Registers siso, sipo

Registers siso, sipo
REGISTERS
Group of Flip flops
Used to store binary numbers
One flip flop for each bit
To store 8-bit numbers = register must have eight flip flops
Binary number entered into the register and possibly shifted out
Shift Registers = A group of Flip flops connected to provide both
of these functions (enter & shift)
A bit in binary number == moved from one place to another in two
ways
Two methods
 Serial shifting – shifting the data bit in serial fashion,
beginning with either MSB or LSB
 Parallel shifting – shifting all the data bits simultaneously.
 two ways to shift data into a register === two ways to shift data out
of a register
 Four basic types (TTL MSI/LSI circuits)
Serial in - Serial out : IC 7491 : 8 bits
Serial in - parallel out : IC 74164 : 8 bits
Parallel in - serial out : IC 74165 : 8 bits
Parallel in - parallel out : IC 74194 : 4 bit
: IC 74198 : 8 bits
Registers siso, sipo
SERIAL IN – SERIAL OUT
 JK flip flop or D flip flop usually used for Registers.
 Data bit shifted must be present in J & K inputs during the clock pulses
 Two cases
 To shift a 0 into the flip flop, J = 0 and K = 1
 To shift a 1 into the flip flop, J = 1 and K = 0
 JK Master slave flip-flop is sensitive to negative clock transitions – shift pulse
 JK Master slave flip shift register
 At time A, Q = 0 ( 0 shifted into the flip flop) ( J = 0, K = 1)
 At time B, Q = 0 ( J = 0, K = 1)
 At time C, Q = 1 ( Flip flop is set)
( J = 1, K = 0)
 At time D, Q = 0 ( J = 0, K = 1)
 Four flip flops connected in series
 At time A, all flip flops = reset ( J = 0, K = 1)
T = reset, ( 0 in S shifted into T, 0 in R shifted
into S, 0 in Q shifted into R, data input 0
shifted into Q ) ===== QRST = 0000
 At time B, all flip flops = 0 ( 0 in S shifted into
T, 0 in R shifted into S, 0 in Q shifted into R,
data input 0 shifted into Q ) ,QRST = 0000
 At time C, ( J = 1, K = 0), ( 0 in S shifted into
T, 0 in R shifted into S, 0 in Q shifted into R,
data input 1 shifted into Q ) ,QRST = 1000
 At time D, ( J = 0, K = 1) ( 0 in S shifted into
T, 0 in R shifted into S, 1 in Q shifted into R,
data input 0 shifted into Q ) QRST = 0100
4 bit shift registers
 Shifting LSB first
 LSB in T & MSB in Q
 Technique is used to construct serial –input shift register
 J & K should complement to each other
 J = K & K = J
 Connect inverter between J & K = D flip flop , Single input , On negative
clock transition, the data present at the D input will shift into the flip flop.
 4-bit serial input register with D flip flop
 Before Time A == QRST = 1010
 At Time A, Data = 0, QRST = 0101
 At Time B, Data = 0, QRST = 0010
 At Time C, Data = 0, QRST = 0001
 At Time D, Data = 0, QRST = 0000
 Stored bit shift right, after four clock pulse it was
lost
Pinout diagram of 74LS91
Logic diagram of 74LS91
 8-bit TTL MSI Chip
 Eight RS flip flop connected = to
provide serial input & serial output
 Negative edge triggered flip flop
=== applied clk pulse pass through
inverter = shift on +ve edge pulse
 Inverter between RS flipflop = D FF
 Input = A or B
Serial in Parallel out
 Data shifted in serial , shifted out in parallel
 connecting output of each flip flop to an output pin
 8-bit shift register == 8 output lines
 IC 54/74164 = SIPO shift register.
 Constructed by using RS flip flop having clock inputs
that are sensitive to negative clock transitions
 Two exceptions
 First : true side of each flip flop = output
any number stored in register ==available as an output
 Second : has an asynchronous clear input ( not synchronous with clk input)
low at the input = reset all the flip flops.
Clear = low === Flip flop remains low.
Logic diagram of 54/74164
 Data at the serial inputs changed while clock is low or high
 Setup and hold times must be observed.
 Setup time = minimum 30ns
 Hold time =0.0nss
 Two inputs A & B
 Data input to A, B as an control inputs
 B =1, NAND = enabled, Input pass through NAND gate inverted, Data shifted
serially into the register
 B = 0, NAND output = high , input data = inhibited, next positive clk pulse shift 0
to the first flip flop, every pulse 0 shifted into each flipflops. Finally the register =
full of zeros
 Serial input at Pin 1 = A, Pin 2 = B
 Clear pulse at Time A, reset all the Flipflop to 0
 At B, Data bit (A) =1, control bit = 0, No change in
the output,
 At C, Data bit (A) =0, control bit = 1,
 At time D, First data 0 shifted into register
 At time E, F, G, H, I, J, K==== next 7 data were
shifted
 Final output = 0010 1100, LSB in QH
 Clk stopped, shifting process stopped,
otherwise data will lost
1 sur 12

Recommandé

multiplexers and demultiplexers par
 multiplexers and demultiplexers multiplexers and demultiplexers
multiplexers and demultiplexersUnsa Shakir
4.3K vues43 diapositives
Combinational circuits par
Combinational circuitsCombinational circuits
Combinational circuitsJamnas Mundakkutty A
1.3K vues41 diapositives
Sequential Logic Circuit par
Sequential Logic CircuitSequential Logic Circuit
Sequential Logic CircuitRamasubbu .P
27.7K vues29 diapositives
encoder and decoder in digital electronics par
encoder and decoder in digital electronicsencoder and decoder in digital electronics
encoder and decoder in digital electronicsvikram rajpurohit
10.7K vues15 diapositives
Multiplexers and Demultiplexers par
Multiplexers and DemultiplexersMultiplexers and Demultiplexers
Multiplexers and DemultiplexersGargiKhanna1
631 vues35 diapositives
digital Counter par
digital Counterdigital Counter
digital Countershamshad alam
13.6K vues18 diapositives

Contenu connexe

Tendances

Half subtracter par
Half subtracterHalf subtracter
Half subtracterawais ahmad
1.9K vues2 diapositives
Sequential circuits in Digital Electronics par
Sequential circuits in Digital ElectronicsSequential circuits in Digital Electronics
Sequential circuits in Digital ElectronicsVinoth Loganathan
3.2K vues79 diapositives
Multiplexer and DeMultiplexer par
Multiplexer and DeMultiplexerMultiplexer and DeMultiplexer
Multiplexer and DeMultiplexerEstiak Khan
16.5K vues13 diapositives
Latches and flip flops par
Latches and flip flopsLatches and flip flops
Latches and flip flopssheheryar ahmed
1.3K vues20 diapositives
Combinational circuit par
Combinational circuitCombinational circuit
Combinational circuitSatya P. Joshi
14.8K vues24 diapositives
Multipliers in VLSI par
Multipliers in VLSIMultipliers in VLSI
Multipliers in VLSIKiranmai Sony
18.7K vues23 diapositives

Tendances(20)

Sequential circuits in Digital Electronics par Vinoth Loganathan
Sequential circuits in Digital ElectronicsSequential circuits in Digital Electronics
Sequential circuits in Digital Electronics
Vinoth Loganathan3.2K vues
Multiplexer and DeMultiplexer par Estiak Khan
Multiplexer and DeMultiplexerMultiplexer and DeMultiplexer
Multiplexer and DeMultiplexer
Estiak Khan16.5K vues
sequential circuits par Unsa Shakir
sequential circuitssequential circuits
sequential circuits
Unsa Shakir1.2K vues
decoder and encoder par Unsa Shakir
 decoder and encoder decoder and encoder
decoder and encoder
Unsa Shakir2.9K vues
Synchronous counters par Lee Diaz
Synchronous countersSynchronous counters
Synchronous counters
Lee Diaz15.4K vues
Flipflops and Excitation tables of flipflops par student
Flipflops and Excitation tables of flipflopsFlipflops and Excitation tables of flipflops
Flipflops and Excitation tables of flipflops
student43.8K vues
Modulo n counter par Manoj Guha
Modulo n counterModulo n counter
Modulo n counter
Manoj Guha24.3K vues
Counters par Randaqra
CountersCounters
Counters
Randaqra2.1K vues
Adder & subtractor (Half adder, Full adder, Half subtractor, Full subtractor) par ISMT College
Adder & subtractor (Half adder, Full adder, Half subtractor, Full subtractor)Adder & subtractor (Half adder, Full adder, Half subtractor, Full subtractor)
Adder & subtractor (Half adder, Full adder, Half subtractor, Full subtractor)
ISMT College1.1K vues

Similaire à Registers siso, sipo

tCh09.ppt par
tCh09.ppttCh09.ppt
tCh09.pptWasimAslam12
3 vues14 diapositives
15CS32 ADE Module 4 par
15CS32 ADE Module 415CS32 ADE Module 4
15CS32 ADE Module 4RLJIT
1.8K vues30 diapositives
unit 5.pptx par
unit 5.pptxunit 5.pptx
unit 5.pptxssuser022fec
23 vues64 diapositives
best slides latches.pdf par
best slides latches.pdfbest slides latches.pdf
best slides latches.pdfAreebaShoukat4
18 vues30 diapositives
JK flip flops par
JK flip flopsJK flip flops
JK flip flopsZakariae EL IDRISSI
9.1K vues22 diapositives
Ring counter par
Ring counterRing counter
Ring counterGhufran Hasan
4.5K vues2 diapositives

Similaire à Registers siso, sipo(20)

15CS32 ADE Module 4 par RLJIT
15CS32 ADE Module 415CS32 ADE Module 4
15CS32 ADE Module 4
RLJIT1.8K vues
B sc cs i bo-de u-iv sequential circuit par Rai University
B sc cs i bo-de u-iv sequential circuitB sc cs i bo-de u-iv sequential circuit
B sc cs i bo-de u-iv sequential circuit
Rai University2.6K vues
SEQUENTIAL CIRCUITS -Module 5 (1).pptx par ThanmayiKumar
SEQUENTIAL CIRCUITS -Module 5 (1).pptxSEQUENTIAL CIRCUITS -Module 5 (1).pptx
SEQUENTIAL CIRCUITS -Module 5 (1).pptx
ThanmayiKumar10 vues
BEEE FLIP FLOP & REGISTERS par VinithShenoy
BEEE FLIP FLOP & REGISTERSBEEE FLIP FLOP & REGISTERS
BEEE FLIP FLOP & REGISTERS
VinithShenoy106 vues
B sc cs i bo-de u-iii counters & registers par Rai University
B sc cs i bo-de u-iii counters & registersB sc cs i bo-de u-iii counters & registers
B sc cs i bo-de u-iii counters & registers
Rai University2.2K vues
IS 151 Lecture 11 par wajanga
IS 151 Lecture 11IS 151 Lecture 11
IS 151 Lecture 11
wajanga1K vues
Synchronous Sequential Logic Unit 4 par Asif Iqbal
Synchronous Sequential Logic Unit 4Synchronous Sequential Logic Unit 4
Synchronous Sequential Logic Unit 4
Asif Iqbal711 vues

Plus de DEPARTMENT OF PHYSICS

Ruby laser par
Ruby laserRuby laser
Ruby laserDEPARTMENT OF PHYSICS
1.9K vues7 diapositives
Phototransistor par
PhototransistorPhototransistor
PhototransistorDEPARTMENT OF PHYSICS
1.2K vues8 diapositives
Photo diode par
Photo diodePhoto diode
Photo diodeDEPARTMENT OF PHYSICS
1.3K vues10 diapositives
Opto electronic devices par
Opto electronic devicesOpto electronic devices
Opto electronic devicesDEPARTMENT OF PHYSICS
212 vues17 diapositives
Basics of laser action par
Basics of laser actionBasics of laser action
Basics of laser actionDEPARTMENT OF PHYSICS
501 vues11 diapositives
7 Segment Display par
7 Segment Display7 Segment Display
7 Segment DisplayDEPARTMENT OF PHYSICS
459 vues14 diapositives

Plus de DEPARTMENT OF PHYSICS(20)

Dernier

Lecture: Open Innovation par
Lecture: Open InnovationLecture: Open Innovation
Lecture: Open InnovationMichal Hron
99 vues56 diapositives
ICS3211_lecture 08_2023.pdf par
ICS3211_lecture 08_2023.pdfICS3211_lecture 08_2023.pdf
ICS3211_lecture 08_2023.pdfVanessa Camilleri
127 vues30 diapositives
The Accursed House by Émile Gaboriau par
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile GaboriauDivyaSheta
187 vues15 diapositives
Are we onboard yet University of Sussex.pptx par
Are we onboard yet University of Sussex.pptxAre we onboard yet University of Sussex.pptx
Are we onboard yet University of Sussex.pptxJisc
93 vues7 diapositives
11.30.23 Poverty and Inequality in America.pptx par
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptxmary850239
149 vues33 diapositives
GSoC 2024 par
GSoC 2024GSoC 2024
GSoC 2024DeveloperStudentClub10
75 vues15 diapositives

Dernier(20)

Lecture: Open Innovation par Michal Hron
Lecture: Open InnovationLecture: Open Innovation
Lecture: Open Innovation
Michal Hron99 vues
The Accursed House by Émile Gaboriau par DivyaSheta
The Accursed House  by Émile GaboriauThe Accursed House  by Émile Gaboriau
The Accursed House by Émile Gaboriau
DivyaSheta187 vues
Are we onboard yet University of Sussex.pptx par Jisc
Are we onboard yet University of Sussex.pptxAre we onboard yet University of Sussex.pptx
Are we onboard yet University of Sussex.pptx
Jisc93 vues
11.30.23 Poverty and Inequality in America.pptx par mary850239
11.30.23 Poverty and Inequality in America.pptx11.30.23 Poverty and Inequality in America.pptx
11.30.23 Poverty and Inequality in America.pptx
mary850239149 vues
Solar System and Galaxies.pptx par DrHafizKosar
Solar System and Galaxies.pptxSolar System and Galaxies.pptx
Solar System and Galaxies.pptx
DrHafizKosar89 vues
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively par PECB
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks EffectivelyISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
ISO/IEC 27001 and ISO/IEC 27005: Managing AI Risks Effectively
PECB 574 vues
Use of Probiotics in Aquaculture.pptx par AKSHAY MANDAL
Use of Probiotics in Aquaculture.pptxUse of Probiotics in Aquaculture.pptx
Use of Probiotics in Aquaculture.pptx
AKSHAY MANDAL95 vues
Create a Structure in VBNet.pptx par Breach_P
Create a Structure in VBNet.pptxCreate a Structure in VBNet.pptx
Create a Structure in VBNet.pptx
Breach_P72 vues
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx par Inge de Waard
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptxOEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
OEB 2023 Co-learning To Speed Up AI Implementation in Courses.pptx
Inge de Waard169 vues
JiscOAWeek_LAIR_slides_October2023.pptx par Jisc
JiscOAWeek_LAIR_slides_October2023.pptxJiscOAWeek_LAIR_slides_October2023.pptx
JiscOAWeek_LAIR_slides_October2023.pptx
Jisc93 vues
Narration lesson plan.docx par TARIQ KHAN
Narration lesson plan.docxNarration lesson plan.docx
Narration lesson plan.docx
TARIQ KHAN108 vues
Class 10 English lesson plans par TARIQ KHAN
Class 10 English  lesson plansClass 10 English  lesson plans
Class 10 English lesson plans
TARIQ KHAN280 vues
UWP OA Week Presentation (1).pptx par Jisc
UWP OA Week Presentation (1).pptxUWP OA Week Presentation (1).pptx
UWP OA Week Presentation (1).pptx
Jisc87 vues
AI Tools for Business and Startups par Svetlin Nakov
AI Tools for Business and StartupsAI Tools for Business and Startups
AI Tools for Business and Startups
Svetlin Nakov105 vues
Dance KS5 Breakdown par WestHatch
Dance KS5 BreakdownDance KS5 Breakdown
Dance KS5 Breakdown
WestHatch69 vues
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx par ISSIP
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptxEIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
EIT-Digital_Spohrer_AI_Intro 20231128 v1.pptx
ISSIP359 vues
Structure and Functions of Cell.pdf par Nithya Murugan
Structure and Functions of Cell.pdfStructure and Functions of Cell.pdf
Structure and Functions of Cell.pdf
Nithya Murugan455 vues

Registers siso, sipo

  • 2. REGISTERS Group of Flip flops Used to store binary numbers One flip flop for each bit To store 8-bit numbers = register must have eight flip flops Binary number entered into the register and possibly shifted out Shift Registers = A group of Flip flops connected to provide both of these functions (enter & shift) A bit in binary number == moved from one place to another in two ways
  • 3. Two methods  Serial shifting – shifting the data bit in serial fashion, beginning with either MSB or LSB  Parallel shifting – shifting all the data bits simultaneously.  two ways to shift data into a register === two ways to shift data out of a register  Four basic types (TTL MSI/LSI circuits) Serial in - Serial out : IC 7491 : 8 bits Serial in - parallel out : IC 74164 : 8 bits Parallel in - serial out : IC 74165 : 8 bits Parallel in - parallel out : IC 74194 : 4 bit : IC 74198 : 8 bits
  • 5. SERIAL IN – SERIAL OUT  JK flip flop or D flip flop usually used for Registers.  Data bit shifted must be present in J & K inputs during the clock pulses  Two cases  To shift a 0 into the flip flop, J = 0 and K = 1  To shift a 1 into the flip flop, J = 1 and K = 0  JK Master slave flip-flop is sensitive to negative clock transitions – shift pulse  JK Master slave flip shift register  At time A, Q = 0 ( 0 shifted into the flip flop) ( J = 0, K = 1)  At time B, Q = 0 ( J = 0, K = 1)  At time C, Q = 1 ( Flip flop is set) ( J = 1, K = 0)  At time D, Q = 0 ( J = 0, K = 1)
  • 6.  Four flip flops connected in series  At time A, all flip flops = reset ( J = 0, K = 1) T = reset, ( 0 in S shifted into T, 0 in R shifted into S, 0 in Q shifted into R, data input 0 shifted into Q ) ===== QRST = 0000  At time B, all flip flops = 0 ( 0 in S shifted into T, 0 in R shifted into S, 0 in Q shifted into R, data input 0 shifted into Q ) ,QRST = 0000  At time C, ( J = 1, K = 0), ( 0 in S shifted into T, 0 in R shifted into S, 0 in Q shifted into R, data input 1 shifted into Q ) ,QRST = 1000  At time D, ( J = 0, K = 1) ( 0 in S shifted into T, 0 in R shifted into S, 1 in Q shifted into R, data input 0 shifted into Q ) QRST = 0100 4 bit shift registers
  • 7.  Shifting LSB first  LSB in T & MSB in Q  Technique is used to construct serial –input shift register  J & K should complement to each other  J = K & K = J  Connect inverter between J & K = D flip flop , Single input , On negative clock transition, the data present at the D input will shift into the flip flop.  4-bit serial input register with D flip flop  Before Time A == QRST = 1010  At Time A, Data = 0, QRST = 0101  At Time B, Data = 0, QRST = 0010  At Time C, Data = 0, QRST = 0001  At Time D, Data = 0, QRST = 0000  Stored bit shift right, after four clock pulse it was lost
  • 8. Pinout diagram of 74LS91 Logic diagram of 74LS91  8-bit TTL MSI Chip  Eight RS flip flop connected = to provide serial input & serial output  Negative edge triggered flip flop === applied clk pulse pass through inverter = shift on +ve edge pulse  Inverter between RS flipflop = D FF  Input = A or B
  • 9. Serial in Parallel out  Data shifted in serial , shifted out in parallel  connecting output of each flip flop to an output pin  8-bit shift register == 8 output lines  IC 54/74164 = SIPO shift register.  Constructed by using RS flip flop having clock inputs that are sensitive to negative clock transitions
  • 10.  Two exceptions  First : true side of each flip flop = output any number stored in register ==available as an output  Second : has an asynchronous clear input ( not synchronous with clk input) low at the input = reset all the flip flops. Clear = low === Flip flop remains low. Logic diagram of 54/74164
  • 11.  Data at the serial inputs changed while clock is low or high  Setup and hold times must be observed.  Setup time = minimum 30ns  Hold time =0.0nss  Two inputs A & B  Data input to A, B as an control inputs  B =1, NAND = enabled, Input pass through NAND gate inverted, Data shifted serially into the register  B = 0, NAND output = high , input data = inhibited, next positive clk pulse shift 0 to the first flip flop, every pulse 0 shifted into each flipflops. Finally the register = full of zeros
  • 12.  Serial input at Pin 1 = A, Pin 2 = B  Clear pulse at Time A, reset all the Flipflop to 0  At B, Data bit (A) =1, control bit = 0, No change in the output,  At C, Data bit (A) =0, control bit = 1,  At time D, First data 0 shifted into register  At time E, F, G, H, I, J, K==== next 7 data were shifted  Final output = 0010 1100, LSB in QH  Clk stopped, shifting process stopped, otherwise data will lost