[GDSC-GNIOT] Google Cloud Study Jams Day 2- Cloud AI GenAI Overview.pptx

Cloud AIGenAI Overview
SepĞ
ember - OcĞ
ober 2023
Chitresh Gyanani
Google Cloud Facilitator
Table of Contents
Primer on LLM and Generative AI
What are Google’s offerings?
01
02
Demo
This Week’s Assignment
03
04
PRIMERON LARGE
LANGUAGE MODELS
& GENERATIVE AI
We’re in anAI-driven revolution
Source: AI: Recent Trends and Applications, Emerging Communication and Computing
Steam Power
1784
Electricity
1870
Information
Technology
1969
Artificial Intelligence
Today
AI
NLP Evolution
What’s the noun in
this sentence?
What’s the invoice
amount?
Extraction
LLMs portend both quantitative and qualitative jumps in AI
capabilities
Conversational AI
Write an essay
Write some code
Generation
Translate this text to
Korean
Summarize this
document
Transformation
Are these the same
things?
Is the invoice vendor
recognized?
Matching
LLMs improve performance on
“classical NL” use cases
LLMs increasingly enable
new use cases.
Is the sentence’s
sentiment positive?
Is this an invoice?
Classification
What is a Large Language Model?
Traditional
programming
Wave of
neural networks
~2012
Cat:
type: animal
legs: 4
ears: 2
fur: yes
likes: yarn, catnip
(etc …)
This is a cat.
This is not a cat.
Is this a cat?
Yes
So, you’ve learned about
cats and millions of other
concepts …what’s a cat?
Go read this huuuuuuge
pile of books.
A cat is …
Generative
language models
LaMDA, PaLM, GPT-3, etc.
First, some vocab
Generative Model: An ML model that produces content, including language, code,
imagery, music, video, etc.
Large Language Model: machine learning models that are really good at
understanding and generating human language. Large refers to both size and
complexity of the neural network itself, as well as the size of the dataset it was trained
on. Can also be used for non-generative language tasks (eg classification)
Transformer: The neural network architecture underlying most of today’s generative
models (and, more widely, most SOTA ML models). Published by Google in 2017.
Prompt: the text you feed to your model
Prompt Design: The art and science of
figuring out what text to feed your language
model to get it to take on the behavior you
want.
What is a language model?
Write a poem about Cricket
Cricket, oh cricket, game of my heart,
Where legends are born and dreams start.
With bat and ball, we play as one,
Under the sun, until the day is done.
From the village green to the grandest stage,
Cricket unites us, age after age.
With every run, we cheer and shout,
As our heroes make us proud.
…
Zero-shot
Give examples
Convert from english to french.
peppermint : menthe poivrée
desert cactus : cactus du désert
potato : pomme de terre
onion :
…
Few-shot
Proprietary +Confidential
Give examples
Convert Python to Javascript.
Python: print("hello world")
Javascript: console.log("hello world")
Python: for x in range(0, 100):
Javascript:
Few-shot
Proprietary +Confidential
What is a language model?
User : Who are you?
Bot: I am Sachin Tendulkar, the famous cricketer
and the best batsman the world has seen.
User: Where do you live?
Bot: I live in Mumbai.
User: What do you currently do?
Bot: …
Dialog
Proprietary +Confidential
A few observations:
1. LLMs are designed to predict the next word in a sequence. They
are not required to be “truthful” when doing so.
2. LLMs can generate plausible-looking statements that are irrelevant
or factually incorrect.
3. Hallucinations: LLM’s can generate false statements.
Proprietary +Confidential
Decoding Strategies
The sky was full of
[sīars (0.5),clouds (0.23),birds (0.05) …dusī (0.03)]
INPUT
OUTPUT
Proprietary +Confidential
Greedy Decoding
Select word with highest probability
The sky was full of
[sīars (0.5),clouds (0.23),birds (0.05) …dusī (0.03)]
INPUT
OUTPUT
Proprietary +Confidential
Random Sampling
Randomly sample over the distribution
The sky was full of
[sīars (0.5),clouds (0.23),birds (0.05) …dusī (0.03)]
INPUT
OUTPUT
Proprietary +Confidential
Temperature
T
emperature is a number used to tune the degree of randomness.
Lower temperature →less randomness
● T
emperature of 0 is deterministic (greed decoding)
● Generally better for tasks like q&a and summarization where you expect a
more “correct” answer
● If you notice the model repeating itself, the temp is probably too low
High temperature → more randomness
● Can result in more unusual (you might even say creative) response
● If you notice the model going off topic or being nonsensical, the temp is
likely too high
Proprietary +Confidential
Top K
[sīars (0.5),clouds (0.23),birds (0.05) …dusī (0.03)]
Only sample from top K tokens
K =2
Top P
[sīars (0.5),clouds (0.23),birds (0.05) …dusī (0.03)]
Chooses from smallest possible set
of words whose cumulative
probability >=probability P
P =.75
Demo
What are large language models?
ML algorithms that can recognize, predict, and
generate human languages
Pre-trained on petabyte scale text-based datasets
resulting in large models with 10s to 100s of
billions of parameters
LLMs are normally pre-trained on a large corpus
of text followed by fine-tuning on a specific task
Go read this huuuuuuge pile
of books.
So, you’ve learned about
cats and millions of other
concepts …what’s a cat?
A cat is a small, domesticated
carnivorous mammal.
Generative language models
LaMDA, PaLM, GPT-3, etc.
LLMs can also be called Large Models (includes all
types of data modality) and Generative AI (a
model that produces content)
Why are large language models
different?
LLMs are characterized by emergent
abilities, or the ability to perform tasks that
were not present in smaller models.
LLMs contextual understanding of human
language changes how we interact with
data and intelligent systems.
LLMs can find patterns and connections in
massive, disparate data corpora.
Search
Conversation
Content generation
Proprietary +Confidential
LLM applications in industry
Customer Support
● Interactive Humanlike Chatbots
● Conversation summarization for agents
● Sentiment Analysis and Entity extraction
Technology
● Generating Code Snippets from description
● Code Translation between languages
● Auto Generated Documentation from Code
Financial Services
● Auto-generated summary of documents
● Entity Extraction from KYC documents
HealthCare
● Domain specific entity extraction
● Case documentation summary
Retail
● Generating product descriptions
Media and Gaming
● Designing game storylines, scripts
● Auto Generated blogs, articles, and tweets
● Grammar Correction and text-formatting
Proprietary +Confidential
Traditional ML Dev
● Needs 1000+ training examples
to get started
● Needs ML expertise (probably)
● Needs compute time +hardware
● Thinks about minimizing a loss
function
● Needs 0 training examples*
● Does not need ML expertise*
● Does not need to train a model*
● Thinks about prompt design
LLM Dev
*T
o get started
WHAT ARE GEN-AI’S
OFFERINGS?
Consumers & enterprises have different needs….
Plan a 3 day
trip to
Patagonia
Create a
valentine
poem.
A picture of a
panda playing
yahtzee
How to make GF
pancakes?
Iwant to
write a novel.
How do Iget
started?
Create a jazz
song for a bday
card
How do we
control our
data
How do we deal with
fraud &security
We need to be
accurate &
explainable
How do we integrate our
existing data &
applications
How will we
control
costs?
Bard +MakerSuite VertexAI +Duet AI
Consumers Enterprises
Thank You
1 sur 27

Contenu connexe

Similaire à [GDSC-GNIOT] Google Cloud Study Jams Day 2- Cloud AI GenAI Overview.pptx

 AI pitch SSideri  AI pitch SSideri
AI pitch SSideri Uni Systems S.M.S.A.
102 vues65 diapositives
The Art of Clean codeThe Art of Clean code
The Art of Clean codeVictor Rentea
48.4K vues74 diapositives

Similaire à [GDSC-GNIOT] Google Cloud Study Jams Day 2- Cloud AI GenAI Overview.pptx(20)

Dernier(20)

discussion post.pdfdiscussion post.pdf
discussion post.pdf
jessemercerail85 vues
Streaming Quiz 2023.pdfStreaming Quiz 2023.pdf
Streaming Quiz 2023.pdf
Quiz Club NITW97 vues
ICANNICANN
ICANN
RajaulKarim2061 vues
2022 CAPE Merit List 2023 2022 CAPE Merit List 2023
2022 CAPE Merit List 2023
Caribbean Examinations Council3.5K vues
Universe revised.pdfUniverse revised.pdf
Universe revised.pdf
DrHafizKosar88 vues
Material del tarjetero LEES Travesías.docxMaterial del tarjetero LEES Travesías.docx
Material del tarjetero LEES Travesías.docx
Norberto Millán Muñoz60 vues
STYP infopack.pdfSTYP infopack.pdf
STYP infopack.pdf
Fundacja Rozwoju Społeczeństwa Przedsiębiorczego159 vues
Education and Diversity.pptxEducation and Diversity.pptx
Education and Diversity.pptx
DrHafizKosar87 vues
Industry4wrd.pptxIndustry4wrd.pptx
Industry4wrd.pptx
BC Chew157 vues
Sociology KS5Sociology KS5
Sociology KS5
WestHatch52 vues
Narration lesson plan.docxNarration lesson plan.docx
Narration lesson plan.docx
TARIQ KHAN92 vues
GSoC 2024GSoC 2024
GSoC 2024
DeveloperStudentClub1056 vues

[GDSC-GNIOT] Google Cloud Study Jams Day 2- Cloud AI GenAI Overview.pptx

  • 1. Cloud AIGenAI Overview SepĞ ember - OcĞ ober 2023 Chitresh Gyanani Google Cloud Facilitator
  • 2. Table of Contents Primer on LLM and Generative AI What are Google’s offerings? 01 02 Demo This Week’s Assignment 03 04
  • 4. We’re in anAI-driven revolution Source: AI: Recent Trends and Applications, Emerging Communication and Computing Steam Power 1784 Electricity 1870 Information Technology 1969 Artificial Intelligence Today AI
  • 5. NLP Evolution What’s the noun in this sentence? What’s the invoice amount? Extraction LLMs portend both quantitative and qualitative jumps in AI capabilities Conversational AI Write an essay Write some code Generation Translate this text to Korean Summarize this document Transformation Are these the same things? Is the invoice vendor recognized? Matching LLMs improve performance on “classical NL” use cases LLMs increasingly enable new use cases. Is the sentence’s sentiment positive? Is this an invoice? Classification
  • 6. What is a Large Language Model?
  • 7. Traditional programming Wave of neural networks ~2012 Cat: type: animal legs: 4 ears: 2 fur: yes likes: yarn, catnip (etc …) This is a cat. This is not a cat. Is this a cat? Yes So, you’ve learned about cats and millions of other concepts …what’s a cat? Go read this huuuuuuge pile of books. A cat is … Generative language models LaMDA, PaLM, GPT-3, etc.
  • 8. First, some vocab Generative Model: An ML model that produces content, including language, code, imagery, music, video, etc. Large Language Model: machine learning models that are really good at understanding and generating human language. Large refers to both size and complexity of the neural network itself, as well as the size of the dataset it was trained on. Can also be used for non-generative language tasks (eg classification) Transformer: The neural network architecture underlying most of today’s generative models (and, more widely, most SOTA ML models). Published by Google in 2017.
  • 9. Prompt: the text you feed to your model Prompt Design: The art and science of figuring out what text to feed your language model to get it to take on the behavior you want.
  • 10. What is a language model? Write a poem about Cricket Cricket, oh cricket, game of my heart, Where legends are born and dreams start. With bat and ball, we play as one, Under the sun, until the day is done. From the village green to the grandest stage, Cricket unites us, age after age. With every run, we cheer and shout, As our heroes make us proud. … Zero-shot
  • 11. Give examples Convert from english to french. peppermint : menthe poivrée desert cactus : cactus du désert potato : pomme de terre onion : … Few-shot
  • 12. Proprietary +Confidential Give examples Convert Python to Javascript. Python: print("hello world") Javascript: console.log("hello world") Python: for x in range(0, 100): Javascript: Few-shot
  • 13. Proprietary +Confidential What is a language model? User : Who are you? Bot: I am Sachin Tendulkar, the famous cricketer and the best batsman the world has seen. User: Where do you live? Bot: I live in Mumbai. User: What do you currently do? Bot: … Dialog
  • 14. Proprietary +Confidential A few observations: 1. LLMs are designed to predict the next word in a sequence. They are not required to be “truthful” when doing so. 2. LLMs can generate plausible-looking statements that are irrelevant or factually incorrect. 3. Hallucinations: LLM’s can generate false statements.
  • 15. Proprietary +Confidential Decoding Strategies The sky was full of [sīars (0.5),clouds (0.23),birds (0.05) …dusī (0.03)] INPUT OUTPUT
  • 16. Proprietary +Confidential Greedy Decoding Select word with highest probability The sky was full of [sīars (0.5),clouds (0.23),birds (0.05) …dusī (0.03)] INPUT OUTPUT
  • 17. Proprietary +Confidential Random Sampling Randomly sample over the distribution The sky was full of [sīars (0.5),clouds (0.23),birds (0.05) …dusī (0.03)] INPUT OUTPUT
  • 18. Proprietary +Confidential Temperature T emperature is a number used to tune the degree of randomness. Lower temperature →less randomness ● T emperature of 0 is deterministic (greed decoding) ● Generally better for tasks like q&a and summarization where you expect a more “correct” answer ● If you notice the model repeating itself, the temp is probably too low High temperature → more randomness ● Can result in more unusual (you might even say creative) response ● If you notice the model going off topic or being nonsensical, the temp is likely too high
  • 19. Proprietary +Confidential Top K [sīars (0.5),clouds (0.23),birds (0.05) …dusī (0.03)] Only sample from top K tokens K =2 Top P [sīars (0.5),clouds (0.23),birds (0.05) …dusī (0.03)] Chooses from smallest possible set of words whose cumulative probability >=probability P P =.75
  • 20. Demo
  • 21. What are large language models? ML algorithms that can recognize, predict, and generate human languages Pre-trained on petabyte scale text-based datasets resulting in large models with 10s to 100s of billions of parameters LLMs are normally pre-trained on a large corpus of text followed by fine-tuning on a specific task Go read this huuuuuuge pile of books. So, you’ve learned about cats and millions of other concepts …what’s a cat? A cat is a small, domesticated carnivorous mammal. Generative language models LaMDA, PaLM, GPT-3, etc. LLMs can also be called Large Models (includes all types of data modality) and Generative AI (a model that produces content)
  • 22. Why are large language models different? LLMs are characterized by emergent abilities, or the ability to perform tasks that were not present in smaller models. LLMs contextual understanding of human language changes how we interact with data and intelligent systems. LLMs can find patterns and connections in massive, disparate data corpora. Search Conversation Content generation
  • 23. Proprietary +Confidential LLM applications in industry Customer Support ● Interactive Humanlike Chatbots ● Conversation summarization for agents ● Sentiment Analysis and Entity extraction Technology ● Generating Code Snippets from description ● Code Translation between languages ● Auto Generated Documentation from Code Financial Services ● Auto-generated summary of documents ● Entity Extraction from KYC documents HealthCare ● Domain specific entity extraction ● Case documentation summary Retail ● Generating product descriptions Media and Gaming ● Designing game storylines, scripts ● Auto Generated blogs, articles, and tweets ● Grammar Correction and text-formatting
  • 24. Proprietary +Confidential Traditional ML Dev ● Needs 1000+ training examples to get started ● Needs ML expertise (probably) ● Needs compute time +hardware ● Thinks about minimizing a loss function ● Needs 0 training examples* ● Does not need ML expertise* ● Does not need to train a model* ● Thinks about prompt design LLM Dev *T o get started
  • 26. Consumers & enterprises have different needs…. Plan a 3 day trip to Patagonia Create a valentine poem. A picture of a panda playing yahtzee How to make GF pancakes? Iwant to write a novel. How do Iget started? Create a jazz song for a bday card How do we control our data How do we deal with fraud &security We need to be accurate & explainable How do we integrate our existing data & applications How will we control costs? Bard +MakerSuite VertexAI +Duet AI Consumers Enterprises