

3

− 2 x + 3)dx

x dx

1

∫  t 2 − cos t  dt



4

x
2
− x + 3x + C
4
9
2

2
x +C
9
1
− − sin t + C
t
Antiderivatives with Slope Fields

∫ sec x(tan x + cos x)dx

sec x + x + C

∫ (1 + sin x csc x) dx

x − cos x + C

(e 2t + t 2 ) dt
∫

e2t t 3
+ +C
2 3

2
Antiderivatives with Slope Fields
Find the position function for v(t) = t3 - 2t2 + t s(0) = 1
4

3

2

t
2t
t
s (t ) = −
+ +C
4
3
2
4

3

2

0 2( 0) ( 0)
1= −
+
+C
4
3
2
4

3

2

t
2t t
s (t ) = −
+ +1
4
3
2

C=1
Anti-derivatives with Slope
Fields

∫

d (cabin)
=
cabin
log cabin + C

log cabin

houseboat
Integration by Substitution
The chain rule allows us to differentiate a
wide variety of functions, but we are able
to find antiderivatives for only a limited
range of functions. We can sometimes
use substitution to rewrite functions in a
form that we can integrate.
Integration by Substitution

∫ ( x + 2)

5

dx

∫ u du
5

1 6
u +C
6

( x + 2)
6

6

+C

Let u = x + 2
du = dx
The variable of integration must match
the variable in the expression.

Don’t forget to substitute the
value for u back into the
problem!
Integration by Substitution

∫

1 + x 2 ⋅ 2 x dx

∫u

1
2

One of the clues that we look for is if we can
find a function and its derivative in the
integrand.
The derivative of

du

Let u = 1 + x
du = 2 x dx

3
2

2
u +C
3
2
(1+ x
3

3
2 2

)

1 + x2

+C

is

.
2 x dx

2

Note that this only worked because of the 2x in
the original.
Many integrals can not be done by substitution.
Integration by Substitution

∫

4 x − 1 dx

∫u

1
2

1
⋅ du
4

3
2

2
1
u ⋅ +C
3
4
3
2

1
u +C
6

Let u = 4 x − 1
du = 4 dx
1
du = dx
4

3
1
( 4 x − 1) 2 + C
6

Solve for dx.
Integration by Substitution

∫ cos ( 7 x + 5) dx
1
∫ cos u ⋅ 7 du
1
sin u + C
7
1
sin ( 7 x + 5 ) + C
7

Let u = 7 x + 5
du = 7 dx
1
du = dx
7
Integration by Substitution
x 2 sin ( x 3 ) dx
∫

Let u = x 3

1
∫ sin u du
3

du = 3 x 2 dx

1
− cos u + C
3
1
3
− cos x + C
3

1
du = x 2 dx
3
2
We solve forx dx because

we can find it in the integrand.
Integration by Substitution
sin 4 x ⋅ cos x dx
∫

Let u = sin x

∫ ( sin x ) cos x dx

du = cos x dx

4

u 4 du
∫

1 5
u +C
5

1 5
sin x + C
5
Integration by Substitution
π
4
0

∫

2

tan x sec x dx
new limit
1

∫ u du
0

new limit

1

1 2
u
2 0
1
2

The technique is a little different for definite
integrals.

Let u = tan x
2
du = sec x dx
u ( 0 ) = tan 0 = 0

π
π 
u   = tan = 1
4
4

We can find new
limits, and then
we don’t have to
substitute back.

We could have substituted back and used the original
limits.
Integration by Substitution
π
4
0

∫

π
4
0

∫

Using the original limits:

tan x sec 2 x dx

Let u = tan x
du = sec x dx
2

u du

∫ u du

2

Leave the
limits out until
you substitute
back.

1 2
= u
π
2
1
2 4
= ( tan x )
2
0

1
π 1
2
=  tan  − ( tan 0 )
2
Wrong! 4  2

This is usually
more work than
finding new
limits

The limits don’t 1
match!
1 2 1 2
= ⋅1 − ⋅ 0 =
2
2
2
Integration by Substitution

∫

1

−1

∫

2

0

3x

2

x + 1 dx
3

3 2
2

2
⋅2
3

du = 3 x dx
2

1
2

u du

2
u
3

Let u = x 3 + 1

u ( 1) = 2

Don’t forget to use the new limits.

0
3
2

u ( −1) = 0

2
= ⋅2 2
3

4 2
=
3
Integration by Substitution

∫ 2 x 1 + x dx

∫ tan t dt

∫

sin 3 θ cosθ dθ
∫

2

3 x + 4 dx

∫ t (5 + 3t ) dt
2 8

∫

cot θ csc 2 θ dθ
Integration by Substitution

∫

x−2
dx
x −1

5

2

π
4
π
−
2

∫

−

∫

e2

e

5x

e
∫ 3 + e5 x dx

cos x sin 2 x dx

∫

dx

dx
x ln x

∫

1 − x x 2 dx

1

0

x

e
2. Find
x = sin u

∫

∫

(1 − x 2 ) dx. Let u = sin−1 x
dx = cos u du

Substituting gives,

(1 − x 2 ) dx = ∫ 1 − sin2 u cos u du
= ∫ cos2 u du

We can not integrate this yet. Let us use trig.

1
cos2 u = (1 + cos 2u )
2
1 1
u 1
= ∫ + cos 2u du = + sin2u + c
2 2
2 4
u 1
1
= + .2sin u cos u + c = ( u + sin u cos u ) + c
2 4
2
1
= ( u + sin u cos u ) + c
2

Now for some trig play…..

x = sin u, but what does cos u equal?
sin2 u + cos2 u = 1
cos2 u = 1 − sin2

cos u = 1 − sin2 u

∫

1
(1 − x ) dx = ( u + sin u cos u ) + c
2
2

(

)

1
= sin−1 x + x 1 − x 2 + c
2
3. Find

∫

x2
4−x

2

dx. Let x = 2 sin θ

dx = 2cos θ dθ

∫

x2
4−x

2

dx = ∫
=∫

4 sin2 θ
4 − 4 sin θ
2

2 sin2 θ
cos θ
2

.2cos θ dθ = ∫

4 sin2 θ
2 1 − sin θ
2

.2cos θ dθ

.2cos θ dθ

= ∫ 4 sin θ dθ
2

1 1
 2

sin θ = − cos 2θ ÷

2 2



= ∫ 2 − 2cos 2θ dθ
= 2θ − sin2θ + c
= 2θ − 2 sinθ cosθ + c

We now need to substitute theta
in terms of x.
x 2 = 4 sin2 θ

x = 2sinθ
x
sinθ =  ÷
2

−1  x 
θ = sin  ÷
2

= 4 − 4 cos2 θ
4 cos2 θ = 4 − x 2
2cos θ = 4 − x 2
1
cosθ =
4 − x2
2

∫

x2
4−x

2

dx = 2θ − 2 sinθ cos θ + c
x 1
x
= 2 sin  ÷ − 2. .
4 − x2 + c
2 2
2
−1

x x
= 2 sin  ÷ −
4 − x2 + c
2 2
−1
Now for some not very obvious substitutions……………….

1. Find

sin5 x dx
∫

sin5 x = sin x sin4 x = sin x (sin2 x )2 = sin x (1 − cos2 x )2
sin5 x dx = ∫ sin x (1 − cos2 x )2 dx
∫

Let u = cos x

du = − sin x dx

sin5 x dx = ∫ −(1 − u 2 )2 du = ∫ −(1 − 2u 2 + u 4 ) du = ∫ −1 + 2u 2 − u 4 du
∫
2 3 1 5
= u − u −u +c
3
5
2
1
3
= cos x − cos5 x − cos x + c
3
5
1
2. Find ∫
dx
1− x

Let u = 1 − x
1

1
1 −2
du = − x dx ⇒ dx = −2 x 2 du ⇒ dx = −2 ( 1 − u ) du
2

1
2(u − 1)
2
dx = ∫
du = ∫ 2 − du
∫ 1− x
u
u
= 2u − 2ln u + c
= 2 − 2 x − 2ln 1 − x + c
Integration by Parts
Integration By Parts
Start with the product rule:

d
dv
du
( uv ) = u + v
dx
dx
dx
d ( uv ) = u dv + v du
d ( uv ) − v du = u dv
u dv = d ( uv ) − v du

∫ u dv = ∫ ( d ( uv ) − v du )
∫ u dv = ∫ ( d ( uv ) ) − ∫ v du

∫ uv′ dx = uv − ∫ u′v dx
This is the Integration by Parts formula.

→
∫ uv′ dx = uv − ∫ u′v dx
u differentiates to zero

v’ is easy to integrate.

(usually).
The Integration by Parts formula is a “product rule” for integration.

Choose u in this order:

LIPET

Logs, Inverse trig, Polynomial, Exponential, Trig

→
Example 1:

∫ x cos x dx
polynomial factor

∫ uv′ dx = uv − ∫ u′v dx

∫ uv′ dx = uv − ∫ u′v dx
LIPET

u=x

v′ = cos x

u′ = 1

v = sin x

x ⋅ sin x − ∫ sin x dx

∫ x cos x dx = x sin x + cos x + c
→
Example 2:

∫ uv′ dx = uv − ∫ u′v dx

∫ ln x dx

LIPET
logarithmic factor

∫ uv′ dx = uv − ∫ u′v dx

u = ln x
1
u′ =
x

v′ = 1

v=x

1
ln x ⋅ x − ∫ x ⋅ dx
x

∫ ln x ⋅1dx = x ln x − x + c
→
∫ uv′ dx = uv − ∫ u′v dx

Example 3:

x 2 e x dx
∫

u = x2

= x 2 e x − ∫ e x 2 x dx
x

(

= x e − 2 xe − ∫ e dx

∫x e

2 x

x

v = ex

This is still a product, so we need to use
integration by parts again.
x

= x e − 2 ∫ xe dx
2 x

v′ = e x

u′ = 2 x

= uv − ∫ u′v dx
2 x

LIPET

x

)

u=x

v′ = e

u′ = 1

v = ex

dx = x e − 2 xe + 2e + c
2 x

x

x

→
uv′ dx = uv − ∫ u′v dx
∫
The Integration by Parts formula can be written as:

u dv = uv − ∫ v du
∫
Example 4:

LIPET

e x cos x dx
∫
u v − ∫ v du

e x sin x − ∫ sin x ×e x dx

(

u = e x dv = cos x dx
du = e x dx v = sin x
dv = sin x dx
u=e
x
du = e dx v = − cos x
x

e sin x − e ×− cos x − ∫ − cos x ×e dx
x

x

x

uv

v du

e x sin x + e x cos x − ∫ e x cos x dx

)
This is the
expression we
started with!

→
Example 4 continued …

e x cos x dx
∫

LIPET

u v − ∫ v du

e x sin x − ∫ sin x ×e x dx

(

u = e x dv = cos x dx
du = e x dx v = sin x
dv = sin x dx
u=e
x
du = e dx v = − cos x
x

e sin x − e ×− cos x − ∫ − cos x ×e dx
x

x

x

)

e x cos x dx = e x sin x + e x cos x − ∫ e x cos x dx
∫
2 ∫ e x cos x dx = e x sin x + e x cos x
e x sin x + e x cos x
e x cos x dx =
+C
∫
2
Example 4 continued …

e x cos x dx
∫
u v − ∫ v du

e x sin x − ∫ sin x ×e x dx

(

This is called “solving for the
unknown integral.”

It works when both factors
integrate and differentiate
forever.

e sin x − e ×− cos x − ∫ − cos x ×e dx
x

x

x

)

e x cos x dx = e x sin x + e x cos x − ∫ e x cos x dx
∫
2 ∫ e x cos x dx = e x sin x + e x cos x
e x sin x + e x cos x
e x cos x dx =
+C
∫
2

→
A Shortcut: Tabular Integration
Tabular integration works for integrals of the form:

∫ f ( x ) g ( x ) dx
where:

Differentiates to zero
in several steps.

Integrates
repeatedly.

→
x 2 e x dx
∫
f ( x ) & deriv. g ( x ) & integrals
2

e

− 2x

ex

+ x
+ 2
0

x

e

x

e

Compare this with the
same problem done the
other way:

x

x 2 e x −2 xe x +2e x +C
∫ x e dx =
2 x

→
∫ uv′ dx = uv − ∫ u′v dx

Example 3:

x 2 e x dx
∫

u = x2

= x 2 e x − ∫ e x 2 x dx
x

(

= x e − 2 xe − ∫ e dx

∫x e

2 x

x

v = ex

This is still a product, so we need to use
integration by parts again.
x

= x e − 2 ∫ xe dx
2 x

v′ = e x

u′ = 2 x

= uv − ∫ u′v dx
2 x

LIPET

x

)

u=x

v′ = e

u′ = 1

v = ex

dx = x e − 2 xe + 2e + c
2 x

x

x

This is easier and quicker to do with
tabular integration!

→
x3 sin x dx
∫

x3
+

sin x

− 3x 2

− cos x

+ 6x
− 6

− sin x

0

sin x

cos x

− x3 cos x + 3 x 2 sin x + 6 x cos x − 6sin x + C

π
Properties of the Definite Integral
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
Substitution and definite integrals
Assuming the function is continuous over the interval, then exchanging the limits for
x by the corresponding limits for u will save you having to substitute back after the
integration process.
2

(2x+4)(x 2 + 4 x )3 dx
∫

1. Evaluate

1

Let u = x 2 + 4 x

∫

2
1

du = 2 x + 4 dx When x = 2, u = 12; x = 1, u = 5

(2x+4)(x + 4 x ) dx = ∫
2

3

12
5

u 3du
12

1 
=  u4 
 4 5

= 5027.75
Special (common) forms
Some substitutions are so common that they can be treated as standards and, when
their form is established, their integrals can be written down without further ado.

1
∫ f (ax + b)dx = a F (ax + b) + c
f `( x )
∫ f ( x ) dx = ln f ( x ) + c
1
f `( x )f ( x )dx = (f ( x ))2 + c
∫
2
Area under a curve
y = f(x)
b

A = ∫ f ( x ) dx
a

a

b

a

b
b

A = − ∫ f ( x ) dx
a

y = f(x)
Area between the curve and y - axis
y = f(x)
b
a

b

A = ∫ f ( y ) dy
a
1. Calculate the area shown in the diagram below.
y = x2 + 1
5
2

5

1
2

A = ∫ ( y − 1) dy
2

y = x2 + 1
x2 = y − 1
x = y −1

5

2

=  ( y − 1) 
3
2
3
2

=

14
units squared.
3

Contenu connexe

Tendances

Runge Kurta method of order Four and Six
Runge Kurta method of order Four and SixRunge Kurta method of order Four and Six
Runge Kurta method of order Four and SixFahad B. Mostafa
 
Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )Kelinci Coklat
 
Integral Lipat Tiga dalam koordinat Tabung dan Bola
Integral Lipat Tiga dalam koordinat Tabung dan BolaIntegral Lipat Tiga dalam koordinat Tabung dan Bola
Integral Lipat Tiga dalam koordinat Tabung dan BolaRinzani Cyzaria Putri
 
Integral Permukaan (Kalkulus Peubah Banyak)
Integral Permukaan (Kalkulus Peubah Banyak)Integral Permukaan (Kalkulus Peubah Banyak)
Integral Permukaan (Kalkulus Peubah Banyak)Kelinci Coklat
 
Bentuk-Bentuk Tak Tentu Limit Fungsi
Bentuk-Bentuk Tak Tentu Limit FungsiBentuk-Bentuk Tak Tentu Limit Fungsi
Bentuk-Bentuk Tak Tentu Limit FungsiReza Ferial Ashadi
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT 03062679929
 
Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3radar radius
 
Diferensial Parsial
Diferensial ParsialDiferensial Parsial
Diferensial ParsialRose Nehe
 
Applied statistics and probability for engineers solution montgomery && runger
Applied statistics and probability for engineers solution   montgomery && rungerApplied statistics and probability for engineers solution   montgomery && runger
Applied statistics and probability for engineers solution montgomery && rungerAnkit Katiyar
 
Bab 3. Limit dan Kekontinuan ( Kalkulus 1 )
Bab 3. Limit dan Kekontinuan ( Kalkulus 1 )Bab 3. Limit dan Kekontinuan ( Kalkulus 1 )
Bab 3. Limit dan Kekontinuan ( Kalkulus 1 )Kelinci Coklat
 
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4lecturer
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodMeet Nayak
 
Persamaan Dan Pertidaksamaan Linear Satu Variabel
Persamaan Dan Pertidaksamaan Linear Satu VariabelPersamaan Dan Pertidaksamaan Linear Satu Variabel
Persamaan Dan Pertidaksamaan Linear Satu VariabelFranxisca Kurniawati
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Matthew Leingang
 

Tendances (20)

Runge Kurta method of order Four and Six
Runge Kurta method of order Four and SixRunge Kurta method of order Four and Six
Runge Kurta method of order Four and Six
 
Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )Fungsi Vektor ( Kalkulus 2 )
Fungsi Vektor ( Kalkulus 2 )
 
Integral Lipat Tiga dalam koordinat Tabung dan Bola
Integral Lipat Tiga dalam koordinat Tabung dan BolaIntegral Lipat Tiga dalam koordinat Tabung dan Bola
Integral Lipat Tiga dalam koordinat Tabung dan Bola
 
Integral Permukaan (Kalkulus Peubah Banyak)
Integral Permukaan (Kalkulus Peubah Banyak)Integral Permukaan (Kalkulus Peubah Banyak)
Integral Permukaan (Kalkulus Peubah Banyak)
 
NUMERICAL METHODS
NUMERICAL METHODSNUMERICAL METHODS
NUMERICAL METHODS
 
Bentuk-Bentuk Tak Tentu Limit Fungsi
Bentuk-Bentuk Tak Tentu Limit FungsiBentuk-Bentuk Tak Tentu Limit Fungsi
Bentuk-Bentuk Tak Tentu Limit Fungsi
 
Complex number
Complex numberComplex number
Complex number
 
INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT INTEGRATION BY PARTS PPT
INTEGRATION BY PARTS PPT
 
Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3Matematika diskrit: fungsi pembangkit part 3
Matematika diskrit: fungsi pembangkit part 3
 
Diferensial Parsial
Diferensial ParsialDiferensial Parsial
Diferensial Parsial
 
Capitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na EdicionCapitulo 7 Soluciones Purcell 9na Edicion
Capitulo 7 Soluciones Purcell 9na Edicion
 
fungsi dan grafiknya
fungsi dan grafiknyafungsi dan grafiknya
fungsi dan grafiknya
 
Applied statistics and probability for engineers solution montgomery && runger
Applied statistics and probability for engineers solution   montgomery && rungerApplied statistics and probability for engineers solution   montgomery && runger
Applied statistics and probability for engineers solution montgomery && runger
 
interpolasi
interpolasiinterpolasi
interpolasi
 
Bab 3. Limit dan Kekontinuan ( Kalkulus 1 )
Bab 3. Limit dan Kekontinuan ( Kalkulus 1 )Bab 3. Limit dan Kekontinuan ( Kalkulus 1 )
Bab 3. Limit dan Kekontinuan ( Kalkulus 1 )
 
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
 
Gauss jordan and Guass elimination method
Gauss jordan and Guass elimination methodGauss jordan and Guass elimination method
Gauss jordan and Guass elimination method
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 
Persamaan Dan Pertidaksamaan Linear Satu Variabel
Persamaan Dan Pertidaksamaan Linear Satu VariabelPersamaan Dan Pertidaksamaan Linear Satu Variabel
Persamaan Dan Pertidaksamaan Linear Satu Variabel
 
Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)Lesson 15: Exponential Growth and Decay (Section 021 slides)
Lesson 15: Exponential Growth and Decay (Section 021 slides)
 

En vedette

Integration formulas
Integration formulasIntegration formulas
Integration formulasKrishna Gali
 
Core 4 Integrating Trigonometric Functions 1
Core 4 Integrating Trigonometric Functions 1Core 4 Integrating Trigonometric Functions 1
Core 4 Integrating Trigonometric Functions 1davidmiles100
 
Integral table for electomagnetic
Integral table for electomagneticIntegral table for electomagnetic
Integral table for electomagneticFathur Rozaq
 
Integral Indefinida E Definida
Integral Indefinida E DefinidaIntegral Indefinida E Definida
Integral Indefinida E Definidaeducacao f
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniquesKrishna Gali
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralJelaiAujero
 
Integral SMA Kelas XII IPA
Integral SMA Kelas XII IPAIntegral SMA Kelas XII IPA
Integral SMA Kelas XII IPAEka Haryati
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integrationLawrence De Vera
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSRai University
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulationAkanksha_Seth
 
Soal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRALSoal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRALNurul Shufa
 
Chapter 4 frequency modulation
Chapter 4 frequency modulationChapter 4 frequency modulation
Chapter 4 frequency modulationHattori Sidek
 
12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)Nigel Simmons
 

En vedette (20)

Integration formulas
Integration formulasIntegration formulas
Integration formulas
 
Core 4 Integrating Trigonometric Functions 1
Core 4 Integrating Trigonometric Functions 1Core 4 Integrating Trigonometric Functions 1
Core 4 Integrating Trigonometric Functions 1
 
Integral table for electomagnetic
Integral table for electomagneticIntegral table for electomagnetic
Integral table for electomagnetic
 
Integral Indefinida E Definida
Integral Indefinida E DefinidaIntegral Indefinida E Definida
Integral Indefinida E Definida
 
Obs Exam Questions
Obs Exam QuestionsObs Exam Questions
Obs Exam Questions
 
Integration
IntegrationIntegration
Integration
 
Integral
IntegralIntegral
Integral
 
Integration techniques
Integration techniquesIntegration techniques
Integration techniques
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
Integral SMA Kelas XII IPA
Integral SMA Kelas XII IPAIntegral SMA Kelas XII IPA
Integral SMA Kelas XII IPA
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integration
 
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICSBSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
BSC_COMPUTER _SCIENCE_UNIT-2_DISCRETE MATHEMATICS
 
Problems in mathematical analysis
Problems in mathematical analysisProblems in mathematical analysis
Problems in mathematical analysis
 
Frequency modulation
Frequency modulationFrequency modulation
Frequency modulation
 
Soal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRALSoal dan Pembahasan INTEGRAL
Soal dan Pembahasan INTEGRAL
 
Solucionario calculo leithold 7ma edicion
Solucionario calculo leithold 7ma edicionSolucionario calculo leithold 7ma edicion
Solucionario calculo leithold 7ma edicion
 
Aplicaciones del calculo integral
Aplicaciones del calculo integralAplicaciones del calculo integral
Aplicaciones del calculo integral
 
solucionario calculo de leithold
solucionario calculo de leitholdsolucionario calculo de leithold
solucionario calculo de leithold
 
Chapter 4 frequency modulation
Chapter 4 frequency modulationChapter 4 frequency modulation
Chapter 4 frequency modulation
 
12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)12 x1 t06 01 integration using substitution (2012)
12 x1 t06 01 integration using substitution (2012)
 

Similaire à 11365.integral 2

Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationtutulk
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Safen D Taha
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integralesjoseluisroyo
 
Differential calculus
Differential calculusDifferential calculus
Differential calculusChit Laplana
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts xmath266
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integralsKavin Ruk
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculusitutor
 
Trig substitution
Trig substitutionTrig substitution
Trig substitutiondynx24
 
Integration
IntegrationIntegration
IntegrationRipaBiba
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by partsdicosmo178
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by partsdicosmo178
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by partsdicosmo178
 
6.3 integration by substitution
6.3 integration by substitution6.3 integration by substitution
6.3 integration by substitutiondicosmo178
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integrationKamel Attar
 
15 integrals of trig products-i-x
15 integrals of trig products-i-x15 integrals of trig products-i-x
15 integrals of trig products-i-xmath266
 

Similaire à 11365.integral 2 (20)

Calculus 08 techniques_of_integration
Calculus 08 techniques_of_integrationCalculus 08 techniques_of_integration
Calculus 08 techniques_of_integration
 
Integration - Mathematics - UoZ
Integration - Mathematics - UoZ Integration - Mathematics - UoZ
Integration - Mathematics - UoZ
 
Cuaderno+de+integrales
Cuaderno+de+integralesCuaderno+de+integrales
Cuaderno+de+integrales
 
Differential calculus
Differential calculusDifferential calculus
Differential calculus
 
14 formulas from integration by parts x
14 formulas from integration by parts x14 formulas from integration by parts x
14 formulas from integration by parts x
 
Common derivatives integrals
Common derivatives integralsCommon derivatives integrals
Common derivatives integrals
 
Integral Calculus
Integral CalculusIntegral Calculus
Integral Calculus
 
125 5.2
125 5.2125 5.2
125 5.2
 
Trig substitution
Trig substitutionTrig substitution
Trig substitution
 
Derivatives
DerivativesDerivatives
Derivatives
 
Integration
IntegrationIntegration
Integration
 
Section 7.1
Section 7.1Section 7.1
Section 7.1
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by parts
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by parts
 
8.2 integration by parts
8.2 integration by parts8.2 integration by parts
8.2 integration by parts
 
6.3 integration by substitution
6.3 integration by substitution6.3 integration by substitution
6.3 integration by substitution
 
Integration
IntegrationIntegration
Integration
 
Solved exercises simple integration
Solved exercises simple integrationSolved exercises simple integration
Solved exercises simple integration
 
15 integrals of trig products-i-x
15 integrals of trig products-i-x15 integrals of trig products-i-x
15 integrals of trig products-i-x
 
Integration by parts
Integration by partsIntegration by parts
Integration by parts
 

11365.integral 2

  • 2. Integration or Anti-derivatives Definition Indefinite Integral The set of all antiderivatives of a function f(x) is the indefinite integral of f with respect to x and is denoted by ∫ f ( x)dx ∫ f ( x)dx = F ( x) + C
  • 4. Antiderivatives with Slope Fields 1. ∫ x dx = n dx 2. ∫ = x x n+1 + C , n ≠ −1 n +1 ln x + C 3. ∫ e dx = e + C x x 4. ∫ sin x dx = − cos x + C
  • 5. Antiderivatives with Slope Fields 5. ∫ cos x dx = sin x + C 6. ∫ sec x dx = tan x + C 7. ∫ csc 2 x dx = − cot x + C 8. ∫ sec x tan x dx = sec x + C 2 9. ∫ csc x cot x dx = − csc x + C
  • 6. Antiderivatives with Slope Fields ∫ (x ∫x 3 3 − 2 x + 3)dx x dx 1  ∫  t 2 − cos t  dt   4 x 2 − x + 3x + C 4 9 2 2 x +C 9 1 − − sin t + C t
  • 7. Antiderivatives with Slope Fields ∫ sec x(tan x + cos x)dx sec x + x + C ∫ (1 + sin x csc x) dx x − cos x + C (e 2t + t 2 ) dt ∫ e2t t 3 + +C 2 3 2
  • 8. Antiderivatives with Slope Fields Find the position function for v(t) = t3 - 2t2 + t s(0) = 1 4 3 2 t 2t t s (t ) = − + +C 4 3 2 4 3 2 0 2( 0) ( 0) 1= − + +C 4 3 2 4 3 2 t 2t t s (t ) = − + +1 4 3 2 C=1
  • 9. Anti-derivatives with Slope Fields ∫ d (cabin) = cabin log cabin + C log cabin houseboat
  • 10. Integration by Substitution The chain rule allows us to differentiate a wide variety of functions, but we are able to find antiderivatives for only a limited range of functions. We can sometimes use substitution to rewrite functions in a form that we can integrate.
  • 11. Integration by Substitution ∫ ( x + 2) 5 dx ∫ u du 5 1 6 u +C 6 ( x + 2) 6 6 +C Let u = x + 2 du = dx The variable of integration must match the variable in the expression. Don’t forget to substitute the value for u back into the problem!
  • 12. Integration by Substitution ∫ 1 + x 2 ⋅ 2 x dx ∫u 1 2 One of the clues that we look for is if we can find a function and its derivative in the integrand. The derivative of du Let u = 1 + x du = 2 x dx 3 2 2 u +C 3 2 (1+ x 3 3 2 2 ) 1 + x2 +C is . 2 x dx 2 Note that this only worked because of the 2x in the original. Many integrals can not be done by substitution.
  • 13. Integration by Substitution ∫ 4 x − 1 dx ∫u 1 2 1 ⋅ du 4 3 2 2 1 u ⋅ +C 3 4 3 2 1 u +C 6 Let u = 4 x − 1 du = 4 dx 1 du = dx 4 3 1 ( 4 x − 1) 2 + C 6 Solve for dx.
  • 14. Integration by Substitution ∫ cos ( 7 x + 5) dx 1 ∫ cos u ⋅ 7 du 1 sin u + C 7 1 sin ( 7 x + 5 ) + C 7 Let u = 7 x + 5 du = 7 dx 1 du = dx 7
  • 15. Integration by Substitution x 2 sin ( x 3 ) dx ∫ Let u = x 3 1 ∫ sin u du 3 du = 3 x 2 dx 1 − cos u + C 3 1 3 − cos x + C 3 1 du = x 2 dx 3 2 We solve forx dx because we can find it in the integrand.
  • 16. Integration by Substitution sin 4 x ⋅ cos x dx ∫ Let u = sin x ∫ ( sin x ) cos x dx du = cos x dx 4 u 4 du ∫ 1 5 u +C 5 1 5 sin x + C 5
  • 17. Integration by Substitution π 4 0 ∫ 2 tan x sec x dx new limit 1 ∫ u du 0 new limit 1 1 2 u 2 0 1 2 The technique is a little different for definite integrals. Let u = tan x 2 du = sec x dx u ( 0 ) = tan 0 = 0 π π  u   = tan = 1 4 4 We can find new limits, and then we don’t have to substitute back. We could have substituted back and used the original limits.
  • 18. Integration by Substitution π 4 0 ∫ π 4 0 ∫ Using the original limits: tan x sec 2 x dx Let u = tan x du = sec x dx 2 u du ∫ u du 2 Leave the limits out until you substitute back. 1 2 = u π 2 1 2 4 = ( tan x ) 2 0 1 π 1 2 =  tan  − ( tan 0 ) 2 Wrong! 4  2 This is usually more work than finding new limits The limits don’t 1 match! 1 2 1 2 = ⋅1 − ⋅ 0 = 2 2 2
  • 19. Integration by Substitution ∫ 1 −1 ∫ 2 0 3x 2 x + 1 dx 3 3 2 2 2 ⋅2 3 du = 3 x dx 2 1 2 u du 2 u 3 Let u = x 3 + 1 u ( 1) = 2 Don’t forget to use the new limits. 0 3 2 u ( −1) = 0 2 = ⋅2 2 3 4 2 = 3
  • 20. Integration by Substitution ∫ 2 x 1 + x dx ∫ tan t dt ∫ sin 3 θ cosθ dθ ∫ 2 3 x + 4 dx ∫ t (5 + 3t ) dt 2 8 ∫ cot θ csc 2 θ dθ
  • 21. Integration by Substitution ∫ x−2 dx x −1 5 2 π 4 π − 2 ∫ − ∫ e2 e 5x e ∫ 3 + e5 x dx cos x sin 2 x dx ∫ dx dx x ln x ∫ 1 − x x 2 dx 1 0 x e
  • 22. 2. Find x = sin u ∫ ∫ (1 − x 2 ) dx. Let u = sin−1 x dx = cos u du Substituting gives, (1 − x 2 ) dx = ∫ 1 − sin2 u cos u du = ∫ cos2 u du We can not integrate this yet. Let us use trig. 1 cos2 u = (1 + cos 2u ) 2 1 1 u 1 = ∫ + cos 2u du = + sin2u + c 2 2 2 4 u 1 1 = + .2sin u cos u + c = ( u + sin u cos u ) + c 2 4 2
  • 23. 1 = ( u + sin u cos u ) + c 2 Now for some trig play….. x = sin u, but what does cos u equal? sin2 u + cos2 u = 1 cos2 u = 1 − sin2 cos u = 1 − sin2 u ∫ 1 (1 − x ) dx = ( u + sin u cos u ) + c 2 2 ( ) 1 = sin−1 x + x 1 − x 2 + c 2
  • 24. 3. Find ∫ x2 4−x 2 dx. Let x = 2 sin θ dx = 2cos θ dθ ∫ x2 4−x 2 dx = ∫ =∫ 4 sin2 θ 4 − 4 sin θ 2 2 sin2 θ cos θ 2 .2cos θ dθ = ∫ 4 sin2 θ 2 1 − sin θ 2 .2cos θ dθ .2cos θ dθ = ∫ 4 sin θ dθ 2 1 1  2  sin θ = − cos 2θ ÷  2 2   = ∫ 2 − 2cos 2θ dθ = 2θ − sin2θ + c = 2θ − 2 sinθ cosθ + c We now need to substitute theta in terms of x.
  • 25. x 2 = 4 sin2 θ x = 2sinθ x sinθ =  ÷ 2 −1  x  θ = sin  ÷ 2 = 4 − 4 cos2 θ 4 cos2 θ = 4 − x 2 2cos θ = 4 − x 2 1 cosθ = 4 − x2 2 ∫ x2 4−x 2 dx = 2θ − 2 sinθ cos θ + c x 1 x = 2 sin  ÷ − 2. . 4 − x2 + c 2 2 2 −1 x x = 2 sin  ÷ − 4 − x2 + c 2 2 −1
  • 26. Now for some not very obvious substitutions………………. 1. Find sin5 x dx ∫ sin5 x = sin x sin4 x = sin x (sin2 x )2 = sin x (1 − cos2 x )2 sin5 x dx = ∫ sin x (1 − cos2 x )2 dx ∫ Let u = cos x du = − sin x dx sin5 x dx = ∫ −(1 − u 2 )2 du = ∫ −(1 − 2u 2 + u 4 ) du = ∫ −1 + 2u 2 − u 4 du ∫ 2 3 1 5 = u − u −u +c 3 5 2 1 3 = cos x − cos5 x − cos x + c 3 5
  • 27. 1 2. Find ∫ dx 1− x Let u = 1 − x 1 1 1 −2 du = − x dx ⇒ dx = −2 x 2 du ⇒ dx = −2 ( 1 − u ) du 2 1 2(u − 1) 2 dx = ∫ du = ∫ 2 − du ∫ 1− x u u = 2u − 2ln u + c = 2 − 2 x − 2ln 1 − x + c
  • 29. Integration By Parts Start with the product rule: d dv du ( uv ) = u + v dx dx dx d ( uv ) = u dv + v du d ( uv ) − v du = u dv u dv = d ( uv ) − v du ∫ u dv = ∫ ( d ( uv ) − v du ) ∫ u dv = ∫ ( d ( uv ) ) − ∫ v du ∫ uv′ dx = uv − ∫ u′v dx This is the Integration by Parts formula. →
  • 30. ∫ uv′ dx = uv − ∫ u′v dx u differentiates to zero v’ is easy to integrate. (usually). The Integration by Parts formula is a “product rule” for integration. Choose u in this order: LIPET Logs, Inverse trig, Polynomial, Exponential, Trig →
  • 31. Example 1: ∫ x cos x dx polynomial factor ∫ uv′ dx = uv − ∫ u′v dx ∫ uv′ dx = uv − ∫ u′v dx LIPET u=x v′ = cos x u′ = 1 v = sin x x ⋅ sin x − ∫ sin x dx ∫ x cos x dx = x sin x + cos x + c →
  • 32. Example 2: ∫ uv′ dx = uv − ∫ u′v dx ∫ ln x dx LIPET logarithmic factor ∫ uv′ dx = uv − ∫ u′v dx u = ln x 1 u′ = x v′ = 1 v=x 1 ln x ⋅ x − ∫ x ⋅ dx x ∫ ln x ⋅1dx = x ln x − x + c →
  • 33. ∫ uv′ dx = uv − ∫ u′v dx Example 3: x 2 e x dx ∫ u = x2 = x 2 e x − ∫ e x 2 x dx x ( = x e − 2 xe − ∫ e dx ∫x e 2 x x v = ex This is still a product, so we need to use integration by parts again. x = x e − 2 ∫ xe dx 2 x v′ = e x u′ = 2 x = uv − ∫ u′v dx 2 x LIPET x ) u=x v′ = e u′ = 1 v = ex dx = x e − 2 xe + 2e + c 2 x x x →
  • 34. uv′ dx = uv − ∫ u′v dx ∫ The Integration by Parts formula can be written as: u dv = uv − ∫ v du ∫
  • 35. Example 4: LIPET e x cos x dx ∫ u v − ∫ v du e x sin x − ∫ sin x ×e x dx ( u = e x dv = cos x dx du = e x dx v = sin x dv = sin x dx u=e x du = e dx v = − cos x x e sin x − e ×− cos x − ∫ − cos x ×e dx x x x uv v du e x sin x + e x cos x − ∫ e x cos x dx ) This is the expression we started with! →
  • 36. Example 4 continued … e x cos x dx ∫ LIPET u v − ∫ v du e x sin x − ∫ sin x ×e x dx ( u = e x dv = cos x dx du = e x dx v = sin x dv = sin x dx u=e x du = e dx v = − cos x x e sin x − e ×− cos x − ∫ − cos x ×e dx x x x ) e x cos x dx = e x sin x + e x cos x − ∫ e x cos x dx ∫ 2 ∫ e x cos x dx = e x sin x + e x cos x e x sin x + e x cos x e x cos x dx = +C ∫ 2
  • 37. Example 4 continued … e x cos x dx ∫ u v − ∫ v du e x sin x − ∫ sin x ×e x dx ( This is called “solving for the unknown integral.” It works when both factors integrate and differentiate forever. e sin x − e ×− cos x − ∫ − cos x ×e dx x x x ) e x cos x dx = e x sin x + e x cos x − ∫ e x cos x dx ∫ 2 ∫ e x cos x dx = e x sin x + e x cos x e x sin x + e x cos x e x cos x dx = +C ∫ 2 →
  • 38. A Shortcut: Tabular Integration Tabular integration works for integrals of the form: ∫ f ( x ) g ( x ) dx where: Differentiates to zero in several steps. Integrates repeatedly. →
  • 39. x 2 e x dx ∫ f ( x ) & deriv. g ( x ) & integrals 2 e − 2x ex + x + 2 0 x e x e Compare this with the same problem done the other way: x x 2 e x −2 xe x +2e x +C ∫ x e dx = 2 x →
  • 40. ∫ uv′ dx = uv − ∫ u′v dx Example 3: x 2 e x dx ∫ u = x2 = x 2 e x − ∫ e x 2 x dx x ( = x e − 2 xe − ∫ e dx ∫x e 2 x x v = ex This is still a product, so we need to use integration by parts again. x = x e − 2 ∫ xe dx 2 x v′ = e x u′ = 2 x = uv − ∫ u′v dx 2 x LIPET x ) u=x v′ = e u′ = 1 v = ex dx = x e − 2 xe + 2e + c 2 x x x This is easier and quicker to do with tabular integration! →
  • 41. x3 sin x dx ∫ x3 + sin x − 3x 2 − cos x + 6x − 6 − sin x 0 sin x cos x − x3 cos x + 3 x 2 sin x + 6 x cos x − 6sin x + C π
  • 42. Properties of the Definite Integral 1: 2: 3: 4: 5: 6:
  • 43. 7:
  • 45. 12:
  • 46. Substitution and definite integrals Assuming the function is continuous over the interval, then exchanging the limits for x by the corresponding limits for u will save you having to substitute back after the integration process. 2 (2x+4)(x 2 + 4 x )3 dx ∫ 1. Evaluate 1 Let u = x 2 + 4 x ∫ 2 1 du = 2 x + 4 dx When x = 2, u = 12; x = 1, u = 5 (2x+4)(x + 4 x ) dx = ∫ 2 3 12 5 u 3du 12 1  =  u4   4 5 = 5027.75
  • 47. Special (common) forms Some substitutions are so common that they can be treated as standards and, when their form is established, their integrals can be written down without further ado. 1 ∫ f (ax + b)dx = a F (ax + b) + c f `( x ) ∫ f ( x ) dx = ln f ( x ) + c 1 f `( x )f ( x )dx = (f ( x ))2 + c ∫ 2
  • 48. Area under a curve y = f(x) b A = ∫ f ( x ) dx a a b a b b A = − ∫ f ( x ) dx a y = f(x)
  • 49. Area between the curve and y - axis y = f(x) b a b A = ∫ f ( y ) dy a
  • 50. 1. Calculate the area shown in the diagram below. y = x2 + 1 5 2 5 1 2 A = ∫ ( y − 1) dy 2 y = x2 + 1 x2 = y − 1 x = y −1 5 2  =  ( y − 1)  3 2 3 2 = 14 units squared. 3

Notes de l'éditeur

  1. {"50":"This has been Printed. \n"}