República Bolivariana de Venezuela
Ministerio del Poder Popular Para la Educación
Universidad Politécnica Andrés Eloy blanco
Barquisimeto-Lara
María Peña CI 30.759.707
Sección: HS: 0143
Profesor: Larry Segueri
Febrero 2022
Plano Numérico
Se conoce como plano cartesiano, coordenadas cartesianas o sistema cartesiano, a dos rectas
numéricas perpendiculares, una horizontal y otra vertical, que se cortan en un numero llamado
origen o punto cero
La finalidad del plano cartesiano es describir la posición o ubicación de un punto en el plano, la cual
esta representada por el sistema de coordenadas
El plano cartesiano también sirve para analizar matemáticamente figuras geométricas como la
parábola, la hipérbole, la línea, la circunferencia y la elipse, las cuales forman parte de la geometría
analítica.
Distancia entre dos puntos
Dadas las coordenadas de dos puntos, P1 y P2, se deduce la fórmula de distancia entre estos dos
puntos. La demostración usa el teorema de Pitágoras
Un ejemplo muestra cómo usar la fórmula para determinar la distancia entre dos puntos dadas sus
coordenadas. La distancia entre dos puntos P1 y P2 del plano de denotaremos por d (P1, P2). La
fórmula de la distancia usa las coordenadas de los puntos.
Ecuaciones y trazado de circunferencias
Ecuación de la circunferencia
La circunferencia es el lugar geométrico de los puntos del plano que equidistan de un punto fijo
llamado centro.
Determinación de una circunferencia
Una circunferencia queda determinada cuando conocemos:
a) Tres puntos de la misma, equidistantes del centro
b) El centro y el radio.
c) El centro y un punto en ella.
d) El centro y una recta tangente a la circunferencia
También podemos decir que la circunferencia es la línea formada por todos los puntos que
estén a la misma distancia de otro punto, llamado centro
Entonces, entrando en el terreno de la Geometría Analítica, (dentro del Plano Cartesiano)
diremos que- para cualquier punto, P (x, y), de una circunferencia cuyo centro C (a, b) y con
radio r- la ecuación ordinaria es
(x-a) 2 + (y-b) 2 =r2
Ecuaciones de la parábola
Es una forma geométrica. Esta forma geométrica, la parábola, expresada como una ecuación
cuenta con una serie de elementos o parámetros que son básicos para su descripción, y son:
1- Vértice (V): Punto de la parábola que coincide con el eje focal (llamado también eje de
simetría).
2- Eje focal (o de simetría) (e f ): Línea recta que divide simétricamente a la parábola en dos
brazos y pasa por el vértice.
3- Foco (F): Punto fijo de referencia, que no pertenece a la parábola y que se ubica en el eje
focal al interior de los brazos de la misma y a una distancia p del vértice.
4- Directriz (d): Línea recta perpendicular al eje focal que se ubica a una distancia p del
vértice y fuera de los brazos de la parábola.
5- Distancia focal (p): Parámetro que indica la magnitud de la distancia entre vértice y foco,
asi como entre vértice y directriz (ambas distancias son iguales)
6- Cuerda: Segmento de recta que une dos puntos cuales quiera perpendiculares a la
parábola
7- Cuerda focal: Cuerda que pasa por el foco.
8- Lado recto (LR): Cuerda focal que es perpendicular al eje focal.
Ecuaciones Elipse
Se llama elipse al lugar geométrico de un plano, cuya suma de distancia a dos puntos fijos
llamados focos es constantes.
Es el lugar geométrico de los puntos P(x, y) del plano cartesiano cuya suma de distancias
de los puntos, llamados focos: F1 y F2 es constante.
Cuando la Elipse tiene forma vertical
Cuando la Elipse tiene forma horizontal
Formula Canónica
Cuando la elipse tiene forma vertical:
El eje focal esta paralelo al eje de las abscisas (y, y1).
Cuando la elipse tiene forma horizontal:
El eje focal esta paralelo al eje de las abscisas (x, x1).
Ecuación de la Hipérbola
Se define como el lugar geométrico de los puntos del plano en el que las diferencias de
distancias a dos puntos fijos denominados focos, F y F; es siempre constante, Ejemplo:
Las líneas azules constituyen lo que se conoce como una hipérbola. Observa sus focos
FyF.
Estos puntos son muy importantes ya que la diferencia de la distancia entre cada punto P
(x, y) y estos puntos es siempre constante.
Por lo tanto, debes tener en cuenta que para cualquier punto de la hipérbola siempre se
cumple que:
d (P, F)- d (P,F´) =2.a
Donde d (P, F) y d (P, F) es la distancia de un punto genético P de la hipérbola al foco F y al
foco F´ respectivamente. Y donde 2ª es una contante.
Elementos de la hipérbola
Focos (F, y F´) Puntos fijos en los que la diferencia de distancia entre ellos y cualquier
punto de la hipérbola es siempre la misma.
Eje focal, principal o real. Recta que pasa por los focos.
Eje secundario o imaginario. Mediatriz del segmento que une los dos focos.
Centro (O). Punto de intersección de los ejes focal y secundario.
Semidistancia focal (c). La mitad de la distancia entre los dos focos
F YF´. Su valor es c.
Distancia focal (2c). Distancia del segmento que une los dos focos F y F. Su longitud es 2c.
Los vértices (A y A). Puntos de la hipérbola que cortan al eje focal.
Semieje real (a). Segmento que va desde el origen O hasta cualquiera de los vértices A o A.
Su longitud es a.
Hipérbola de eje focal horizontal centrada en un punto P(xo, Y0) Cualquiera
Representación grafica de las secciones crónicas
Se denomina sección crónica (o simplemente crónica ) a todas las curvas resultantes de las
diferentes intersecciones entre un cono y un plano, dicho plano no pasa por el vértice, se
obtienen las crónicas propiamente dichas. Se clasifican en cuatro tipos: elipse, parábola y
circunferencia.
Los tres ejemplos de intersección de un plano con cono: parábola (1), elipse y
circunferencia (2) e hipérbola (3).
Tipos
En función de la relación existente entre el ángulo de conicidad (a) y la inclinación del
plano respecto del eje (B) pueden obtenerse diferentes secciones crónicas, a saber:
https://es.slideshare.net/WillibethSifontes/plano-numrico-242430230