SlideShare a Scribd company logo
1 of 47
Download to read offline
疾病管制局
Using Molecular Genotyping Methods to
Investigate of the Genetic Diversity of
Mycobacterium tuberculosis Strains in Taiwan
Peter Chin
NDSRA
Mycobacteria Reference Laboratory
Division of Laboratory Research and Development
Center for Disease Control, Kun-Yang Office
Nankang, Taipei, Taiwan
疾病管制局
Section I. Introduction
疾病管制局
• Non-motile, non-pigmented
• Acid-Fast stain, rod-like, 0.4x3.0 micron
• Obligate aerobic, slow grower, need special
media for culture
• Reduce nitrate, produce catalase
• Produce long chain fatty acids
• Genome of H37Rv sequenced in 1998
• Person to person transmission
through aerosol droplet
Mycobacterium tuberculosis
疾病管制局
Global TB Disease Burden – WHO Report 2002
Reprinted from www.who.int/entity/tb/publications/ global_report/2004/en/annex5.pdf
疾病管制局
疾病管制局
Genome of Mycobacterium tuberculosis H37Rv
• more than 4.4 million base
pairs
• 3924 genes detected initially,
13 more genes uncovered
through protemics and
compatative genomics
• more than 25 genetic markers
identified for typing
Cole ST et al.
Nature 1998; 393: 537.
Reprinted from
http://www.cbs.dtu.dk/services/GenomeAtlas/atlasdata/Bacteria/Mtuberculosis_H37Rv_
Main/Mtuberculosis_H37Rv_Main.ZDNAatlas.nfp.png
疾病管制局
Section II. Mycobacterial Genotyping
疾病管制局
Purpose of genotyping of Mycobacterium tuberculosis
• To investigate biodiversity and population structure
of Mycobacterium tuberculosis
• To define predominant genotype
• To trace the origin of strains and their potential
spatial relatedness
• To built-up genomic database
• To initiate systematic TB molecular epidemiological
studies
疾病管制局
Genotyping Methodology
• Non-DNA Typing Methods
– Phage Typing
– Antibiotics Typing
– Serological Typing
– Biochemical Typing
• DNA-based Typing Methods
– Restriction Fragment Length Polymorphism w/o Hybridization
– Pulsed Field Gel Electrophoresis
– Transposable Element Typing (DR, IR, IS…etc. )
– 16s/32s rDNA(RNA) Typing
– Minisatellite-based Typing
• Polymorphic GC-rich Repetitive Sequence
• Major Polymorphic Tandem Repeat
• Variable Number Tandem Repeat
• Mycobacterial Interspersed Repeat Units
疾病管制局 Specimen Collection
Decontamination and Concentration
Microscopy GenotypingMolecular DiagnosisCulture
Acid-Fast stain L-J MGIT
Biochemical tests I
Genotyping:
RFLP,VNTR-MIRU
Spoligotyping
TB complex NTM
Drug susceptibility tests PCR-RFLP Biochemical tests II
PCR
PCR-RFLP
Real-time
PCR
spoligotyping
GenProbe VNTR
MIRU
Spoligotyping
Culture (+)
rpoB gene sequence
analysis
疾病管制局
RFLP Principle
疾病管制局 RFLP Flowchart
Heat
Inactivation
DNA Extraction
TB Culture
DNA Digestion
Gel Electrophoresis Overnight GelMembrane
Blotting
Hybridization with
Probes
Detection &
Analysis
Sample and
Internal marker
probe
疾病管制局
• a PCR based method
• DNA polymorphism at “Direct Repeat” (DR) region of
chromosomal locus
Spoligotyping Principle
A
B
C
D
E
DR:36bp DVRNon-repetitive
DNA spacer
疾病管制局
Apply Oligos in an array
using a miniblotter
Oligos are bound covalently
in line pattern to membrane
Rotate filter 90° apply biotin-labeled
PCR products and hybridize
Incubate with HRP-conjugate and
substrate and expose X-ray film
疾病管制局
Heat
Inactivation
DNA Extraction
TB Culture
PCR
Sample Application
Hybridization
Detection
Spoligotyping
疾病管制局
MIRU Principle
• Application of MTB H37Rv Genome Project
• Mid-short tandem repeat around the genome, so
called minisatellite genetic marker
• Multi nucleotide repeat unit
– ex. (ATCG)n
R. Frothingham and W.A. Meeker-O’Connell, 1998
P. Supply et al. 2000
疾病管制局
MIRU Primer Set
Panel Oligo Name Sequence(5'→3') Modification
Panel-A-Locus-4-F GCGCGAGAGCCCGAACTGC 5' FAM
Panel-A-Locus-4-R GCGCAGCAGAAACGTCAGC
Panel-A-Locus-26-F TAGGTCTACCGTCGAAATCTGTGAC
Panel-A-Locus-26-R CATAGGCGACCAGGCGAATAG 5' HEX
Panel-A-Locus-40-F GGGTTGCTGGATGACAACGTGT 5' TAMRA
Panel-A-Locus-40-R GGGTGATCTCGGCGAAATCAGATA
Panel-B-Locus-10-F GTTCTTGACCAACTGCAGTCGTCC
Panel-B-Locus-10-R GCCACCTTGGTGATCAGCTACCT 5' FAM
Panel-B-Locus-16-F TCGGTGATCGGGTCCAGTCCAAGTA
Panel-B-Locus-16-R CCCGTCGTGCAGCCCTGGTAC 5' HEX
Panel-B-Locus-31-F ACTGATTGGCTTCATACGGCTTTA
Panel-B-Locus-31-R GTGCCGACGTGGTCTTGAT 5' TAMRA
Panel-C-Locus-2-F TGGACTTGCAGCAATGGACCAACT
Panel-C-Locus-2-R TACTCGGACGCCGGCTCAAAAT 5' FAM
Panel-C-Locus-23-F CTGTCGATGGCCGCAACAAAACG 5' HEX
Panel-C-Locus-23-R AGCTCAACGGGTTCGCCCTTTTGTC
Panel-C-Locus-39-F CGCATCGACAAACTGGAGCCAAAC
Panel-C-Locus-39-R CGGAAACGTCTACGCCCCACACAT 5' TAMRA
Panel-D-Locus-20-F TCGGAGAGATGCCCTTCGAGTTAG 5' FAM
Panel-D-Locus-20-R GGAGACCGCGACCAGGTACTTGTA
Panel-D-Locus-24-F CGACCAAGATGTGCAGGAATACAT
Panel-D-Locus-24-R GGGCGAGTTGAGCTCACAGAA 5' HEX
Panel-D-Locus-27-F TCGAAAGCCTCTGCGTGCCAGTAA
Panel-D-Locus-27-R GCGATGTGAGCGTGCCACTCAA 5' TAMRA
Panel-E-ETR-A-F AAATCGGTCCCATCACCTTCTTAT 5' FAM
Panel-E-ETR-A-R CGAAGCCTGGGGTGCCCGCGATTT
Panel-E-ETR-B-F GCGAACACCAGGACAGCATCATG 5' HEX
Panel-E-ETR-B-R GGCATGCCGGTGATCGAGTGG
Panel-E-ETR-C-F GTGAGTCGCTGCAGAACCTGCAG
Panel-E-ETR-C-R GGCGTCTTGACCTCCACGAGTG 5' TAMRAE
A
B
C
D
疾病管制局 MIRU Flowchart
Heat
Inactivation
DNA ExtractionTB Culture Sample Dilution
MultiplexingPCRDetection
疾病管制局
疾病管制局
Multiplex PCR With Dye-labeling Primer by Cap EP
FAM
TAMRA
HEX
MIRU 4
MIRU 40
MIRU 26
P
P
P
疾病管制局
LASER Scanner
Cap
(-) (+)
Time/bp
intensity
Multiplex PCR With Dye-labeling Primer by Cap EP
Injection Parameter: 3KV for 45 secs
Running Parameter: 10KV for 100 mins
疾病管制局
疾病管制局
Allelic Calling
P. Supply et al. 2000, 2001
疾病管制局
Allelic Calling
疾病管制局
Section III. Study Proposal
疾病管制局
Objective
• Evaluating the genotyping efficiency between four method we
performed
• Finding the proper balance between accuracy, throughput and
timing
• Choosing the selective genetic markers
• Cutting down the cost
疾病管制局
Approach For MIRU Typing
• PCR each 15 locus
– Simply
– Lowest throughput, difficult to analysis
– Heavy loading, time-cost and expensive (15 PCR reactions/sample)
• Multiplex PCR With Dye-labeling Primer by Gel EP
– More complex
– Mid throughput, but easy data handling
– Heavy loading
• Multiplex PCR With Dye-labeling Primer by Cap EP
– Most complex and most expensive
– High throughput and easy data handling
– Lowest Labor Loading
– Bottle neck :upstream DNA extraction
疾病管制局
Stage Progress Period
2003
六月 七月 八月 九月
1 88dConstructing The TB Ref. LAB. Facility
2 88dEstablishment of VNTR Typing Protocol
3 21dEstablishment of MIRU Typing Protocol
4 133dSetup Automation and HTP Protocol
2004
十月 一月 二月 三月 四月 五月 六月 七月 八月 九月
5 23dFirst-stage Data Analysis
2004年10月7日
頁面 1
Progress Chart for The High-Throughput TB Genotyping Methodology Establishment
疾病管制局
Section IV. Result
疾病管制局
• Time interval: 2002~2004^
• Space: northern, central, southern and eastern area in Taiwan
• Criteria: AND (RFLP, Spoligotyping, VNTR, MIRU)
• Sample size: 479
Description of Sample Model
疾病管制局
Strain Selection
54%
16%
22%
8%
Northern
Central
Southern
Eastern
Description of Sample Model
疾病管制局
Age Distribution
1%
18%
29%
49%
3% <20
21<x<40
41<x<60
>60
Unknown
Description of Sample Model
疾病管制局
Gender Distribution
67%
30%
3%
Male
Female
Unknown
Description of Sample Model
疾病管制局
Genotype Distribution
43%
53%
4%
B
NB
BL
Description of Sample Model
疾病管制局
Locus Discrimination power
1 2 3 4 5 6
Locus-2 0.241 0.02 0.080 0.140 0.020 0.077 Low
Locus-4 0.479 0.35 0.220 0.280 0.500 0.281 Low
Locus-10 0.617 0.69 0.440 0.700 0.710 0.639 Medium
Locus-16 0.526 0.52 0.420 0.280 0.310 0.300 Medium
Locus-20 0.205 0.29 0.090 0.080 0.030 0.061 Low
Locus-23 0.656 0.58 0.120 0.540 0.420 0.307 Low
Locus-24 0.445 0.24 0.160 0.000 0.350 0.160 Low
Locus-26 0.688 0.67 0.540 0.590 0.730 0.757 High
Locus-27 0.124 0.19 0.090 0.140 0.210 0.159 Low
Locus-31 0.647 0.37 0.470 0.550 0.640 0.690 High
Locus-39 0.394 0.34 0.220 0.380 0.600 0.535 Medium
Locus-40 0.797 0.74 0.630 0.650 0.540 0.453 Medium
ETR-A 0.756 N/A N/A N/A N/A 0.586 Medium
ETR-B 0.530 N/A N/A N/A N/A 0.560 Medium
ETR-C 0.584 N/A N/A N/A N/A 0.128 Low
Table. Allelic Diversity for each MIRU Locus
h
1. C. Sola. et al. 2003. Infect. Genet Evolution. 3:125–133
2. Mazars. et al. 2001. PNAS 98:1901-1906
3. Cowan. et al. 2002. J. Clin. Microbiol. 40:1592-1602
4. Supply. et al. 2003. Mol. Microbiol. 47:529-538
5. Sun. et al. 2004. J. Clin. Microbiol. 42: 1986-1993
6. This study
Allelic Diversity (h)
n: Sample size
xi: frequency of the ith
allele at the locus
疾病管制局
1. This study
2. C. Sola et al. 2003. Infect. Genet Evolution. 3 125–133
3. Robin et al. 2002. Microbiology. 148:519-528
4. Roring et al. 2002. J Clin. Microbiol. 40:2126-2133
5. Rachael et al. 2001. J Clin. Microbiol. 39:2453-2457
6. Sola et al. 2001. J Clin. Microbiol.39:1559–1565
Hunter-Gaston Discrimination Index (HGDI)
N: Sample size
S: Cluster number
nj: size of cluster belong to jth pattern
Pattern Sample Size Cluster No
1 2 3 4 5 6
RFLP 479 400 0.998 0.97 0.997
Spoligotyping 479 111 0.799 0.965 0.79 0.74 0.967
VNTR 479 57 0.866 0.959 0.81 0.74 0.938 0.939
MIRU 479 171 0.942 0.988
VNTR+MIRU 479 215 0.966
S+V+M 479 278 0.973
R+V+M 479 431 0.999
R+S+V+M 479 437 0.999
HGDI
Estimating HGDI For Each Genotyping Method And Combination Set
疾病管制局
0.975
0.98
0.985
0.99
0.995
1
1.005
0 2 4 6 8 10 12
Position Tolerance (%)
HGDI
Position Tolerance 0.5 1.5 3 5 10
HGDI 0.999545776 0.998480097 0.997562914 0.99592072 0.980232528
HGDI Under Different PT Value
1 2
疾病管制局
Low Copy Number IS-6110 Genotyping Pattern:
RFLP Versus MIRU
疾病管制局
Section V. Allelic Diversity and Linkage
Disequilibrium of Genetic Markers
疾病管制局
Introduction of Linkage Disequilibrium
• Disobeying Principle of Segregation
• Example
– 2 alleles (A & a) at locus A: P(A)=p
– 2 alleles (B & b) at locus A: P(B)=r
– 2 alleles (C & c) at locus A: P(C)=q
– D=P(AB)-prq
– D’=prq
• Useful marker for genome-wide scan analysis
– Pedigree analysis
– Sib-pair study
a
b
c C
A
B
C
b
A
疾病管制局
Phenomenon of Linkage Disequilibrium In M. tuberculosis
Sample 1
Locus-A 2 3 4 7
Locus-B 3 4 3 2
Locus-C 8 8 8 8
Locus-D 5 1 5 4
Locus-E 2 2 2 2
Sample 2 Sample 3 Sample n
疾病管制局
• Monte Carlo simulation
– Developed in 1948 by Los Alamos National Lab.
– Von Neumann, Fermi, Ulam and Metropolis
– Simulation of the H-bond explosion by resampling formula
– Calculating Physics, Chemistry, Biology, Economics
– Resampling the loci without replacement and computing a VD
value for each resampled data set
– Resampling for about 10000 times
• Parametric Method
– L = Ve + 1.654 √ Var(VD)
• Null hypothesis for Ve=VD
LIAN Version 3.1: Detecting LD in Multilocus Data
疾病管制局
Highly LD in Taiwan, Clonal Separation May Occur
疾病管制局
Conclusion
• Lower discrimination power compared with other publications
– Diverse genotype observed in Taiwan
• Different PT value can effect discrimination power obviously in
RFLP pattern
– Stability of IS6110, Electrophoresis Bias, Subjective Judgment of Data
• Linkage analysis showed highly clonal separation in Taiwan
– Need Further Surveillance
• Combination of VNTR & MIRU achieves compatible selective power
as RFLP
• Genotyping Strategy
– MIRU-VNTR as frontline, RFLP as confirmation and spoligotyping for
Beijing type surveillance
疾病管制局
Outlook
• Selection for appropriate LD markers
– Pairwise Association Analysis for Each Locus
• Redefinition the roles of RFLP, Spoligotyping, VNTR
and MIRU
– Flowchart or Pipeline for Genotyping Methodology
• Throughput Is Minority, Discrimination Power is
Majority
– More high-diversity markers (h>0.5)
疾病管制局
Acknowledgements
• Ruwen Jou- Principal Investigator
• Wei-Lun Huang- Assistant Research Fellow
• Strain Identification, General Affair
• Su-Ying Chang- Medical Technician
• Bacteria Culture, MDR surveillance
• Hsuan Liu- Research Assistant
• RFLP, DNA Extraction
• Huang-Yau Chen- Research Assitant
• Strain Identification, TB Virulence Research
• Meng-Hsun Chen- NDSRA
• Spoligotyping, MDR Surveillance
• Ting-Yung Kou- Research Assistant
• Proteomic, MDR Surveillance
• Pei-Ju Chin
• MIRU-VNTR, TB susceptibility Research, Bioinformatics
Reprinted from http://profiles.nlm.nih.gov/VC/B/B/B/T/_/vcbbbt.jpg
疾病管制局
Thanks For Your Attention !

More Related Content

What's hot

Malaria vaccine presentation
Malaria vaccine presentationMalaria vaccine presentation
Malaria vaccine presentation
deluxe1234
 

What's hot (20)

MOLECULAR TOOLS IN DIAGNOSIS AND CHARACTERIZATION OF INFECTIOUS DISEASES
MOLECULAR TOOLS IN  DIAGNOSIS AND CHARACTERIZATION OF INFECTIOUS DISEASES MOLECULAR TOOLS IN  DIAGNOSIS AND CHARACTERIZATION OF INFECTIOUS DISEASES
MOLECULAR TOOLS IN DIAGNOSIS AND CHARACTERIZATION OF INFECTIOUS DISEASES
 
MRSA Detection
MRSA DetectionMRSA Detection
MRSA Detection
 
Diagnostic microbiology - Traditional and Modern Approach
Diagnostic microbiology - Traditional and Modern ApproachDiagnostic microbiology - Traditional and Modern Approach
Diagnostic microbiology - Traditional and Modern Approach
 
Line probe assay 26 7-15
Line probe assay 26 7-15Line probe assay 26 7-15
Line probe assay 26 7-15
 
vaccine development against malaria parasite
vaccine development against malaria parasitevaccine development against malaria parasite
vaccine development against malaria parasite
 
Phage therapy
Phage therapyPhage therapy
Phage therapy
 
NEW TECHNOLOGIES IN DIAGNOSIS OF TUBERCULOSIS
NEW TECHNOLOGIES IN   DIAGNOSIS OF TUBERCULOSIS NEW TECHNOLOGIES IN   DIAGNOSIS OF TUBERCULOSIS
NEW TECHNOLOGIES IN DIAGNOSIS OF TUBERCULOSIS
 
LAMP (Loop Mediated Isothermal Amplification)
LAMP (Loop Mediated Isothermal Amplification)LAMP (Loop Mediated Isothermal Amplification)
LAMP (Loop Mediated Isothermal Amplification)
 
Molecular assay in tuberculosis.pptx
Molecular assay in tuberculosis.pptxMolecular assay in tuberculosis.pptx
Molecular assay in tuberculosis.pptx
 
NEWER TECHNOLOGIES DIAGNOSTIC MICROBIOLOGY
NEWER TECHNOLOGIES DIAGNOSTIC MICROBIOLOGYNEWER TECHNOLOGIES DIAGNOSTIC MICROBIOLOGY
NEWER TECHNOLOGIES DIAGNOSTIC MICROBIOLOGY
 
Epidemiological characterisation of Burkholderia cepacia complex (Bcc) from c...
Epidemiological characterisation of Burkholderia cepacia complex (Bcc) from c...Epidemiological characterisation of Burkholderia cepacia complex (Bcc) from c...
Epidemiological characterisation of Burkholderia cepacia complex (Bcc) from c...
 
MRSA
MRSAMRSA
MRSA
 
New developments in vaccines against African swine fever
New developments in vaccines against African swine feverNew developments in vaccines against African swine fever
New developments in vaccines against African swine fever
 
Serological tests in mycology
Serological tests in mycologySerological tests in mycology
Serological tests in mycology
 
Malaria vaccine presentation
Malaria vaccine presentationMalaria vaccine presentation
Malaria vaccine presentation
 
Histoplasmosis
HistoplasmosisHistoplasmosis
Histoplasmosis
 
Antifungal Testing
Antifungal TestingAntifungal Testing
Antifungal Testing
 
serotyping .pptx
serotyping .pptxserotyping .pptx
serotyping .pptx
 
Bacteriophage therapy
Bacteriophage therapyBacteriophage therapy
Bacteriophage therapy
 
Presentation
PresentationPresentation
Presentation
 

Viewers also liked

Mycobacterium tuberculosis(Microbiology)
Mycobacterium tuberculosis(Microbiology)Mycobacterium tuberculosis(Microbiology)
Mycobacterium tuberculosis(Microbiology)
Caroline Karunya
 

Viewers also liked (7)

Molecular Epidemiology of HIV in San Diego and Tijuana
Molecular Epidemiology of HIV in San Diego and TijuanaMolecular Epidemiology of HIV in San Diego and Tijuana
Molecular Epidemiology of HIV in San Diego and Tijuana
 
Communicable Disease Update for San Diego County
Communicable Disease Update for San Diego CountyCommunicable Disease Update for San Diego County
Communicable Disease Update for San Diego County
 
Management of tb ppt
Management of tb pptManagement of tb ppt
Management of tb ppt
 
Viral exanthems
Viral exanthemsViral exanthems
Viral exanthems
 
Mycobacterium tuberculosis
Mycobacterium tuberculosisMycobacterium tuberculosis
Mycobacterium tuberculosis
 
Parvovirus
ParvovirusParvovirus
Parvovirus
 
Mycobacterium tuberculosis(Microbiology)
Mycobacterium tuberculosis(Microbiology)Mycobacterium tuberculosis(Microbiology)
Mycobacterium tuberculosis(Microbiology)
 

Similar to TB Genotyping

140127 abrf interlaboratory study proposal
140127 abrf interlaboratory study proposal140127 abrf interlaboratory study proposal
140127 abrf interlaboratory study proposal
GenomeInABottle
 
Ross Excel 15 Final
Ross Excel 15 FinalRoss Excel 15 Final
Ross Excel 15 Final
Brandon Ross
 
Poster Noro 2016 Faculty day.pptx (2)
Poster Noro 2016 Faculty day.pptx (2)Poster Noro 2016 Faculty day.pptx (2)
Poster Noro 2016 Faculty day.pptx (2)
Kgothatso Meno
 
PrinciplesofPCRtechniquesanditsapplicationin.pptx
PrinciplesofPCRtechniquesanditsapplicationin.pptxPrinciplesofPCRtechniquesanditsapplicationin.pptx
PrinciplesofPCRtechniquesanditsapplicationin.pptx
MaiElsayedOmara
 
Tacking the menage of gram negative inf with novel bl bli.pptx
Tacking the menage of gram negative inf with novel bl bli.pptxTacking the menage of gram negative inf with novel bl bli.pptx
Tacking the menage of gram negative inf with novel bl bli.pptx
aceforum
 

Similar to TB Genotyping (20)

HIV RT Inhibitions in vitro and or or in vivo: materials and methods
HIV RT Inhibitions in vitro and or or in vivo: materials and methods HIV RT Inhibitions in vitro and or or in vivo: materials and methods
HIV RT Inhibitions in vitro and or or in vivo: materials and methods
 
Development, safety and efficacy analysis of liquid state rabies
Development, safety and efficacy analysis of liquid state rabiesDevelopment, safety and efficacy analysis of liquid state rabies
Development, safety and efficacy analysis of liquid state rabies
 
140127 abrf interlaboratory study proposal
140127 abrf interlaboratory study proposal140127 abrf interlaboratory study proposal
140127 abrf interlaboratory study proposal
 
Applications of Genomic and Proteomic Tools
Applications of Genomic and Proteomic ToolsApplications of Genomic and Proteomic Tools
Applications of Genomic and Proteomic Tools
 
From Panels to Genomes with VarSeq: The Complete Tertiary Platform for Short ...
From Panels to Genomes with VarSeq: The Complete Tertiary Platform for Short ...From Panels to Genomes with VarSeq: The Complete Tertiary Platform for Short ...
From Panels to Genomes with VarSeq: The Complete Tertiary Platform for Short ...
 
Ross Excel 15 Final
Ross Excel 15 FinalRoss Excel 15 Final
Ross Excel 15 Final
 
Poster Noro 2016 Faculty day.pptx (2)
Poster Noro 2016 Faculty day.pptx (2)Poster Noro 2016 Faculty day.pptx (2)
Poster Noro 2016 Faculty day.pptx (2)
 
pcr en temps réel et evolution bioteche
pcr en temps réel  et evolution biotechepcr en temps réel  et evolution bioteche
pcr en temps réel et evolution bioteche
 
Microarry andd NGS.pdf
Microarry andd NGS.pdfMicroarry andd NGS.pdf
Microarry andd NGS.pdf
 
Amany m. elshamy why the negative covid19 pcr test is a misguide results
Amany m. elshamy why the negative covid19 pcr test is a misguide resultsAmany m. elshamy why the negative covid19 pcr test is a misguide results
Amany m. elshamy why the negative covid19 pcr test is a misguide results
 
Polymerase chain reaction(PCR) presentationpptx
Polymerase chain reaction(PCR) presentationpptxPolymerase chain reaction(PCR) presentationpptx
Polymerase chain reaction(PCR) presentationpptx
 
Polymerase chain reaction(PCR).presentation
Polymerase chain reaction(PCR).presentationPolymerase chain reaction(PCR).presentation
Polymerase chain reaction(PCR).presentation
 
New Generation Sequencing Technologies: an overview
New Generation Sequencing Technologies: an overviewNew Generation Sequencing Technologies: an overview
New Generation Sequencing Technologies: an overview
 
Next Generation Sequencing
Next Generation SequencingNext Generation Sequencing
Next Generation Sequencing
 
Jaeho Lee Specialty
Jaeho Lee SpecialtyJaeho Lee Specialty
Jaeho Lee Specialty
 
Microarray
Microarray Microarray
Microarray
 
PrinciplesofPCRtechniquesanditsapplicationin.pptx
PrinciplesofPCRtechniquesanditsapplicationin.pptxPrinciplesofPCRtechniquesanditsapplicationin.pptx
PrinciplesofPCRtechniquesanditsapplicationin.pptx
 
Tacking the menage of gram negative inf with novel bl bli.pptx
Tacking the menage of gram negative inf with novel bl bli.pptxTacking the menage of gram negative inf with novel bl bli.pptx
Tacking the menage of gram negative inf with novel bl bli.pptx
 
Generations of sequencing technologies.
Generations of sequencing technologies. Generations of sequencing technologies.
Generations of sequencing technologies.
 
171017 giab for giab grc workshop
171017 giab for giab grc workshop171017 giab for giab grc workshop
171017 giab for giab grc workshop
 

TB Genotyping

  • 1. 疾病管制局 Using Molecular Genotyping Methods to Investigate of the Genetic Diversity of Mycobacterium tuberculosis Strains in Taiwan Peter Chin NDSRA Mycobacteria Reference Laboratory Division of Laboratory Research and Development Center for Disease Control, Kun-Yang Office Nankang, Taipei, Taiwan
  • 3. 疾病管制局 • Non-motile, non-pigmented • Acid-Fast stain, rod-like, 0.4x3.0 micron • Obligate aerobic, slow grower, need special media for culture • Reduce nitrate, produce catalase • Produce long chain fatty acids • Genome of H37Rv sequenced in 1998 • Person to person transmission through aerosol droplet Mycobacterium tuberculosis
  • 4. 疾病管制局 Global TB Disease Burden – WHO Report 2002 Reprinted from www.who.int/entity/tb/publications/ global_report/2004/en/annex5.pdf
  • 6. 疾病管制局 Genome of Mycobacterium tuberculosis H37Rv • more than 4.4 million base pairs • 3924 genes detected initially, 13 more genes uncovered through protemics and compatative genomics • more than 25 genetic markers identified for typing Cole ST et al. Nature 1998; 393: 537. Reprinted from http://www.cbs.dtu.dk/services/GenomeAtlas/atlasdata/Bacteria/Mtuberculosis_H37Rv_ Main/Mtuberculosis_H37Rv_Main.ZDNAatlas.nfp.png
  • 8. 疾病管制局 Purpose of genotyping of Mycobacterium tuberculosis • To investigate biodiversity and population structure of Mycobacterium tuberculosis • To define predominant genotype • To trace the origin of strains and their potential spatial relatedness • To built-up genomic database • To initiate systematic TB molecular epidemiological studies
  • 9. 疾病管制局 Genotyping Methodology • Non-DNA Typing Methods – Phage Typing – Antibiotics Typing – Serological Typing – Biochemical Typing • DNA-based Typing Methods – Restriction Fragment Length Polymorphism w/o Hybridization – Pulsed Field Gel Electrophoresis – Transposable Element Typing (DR, IR, IS…etc. ) – 16s/32s rDNA(RNA) Typing – Minisatellite-based Typing • Polymorphic GC-rich Repetitive Sequence • Major Polymorphic Tandem Repeat • Variable Number Tandem Repeat • Mycobacterial Interspersed Repeat Units
  • 10. 疾病管制局 Specimen Collection Decontamination and Concentration Microscopy GenotypingMolecular DiagnosisCulture Acid-Fast stain L-J MGIT Biochemical tests I Genotyping: RFLP,VNTR-MIRU Spoligotyping TB complex NTM Drug susceptibility tests PCR-RFLP Biochemical tests II PCR PCR-RFLP Real-time PCR spoligotyping GenProbe VNTR MIRU Spoligotyping Culture (+) rpoB gene sequence analysis
  • 12. 疾病管制局 RFLP Flowchart Heat Inactivation DNA Extraction TB Culture DNA Digestion Gel Electrophoresis Overnight GelMembrane Blotting Hybridization with Probes Detection & Analysis Sample and Internal marker probe
  • 13. 疾病管制局 • a PCR based method • DNA polymorphism at “Direct Repeat” (DR) region of chromosomal locus Spoligotyping Principle A B C D E DR:36bp DVRNon-repetitive DNA spacer
  • 14. 疾病管制局 Apply Oligos in an array using a miniblotter Oligos are bound covalently in line pattern to membrane Rotate filter 90° apply biotin-labeled PCR products and hybridize Incubate with HRP-conjugate and substrate and expose X-ray film
  • 15. 疾病管制局 Heat Inactivation DNA Extraction TB Culture PCR Sample Application Hybridization Detection Spoligotyping
  • 16. 疾病管制局 MIRU Principle • Application of MTB H37Rv Genome Project • Mid-short tandem repeat around the genome, so called minisatellite genetic marker • Multi nucleotide repeat unit – ex. (ATCG)n R. Frothingham and W.A. Meeker-O’Connell, 1998 P. Supply et al. 2000
  • 17. 疾病管制局 MIRU Primer Set Panel Oligo Name Sequence(5'→3') Modification Panel-A-Locus-4-F GCGCGAGAGCCCGAACTGC 5' FAM Panel-A-Locus-4-R GCGCAGCAGAAACGTCAGC Panel-A-Locus-26-F TAGGTCTACCGTCGAAATCTGTGAC Panel-A-Locus-26-R CATAGGCGACCAGGCGAATAG 5' HEX Panel-A-Locus-40-F GGGTTGCTGGATGACAACGTGT 5' TAMRA Panel-A-Locus-40-R GGGTGATCTCGGCGAAATCAGATA Panel-B-Locus-10-F GTTCTTGACCAACTGCAGTCGTCC Panel-B-Locus-10-R GCCACCTTGGTGATCAGCTACCT 5' FAM Panel-B-Locus-16-F TCGGTGATCGGGTCCAGTCCAAGTA Panel-B-Locus-16-R CCCGTCGTGCAGCCCTGGTAC 5' HEX Panel-B-Locus-31-F ACTGATTGGCTTCATACGGCTTTA Panel-B-Locus-31-R GTGCCGACGTGGTCTTGAT 5' TAMRA Panel-C-Locus-2-F TGGACTTGCAGCAATGGACCAACT Panel-C-Locus-2-R TACTCGGACGCCGGCTCAAAAT 5' FAM Panel-C-Locus-23-F CTGTCGATGGCCGCAACAAAACG 5' HEX Panel-C-Locus-23-R AGCTCAACGGGTTCGCCCTTTTGTC Panel-C-Locus-39-F CGCATCGACAAACTGGAGCCAAAC Panel-C-Locus-39-R CGGAAACGTCTACGCCCCACACAT 5' TAMRA Panel-D-Locus-20-F TCGGAGAGATGCCCTTCGAGTTAG 5' FAM Panel-D-Locus-20-R GGAGACCGCGACCAGGTACTTGTA Panel-D-Locus-24-F CGACCAAGATGTGCAGGAATACAT Panel-D-Locus-24-R GGGCGAGTTGAGCTCACAGAA 5' HEX Panel-D-Locus-27-F TCGAAAGCCTCTGCGTGCCAGTAA Panel-D-Locus-27-R GCGATGTGAGCGTGCCACTCAA 5' TAMRA Panel-E-ETR-A-F AAATCGGTCCCATCACCTTCTTAT 5' FAM Panel-E-ETR-A-R CGAAGCCTGGGGTGCCCGCGATTT Panel-E-ETR-B-F GCGAACACCAGGACAGCATCATG 5' HEX Panel-E-ETR-B-R GGCATGCCGGTGATCGAGTGG Panel-E-ETR-C-F GTGAGTCGCTGCAGAACCTGCAG Panel-E-ETR-C-R GGCGTCTTGACCTCCACGAGTG 5' TAMRAE A B C D
  • 18. 疾病管制局 MIRU Flowchart Heat Inactivation DNA ExtractionTB Culture Sample Dilution MultiplexingPCRDetection
  • 20. 疾病管制局 Multiplex PCR With Dye-labeling Primer by Cap EP FAM TAMRA HEX MIRU 4 MIRU 40 MIRU 26 P P P
  • 21. 疾病管制局 LASER Scanner Cap (-) (+) Time/bp intensity Multiplex PCR With Dye-labeling Primer by Cap EP Injection Parameter: 3KV for 45 secs Running Parameter: 10KV for 100 mins
  • 26. 疾病管制局 Objective • Evaluating the genotyping efficiency between four method we performed • Finding the proper balance between accuracy, throughput and timing • Choosing the selective genetic markers • Cutting down the cost
  • 27. 疾病管制局 Approach For MIRU Typing • PCR each 15 locus – Simply – Lowest throughput, difficult to analysis – Heavy loading, time-cost and expensive (15 PCR reactions/sample) • Multiplex PCR With Dye-labeling Primer by Gel EP – More complex – Mid throughput, but easy data handling – Heavy loading • Multiplex PCR With Dye-labeling Primer by Cap EP – Most complex and most expensive – High throughput and easy data handling – Lowest Labor Loading – Bottle neck :upstream DNA extraction
  • 28. 疾病管制局 Stage Progress Period 2003 六月 七月 八月 九月 1 88dConstructing The TB Ref. LAB. Facility 2 88dEstablishment of VNTR Typing Protocol 3 21dEstablishment of MIRU Typing Protocol 4 133dSetup Automation and HTP Protocol 2004 十月 一月 二月 三月 四月 五月 六月 七月 八月 九月 5 23dFirst-stage Data Analysis 2004年10月7日 頁面 1 Progress Chart for The High-Throughput TB Genotyping Methodology Establishment
  • 30. 疾病管制局 • Time interval: 2002~2004^ • Space: northern, central, southern and eastern area in Taiwan • Criteria: AND (RFLP, Spoligotyping, VNTR, MIRU) • Sample size: 479 Description of Sample Model
  • 35. 疾病管制局 Locus Discrimination power 1 2 3 4 5 6 Locus-2 0.241 0.02 0.080 0.140 0.020 0.077 Low Locus-4 0.479 0.35 0.220 0.280 0.500 0.281 Low Locus-10 0.617 0.69 0.440 0.700 0.710 0.639 Medium Locus-16 0.526 0.52 0.420 0.280 0.310 0.300 Medium Locus-20 0.205 0.29 0.090 0.080 0.030 0.061 Low Locus-23 0.656 0.58 0.120 0.540 0.420 0.307 Low Locus-24 0.445 0.24 0.160 0.000 0.350 0.160 Low Locus-26 0.688 0.67 0.540 0.590 0.730 0.757 High Locus-27 0.124 0.19 0.090 0.140 0.210 0.159 Low Locus-31 0.647 0.37 0.470 0.550 0.640 0.690 High Locus-39 0.394 0.34 0.220 0.380 0.600 0.535 Medium Locus-40 0.797 0.74 0.630 0.650 0.540 0.453 Medium ETR-A 0.756 N/A N/A N/A N/A 0.586 Medium ETR-B 0.530 N/A N/A N/A N/A 0.560 Medium ETR-C 0.584 N/A N/A N/A N/A 0.128 Low Table. Allelic Diversity for each MIRU Locus h 1. C. Sola. et al. 2003. Infect. Genet Evolution. 3:125–133 2. Mazars. et al. 2001. PNAS 98:1901-1906 3. Cowan. et al. 2002. J. Clin. Microbiol. 40:1592-1602 4. Supply. et al. 2003. Mol. Microbiol. 47:529-538 5. Sun. et al. 2004. J. Clin. Microbiol. 42: 1986-1993 6. This study Allelic Diversity (h) n: Sample size xi: frequency of the ith allele at the locus
  • 36. 疾病管制局 1. This study 2. C. Sola et al. 2003. Infect. Genet Evolution. 3 125–133 3. Robin et al. 2002. Microbiology. 148:519-528 4. Roring et al. 2002. J Clin. Microbiol. 40:2126-2133 5. Rachael et al. 2001. J Clin. Microbiol. 39:2453-2457 6. Sola et al. 2001. J Clin. Microbiol.39:1559–1565 Hunter-Gaston Discrimination Index (HGDI) N: Sample size S: Cluster number nj: size of cluster belong to jth pattern Pattern Sample Size Cluster No 1 2 3 4 5 6 RFLP 479 400 0.998 0.97 0.997 Spoligotyping 479 111 0.799 0.965 0.79 0.74 0.967 VNTR 479 57 0.866 0.959 0.81 0.74 0.938 0.939 MIRU 479 171 0.942 0.988 VNTR+MIRU 479 215 0.966 S+V+M 479 278 0.973 R+V+M 479 431 0.999 R+S+V+M 479 437 0.999 HGDI Estimating HGDI For Each Genotyping Method And Combination Set
  • 37. 疾病管制局 0.975 0.98 0.985 0.99 0.995 1 1.005 0 2 4 6 8 10 12 Position Tolerance (%) HGDI Position Tolerance 0.5 1.5 3 5 10 HGDI 0.999545776 0.998480097 0.997562914 0.99592072 0.980232528 HGDI Under Different PT Value 1 2
  • 38. 疾病管制局 Low Copy Number IS-6110 Genotyping Pattern: RFLP Versus MIRU
  • 39. 疾病管制局 Section V. Allelic Diversity and Linkage Disequilibrium of Genetic Markers
  • 40. 疾病管制局 Introduction of Linkage Disequilibrium • Disobeying Principle of Segregation • Example – 2 alleles (A & a) at locus A: P(A)=p – 2 alleles (B & b) at locus A: P(B)=r – 2 alleles (C & c) at locus A: P(C)=q – D=P(AB)-prq – D’=prq • Useful marker for genome-wide scan analysis – Pedigree analysis – Sib-pair study a b c C A B C b A
  • 41. 疾病管制局 Phenomenon of Linkage Disequilibrium In M. tuberculosis Sample 1 Locus-A 2 3 4 7 Locus-B 3 4 3 2 Locus-C 8 8 8 8 Locus-D 5 1 5 4 Locus-E 2 2 2 2 Sample 2 Sample 3 Sample n
  • 42. 疾病管制局 • Monte Carlo simulation – Developed in 1948 by Los Alamos National Lab. – Von Neumann, Fermi, Ulam and Metropolis – Simulation of the H-bond explosion by resampling formula – Calculating Physics, Chemistry, Biology, Economics – Resampling the loci without replacement and computing a VD value for each resampled data set – Resampling for about 10000 times • Parametric Method – L = Ve + 1.654 √ Var(VD) • Null hypothesis for Ve=VD LIAN Version 3.1: Detecting LD in Multilocus Data
  • 43. 疾病管制局 Highly LD in Taiwan, Clonal Separation May Occur
  • 44. 疾病管制局 Conclusion • Lower discrimination power compared with other publications – Diverse genotype observed in Taiwan • Different PT value can effect discrimination power obviously in RFLP pattern – Stability of IS6110, Electrophoresis Bias, Subjective Judgment of Data • Linkage analysis showed highly clonal separation in Taiwan – Need Further Surveillance • Combination of VNTR & MIRU achieves compatible selective power as RFLP • Genotyping Strategy – MIRU-VNTR as frontline, RFLP as confirmation and spoligotyping for Beijing type surveillance
  • 45. 疾病管制局 Outlook • Selection for appropriate LD markers – Pairwise Association Analysis for Each Locus • Redefinition the roles of RFLP, Spoligotyping, VNTR and MIRU – Flowchart or Pipeline for Genotyping Methodology • Throughput Is Minority, Discrimination Power is Majority – More high-diversity markers (h>0.5)
  • 46. 疾病管制局 Acknowledgements • Ruwen Jou- Principal Investigator • Wei-Lun Huang- Assistant Research Fellow • Strain Identification, General Affair • Su-Ying Chang- Medical Technician • Bacteria Culture, MDR surveillance • Hsuan Liu- Research Assistant • RFLP, DNA Extraction • Huang-Yau Chen- Research Assitant • Strain Identification, TB Virulence Research • Meng-Hsun Chen- NDSRA • Spoligotyping, MDR Surveillance • Ting-Yung Kou- Research Assistant • Proteomic, MDR Surveillance • Pei-Ju Chin • MIRU-VNTR, TB susceptibility Research, Bioinformatics Reprinted from http://profiles.nlm.nih.gov/VC/B/B/B/T/_/vcbbbt.jpg