Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Industrial Analytics and Predictive Maintenance 2017 - 2022

561 vues

Publié le

In this session we will present the results of two recent, international studies on the state of data analytics in industrial settings. You will get insights from an in-depth industry survey of 151 analytics professionals and decision-makers in industrial companies, providing a deep-dive into strategies, project types, cost structures and skill-demand in IoT-based analytics. In addition we will present a survey focusing on predictive analytics covering the market potential and expected development until 2022.

Publié dans : Données & analyses
  • Soyez le premier à commenter

Industrial Analytics and Predictive Maintenance 2017 - 2022

  1. 1. January  2017   Industrial  Analy.cs  2016  /  2017           Frank  Pörschmann     Frank.poerschmann@digital-­‐analy=cs-­‐associa=on.de  
  2. 2. 2   •  The  focus  is  on  the  promo.on  of  data  competency  in  business,  poli=cs  and   society.   •  For  more  than  10  years,  the  Digital  Analy=cs  Associa=on  (DAA),  with  over  5,000   members  worldwide,  has  been  suppor=ng  the  professionaliza=on  of  the  new,   data-­‐driven  professional  images,  such  as  the  digital  analyst  and  the  data  scien=st.   •  The  Digital  Analy=cs  Associa=on  e.V.  is  con=nuing  this  commitment  as  an   independent  non-­‐profit  organiza.on  under  its  own  na=onal  leadership.   •  The  Digital  Analy=cs  Associa=on  e.V.  supports  ins.tu.ons,  specialists  and   execu.ves  in  the  development  of  professional  and  entrepreneurial  skills  for  the   analysis  of  digital  data  streams.  
  3. 3. 3   §  Qualifica=on  &  Cer=fica=on   §  Promo=on  of  Young   §  Networking   §  Events   §  Research  &  Development   §  Wegweiser  für  Unternehmen  und   Anwender   §  Career  development  and  support     §  Advisory  services(i.e.  data  rights,  project   management,  tooling)     §  Science  &  Educa=on  ||  Promo=on  of  Young   §  Business  &  Governance     §  Soware  Producer  ||  Agencies  &  Service   Companies   §  Methods  ||  Knowledge  Management   §  Interna=onal  ||  Networking   §  Marke=ng,  PR  &  Events  ||  Members   §  Legal   Ac.vi.es   Subject  MaMer  Expert  Groups   „Professionaliza-on  of  data-­‐driven  professions     for  data  expert  as  well  as  management.  “  
  4. 4. Global  representa-ve  decision-­‐maker  study    available  for  download     www.IoT-­‐Analy=cs.de     www.digital-­‐analy=cs-­‐associa=on.de  
  5. 5. The  concept  of  digital  shadow  applies  to  machines  as  well  
  6. 6. The  most  expecisve  cost  factor  in  business  s.ll     are  bad  decisions   Signals   Data   Informa=on   Decision   Knowledge   Gathering/management/Distribu=on     Analy=cs   Advanced  Analy=cs  &  Data  Science   -­‐  Learning  systems,  ML,  AI   -­‐  Decision  Support  Systems   -­‐  Automated  decision  support  systems     Conversion  /  Distribu=on     Repor=ng  /  Monitoring   o   Daten-­‐Analy=cs  is  not  new  –  but  different       o  60‘S  &  70‘s:                Opera=onal  Monitoring     o  2017:    Decision  Support   o  2025:                        Automated  Decision-­‐making    
  7. 7. Industrial  Analy-cs...   o is  a  key  success  factor  of  Industrial   Internet  (Industrie  4.0)   o Will  become  a  compe==ve  cri=cal   capability  in  industrial  business     o For  most  of  the  companies  integrated   data  analy=cs  is  a  new  organiza=onal   discipline  (approx.  ½  within  one  org.-­‐ unit,  mainly  R&D)     o BUT:     30%  report  about  finalized  projects  
  8. 8. Development  of  data  competencies  already  on     top-­‐management  agenda     o More  than  half  ini=ated  by  CEO  &  COO   Data  is  not  IT!     o Smallest  responsibility  by  typical   technology  management  CTO/CIO   33,1%  
  9. 9. Value  expecta-ons  on  industrial  analy-cs  mainly  set  on   growth  instead  of  efficiency   o Expected  benefit  from  analy=cs  mainly   in  growth  and  customer  sa=sfac=on   o Expected  growth  by:   o  Extending  exis=ng  products   o  Expansion  of  exis=ng  business  models   o  New  Business  Models   o Cost-­‐reduc=on  and  efficiency  increase?   Rela=vely  weakly  weighted  despite   numerous  successful  projects   33,1%  
  10. 10. How  good  are  you  at..?   o Over  half  of  the  companies  are   sa=sfied  with  the  ability  to  access  their   data   o But  about  2/3  of  the  companies  fail  in   genera=ng  sufficiently  relevant   findings  from  the  data  obtained.     -­‐>  But  this  is  the  source  of  future            compe==ve  advantage     33,1%  
  11. 11. Further:  Cost  and  benefit  structures  are  currently  unbalanced   o Main  costs  of  data  projects  in  IT  &   Technology  disciplines   o Business  benefit  is  generated  by   analy=cs.  Analy=cs  costs  account  for   only  about  25%  of  the  total  costs   o Strategies  for  cost-­‐saving  data   architectures  are  already  relevant   €  
  12. 12. S-ll  one  Use  Case  seem  to  prevail:  Predic-ve  Maintenance  PdM)  
  13. 13. Comparison  of  maintenance  approaches   Deep-­‐dive:  Condi=on  Based  Maintenance  vs.  Predic=ve  Maintenance   Copyright  ©  2016  by  www.iot-­‐analy=cs.com  All  rights  reserved   13   Condi.on-­‐based  maintenance   Predic.ve  Maintenance   Mobile  Condi-­‐   .on  Monitoring   Online  Condi.on   Monitoring   Sta.s.cs-­‐based     PdM   Stochas.c-­‐based     PdM*   Sensing   Technology   Handheld  Device   Integrated  Sensors   Integrated  Sensors   Integrated  Sensors   Monitoring   Frequency   In  regular  intervals  /  on   demand   Constantly   Constantly   Constantly   Visualiza.on   On  specific  device   Online  /  Mobile   Online  /  Mobile   Online  /  Mobile   IT-­‐Architecture   On-­‐Premise   On-­‐Premise  or  Cloud   On-­‐Premise  or  Cloud   On-­‐Premise  or  Cloud   Real-­‐.me   monitoring   Combina.on  of   data  sources   Analy.cs   Sta=s=cs1   Stochas=cs2   Maintenance   Trigger   If  monitoring  shows  cri=cal   values   If  monitoring  shows  cri=cal   values   When  calculated  health-­‐ score  reaches  cri=cal  value   When  failure  is  predicted  to   occur   a.   b.   a.   b.   *  =  Some=mes  also  referred  to  as  “prognos=cs”    1.  Sta=s=cs  =  Using  sta=s=cal  methods  such  as  SPSS,  regression    2.  Stochas=cs  =  Using  stochas=cal  models  such  as  Bayesian  Networks,  etc.  
  14. 14. Most  challenging  issues   o Security  remains  strong  obstacle   o However,  the  biggest  hurdles:   o  Interoperability  of  systems   o  Quality  of  the  data   o  Insight  genera=on  by  lack  of     specialists,  skills,  methods,     tools…   33,1%  
  15. 15. A  rapid  shiK  of  tools  requires  new  skills  and  capabili-es   o The  end  of  spreadsheet  analy=cs   o Rapid  change  of  tools  and   playorms  to  be  experienced   within  5  years   o Importance  of  predic=ve  analy=cs   tools  will  double   o BI  relevance  increases  as  well     33,1%  
  16. 16. Which  approach  to  use?  Freestyle  or  structured?   o About  2/3  work  on  hypothesis    from  the  begin   o S=ll  1/3  allows  for  gaining  insight   in  their  own  data   33,1%  
  17. 17. Cri-cal  skill  gap  ahead     Warning   Data  Science    -­‐  Data  Scien=st,  Data  Engineers     -­‐  IT  (Developer,  Architects,  SI,   Infrastructur  (M2M)   -­‐  Agile  PM   -­‐  Industrial  process  know-­‐how     Companies  fail  in  integra=ng  adequate   new  digital  professions       Only  5  years  to  go  un=l  skill  gap   impacts  compe==ve  capability   33,1%  
  18. 18. Digital  sovereignty  ...?   o Promo=on  of  data  competency  among   specialists  and  execu=ves  is  crucial  for   Europe’s  industrial  strategy   o The  German  educa=on  system  in  new   data-­‐driven  professions  is   interna=onally  not  compe==ve.   o Companies  must  take  on-­‐the-­‐job   qualifica=on  and  interna=onalize  skills.   33,1%  HandcraKs  have  many  faces,     so  does  data  art.  
  19. 19. 19   Contact     Frank  Pörschmann   Crémon  36   20457  Hamburg     0171  –  30  579  20     Frank.Poerschmann@digital-­‐analy=cs-­‐associa=on.de     www.didital-­‐analy=cs-­‐associa=on.de   www.digitalanaly=csassocia=on.org