SlideShare a Scribd company logo
1 of 23
ELEN 3371 Electromagnetics Fall 2008
1
Maxwell’s Equations
ELEN 3371 Electromagnetics Fall 2008
2
Maxwell’s equations
The behavior of electric and magnetic waves can be fully described by a set
of four equations (which we have learned already).
B
E
t
∂
∇× = −
∂
D
H J
t
∂
∇× = +
∂
vD ρ∇ =g
0B∇ =gGauss’s Law for magnetism
Gauss’s Law for electricity
Ampere’s Law
Faraday’s Law of induction (6.2.1)
(6.2.2)
(6.2.3)
(6.2.4)
ELEN 3371 Electromagnetics Fall 2008
3
Maxwell’s equations
And the constitutive relations:
D Eε=
B Hµ=
J Eσ=
They relate the electromagnetic field to the properties of the material, in
which the field exists. Together with the Maxwell’s equations, the
constitutive relations completely describe the electromagnetic field.
Even the EM fields in a nonlinear media can be described through a
nonlinearity existing in the constitutive relations.
(6.3.1)
(6.3.2)
(6.3.3)
ELEN 3371 Electromagnetics Fall 2008
4
Maxwell’s equations
L s
B
E dl ds
t∆ ∆
∂
= −
∂∫ ∫g gÑ
Gauss’s Law for magnetism
Gauss’s Law for electricity
Ampere’s Law
Faraday’s Law of induction (6.4.1)
(6.4.2)
(6.4.3)
(6.4.4)
Integral form
L s
D
H dl J ds
t∆ ∆
∂ 
= − + ÷
∂ 
∫ ∫g gÑ
v
S v
D ds dvρ
∆ ∆
=∫ ∫gÑ
0
S
B ds
∆
=∫ gÑ
ELEN 3371 Electromagnetics Fall 2008
5
Maxwell’s equations
Example 6.1: In a conductive material we may assume that the conductive
current density is much greater than the displacement current density. Show that
the Maxwell’s equations can be put in a form of a Diffusion equation in this
material. B
E
t
∂
∇× = −
∂
H J Eσ∇× ≈ =
We can write:
and, neglecting the
displacement current:
(6.5.1)
(6.5.2)
Taking curl of (6.5.2): H Eσ∇×∇× = ∇×
Expanding the LHS: 2
0 0
B B B
t
σ
µ µ
    ∂
∇ ∇ −∇ = − ÷  ÷
∂   
g
(6.5.3)
(6.5.4)
The first term is zero and 2
0
B
B
t
µ σ
∂
∇ =
∂
(6.5.5)
Is the diffusion equation with a diffusion coefficient D = 1/(σµ0)
ELEN 3371 Electromagnetics Fall 2008
6
Maxwell’s equations
Example 6.2: Solve the diffusion equation for the case of the magnetic flux
density Bx(z,t) near a planar vacuum-copper interface, assuming for copper: µ =
µ0 and σ = 5.8 x 107
S/m. Assume that a 60-Hz time-harmonic EM signal is
applied.
Assuming ejωt
time-variation, the diffusion equation is transformed to the
ordinary differential equation:
2
02
( )
( )x
x
d B z
j B z
dz
µ σω=
2
0 0j j jγ ωµ σ γ α β ωµ σ= ⇒ = + =
Where z is the normal coordinate to the boundary. Assuming a variation in
the z-direction to be Bx(z) = B0e-γz
, we write:
(6.6.1)
(6.6.2)
ELEN 3371 Electromagnetics Fall 2008
7
Maxwell’s equations
The magnitude of the magnetic flux density decays exponentially in the z
direction from the surface into the conductor
0( ) z
xB z B e α−
=
where
7 7 1
0 60 4 10 5.8 10 117.2f mα π µ σ π π − −
= = × × × × × =
The quantity δ = 1/α is called a “skin depth” - the
distance over which the current (or field) falls to 1/e of
its original value.
For copper, δ = 8.5 mm.
(6.7.1)
(6.7.2)
ELEN 3371 Electromagnetics Fall 2008
8
Maxwell’s equations
Example 6.3: Derive the equation of continuity starting from the Maxwell’s equations
The Gauss’s law: vD ρ∇ =g
Taking time derivatives:
v D
D
t t t
ρ∂ ∂ ∂
= ∇ = ∇
∂ ∂ ∂
g g
From the Ampere’s law
D
H J
t
∂
= ∇× −
∂
Therefore:
v
H J
t
ρ∂
= ∇ ∇× −∇
∂
g g
The equation of continuity:
v
J
t
ρ∂
= −∇
∂
g
(6.8.1)
(6.8.2)
(6.8.3)
(6.8.4)
(6.8.5)
ELEN 3371 Electromagnetics Fall 2008
9
Poynting’s Theorem
It is frequently needed to determine the direction the power is flowing. The
Poynting’s Theorem is the tool for such tasks.
We consider an arbitrary
shaped volume:
B
E
t
∂
∇× = −
∂
D
H J
t
∂
∇× = +
∂
Recall:
We take the scalar product of E and subtract it from the scalar product of H.
B D
H E E H H E J
t t
∂ ∂ 
∇× − ∇× = − − + ÷
∂ ∂ 
g g g g
(6.9.1)
(6.9.2)
(6.9.3)
ELEN 3371 Electromagnetics Fall 2008
10
Poynting’s Theorem
Using the vector identity
( )A B B A A B∇ × = ∇× − ∇×g g g
Therefore:
( )
B D
E H H E E J
t t
∂ ∂
∇ × = − − −
∂ ∂
g g g g
Applying the constitutive relations to the terms involving time derivatives, we get:
( ) ( )2 21 1
2 2
B D
H E H H E E H E
t t t t
µ ε µ ε
∂ ∂ ∂ ∂
− − = − + = − +
∂ ∂ ∂ ∂
g g g g
(6.10.1)
(6.10.2)
(6.10.3)
Combining (6.9.2) and (6.9.3) and integrating both sides over the same ∆v…
ELEN 3371 Electromagnetics Fall 2008
11
Poynting’s Theorem
( )2 21
( )
2v v v
E H dv H E dv E Jdv
t
µ ε
∂
∇ × = − + −
∂∫ ∫ ∫V V V
g g
Application of divergence theorem and the Ohm’s law lead to the PT:
( )2 2 21
( )
2s v v
E H ds H E dv E dv
t
µ ε σ
∂
× = − + −
∂∫ ∫ ∫V V V
gÑ
Here S E H= ×
is the Poynting vector – the power density and the
direction of the radiated EM fields in W/m2
.
(6.11.1)
(6.11.2)
(6.11.3)
ELEN 3371 Electromagnetics Fall 2008
12
Poynting’s Theorem
The Poynting’s Theorem states that the power that leaves a region is
equal to the temporal decay in the energy that is stored within the
volume minus the power that is dissipated as heat within it – energy
conservation.
EM energy density is 2 21
2
w H Eµ ε = + 
Power loss density is
2
Lp Eσ=
The differential form of the Poynting’s Theorem:
L
w
S p
t
∂
∇ + = −
∂
g
(6.12.1)
(6.12.2)
(6.12.3)
ELEN 3371 Electromagnetics Fall 2008
13
Poynting’s Theorem
Example 6.4: Using the Poynting’s Theorem,
calculate the power that is dissipated in the
resistor as heat. Neglect the magnetic field that
is confined within the resistor and calculate its
value only at the surface. Assume that the
conducting surfaces at the top and the bottom of
the resistor are equipotential and the resistor’s
radius is much less than its length.
The magnitude of the electric field is
0E V L=
and it is in the direction of the current.
(6.13.1)
The magnitude of the magnetic field intensity at the outer surface of the resistor:
( )2H I aπ= (6.13.2)
ELEN 3371 Electromagnetics Fall 2008
14
Poynting’s Theorem
S E H= × (6.14.1)The Poynting’s vector
is into the resistor. There is NO energy stored in the
resistor. The magnitude of the current density is in the
direction of a current and, therefore, the electric field.
2
I
J
aπ
= (6.14.2)
The PT:
20 0
2
0 0
2 (0 0)
2 v
V VI d I
aL dv a L
L a dt a L
V I V I
π π
π π
− = − + −
⇒ − = −
∫V
(6.14.3)
(6.14.4)
The electromagnetic energy of a battery is completely absorbed with
the resistor in form of heat.
ELEN 3371 Electromagnetics Fall 2008
15
Poynting’s Theorem
Example 6.5: Using Poynting’s Theorem,
calculate the power that is flowing through
the surface area at the radial edge of a
capacitor. Neglect the ohmic losses in the
wires, assume that the radius of the
plates is much greater than the
separation between them: a >> b.
Assuming the electric field E is uniform and confined between the plates, the total
electric energy stored in the capacitor is:
2
2
2
E
W a b
ε
π=
The total magnetic energy stored in the capacitor is zero.
(6.15.1)
ELEN 3371 Electromagnetics Fall 2008
16
Poynting’s Theorem
The time derivative of the electric energy is
2dW dE
a bE
dt dt
επ− = − (6.16.1)
This is the only nonzero term on the RHS of PT since an ideal capacitor does not
dissipate energy.
We express next the time-varying magnetic field intensity in terms of the
displacement current. Since no conduction current exists in an ideal capacitor:
s
E
H dl ds
t
ε
∂
=
∂∫ ∫V
g gÑ (6.16.2)
2
2
2
dE a dE
aH a H
dt dt
ε
π ε π= ⇒ =
Therefore:
(6.16.3)
ELEN 3371 Electromagnetics Fall 2008
17
Poynting’s Theorem
(6.17.1)
The power flow would be:
( )S
s
P E H ds= ×∫V
gÑ
In our situation: 2 rds ab uπ=
and 1rS u = −g
2
2S abEH
dE
P a bE
dt
εππ= −− =Therefore:
We observe that S
dW
P
dt
= −
The energy is conserved in the circuit.
(6.17.2)
(6.17.3)
(6.17.4)
(6.17.5)
ELEN 3371 Electromagnetics Fall 2008
18
Time-harmonic EM fields
Frequently, a temporal variation of EM fields is harmonic; therefore,
we may use a phasor representation:
( , , , ) Re ( , , )
( , , , ) Re ( , , )
j t
j t
E x y z t E x y z e
H x y z t H x y z e
ω
ω
 =  
 =  
It may be a phase angle between the electric and the magnetic fields
incorporated into E(x,y,z) and H(x,y,z).
(6.18.1)
(6.18.2)
Maxwell’s Eqn in
phasor form:
( ) ( )E r j H rωµ∇× = −
( ) ( ) ( )H r j E r J rωε∇× = +
( ) ( )vE r rρ ε∇ =g
( ) 0B r∇ =g
(6.18.3)
(6.18.4)
(6.18.5)
(6.18.6)
ELEN 3371 Electromagnetics Fall 2008
19
Time-harmonic EM fields
Power is a real quantity and, keeping in mind that:
Re ( ) Re ( ) Re ( ) ( )j t j t j t j t
E r e H r e E r e H r eω ω ω ω
     × ≠ ×     
Since [ ]
*
Re
2
A A
A
+
=
complex conjugate
Therefore:
[ ] [ ]
* *
* * * *
( ) ( ) ( ) ( )
Re ( ) Re ( )
2 2
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
4
E r E r H r H r
E r H r
E r H r E r H r E r H r E r H r
   + +
× = × ÷  ÷
   
× + × + × + ×
=
Taking the time average, we obtain the average power as:
*1
( ) Re ( ) ( )
2
avS r E r H r = × 
(6.19.1)
(6.19.2)
(6.19.3)
(6.19.4)
ELEN 3371 Electromagnetics Fall 2008
20
Time-harmonic EM fields
Therefore, the Poynting’s theorem in phasors is:
( ) ( )* 2 2 2
( ) ( )
s v v
E r H r ds j H E dv E dvω µ ε σ× = − − −∫ ∫ ∫V V V
gÑ (6.20.1)
Total power radiated
from the volume
The power dissipated
within the volume
The energy stored
within the volume
Indicates that the power (energy) is reactive
ELEN 3371 Electromagnetics Fall 2008
21
Time-harmonic EM fields
Example 6.6: Compute the frequency at which the conduction current equals the
displacement current in copper.
Using the Ampere’s law in the phasor form, we write:
( ) ( ) ( )H r J r j E rωε∇× = +
Since J Eσ=
σ ωε=
and ( ) ( ) ( ) ( )dJ r J r E r j E rσ ωε= ⇒ =
Therefore:
Finally:
7
18
90
5.8 10
1.04 10
12 2 2 10
36
f Hz
ω σ
π πε π
π
−
×
= = = ≈ ×
× ×
At much higher frequencies, cooper (a good conductor) acts like a dielectric.
(6.21.1)
(6.21.2)
(6.21.3)
(6.21.4)
(6.21.5)
ELEN 3371 Electromagnetics Fall 2008
22
Time-harmonic EM fields
Example 6.7: The fields in a free space are:
4
10cos ;
3 120
z
x
u Ez
E t u H
π
ω
π
× 
= + = ÷
 
Determine the Poynting vector if the frequency is 500 MHz.
In a phasor notation: 4 4
3 3
10
( ) 10 ( )
120
z z
j j
x yE r e u H r e u
π π
π
= =
And the Poynting vector is:
2
*1 10
( ) Re ( ) ( ) 0.133
2 2 120
av z zS r E r H r u u
π
 = × = =  ×
HW 5 is ready 
(6.22.3)
(6.22.2)
(6.22.1)
ELEN 3371 Electromagnetics Fall 2008
23
What is diffusion equation?
The diffusion equation is a partial differential equation which
describes density fluctuations in a material undergoing diffusion.
Diffusion is the movement of
particles of a substance from an
area of high concentration to an
area of low concentration, resulting
in the uniform distribution of the
substance.
Similarly, a flow of free charges in a material, where a charge difference
between two locations exists, can be described by the diffusion equation.
Back

More Related Content

What's hot (20)

Maxwell's equation
Maxwell's equationMaxwell's equation
Maxwell's equation
 
Vector Integration
Vector IntegrationVector Integration
Vector Integration
 
Photoelectric effect
Photoelectric effectPhotoelectric effect
Photoelectric effect
 
Capacitors with Dielectrics final.ppt
Capacitors with Dielectrics final.pptCapacitors with Dielectrics final.ppt
Capacitors with Dielectrics final.ppt
 
DoS of bulk and quantum structures
DoS of bulk and quantum structuresDoS of bulk and quantum structures
DoS of bulk and quantum structures
 
Maxwell equation
Maxwell equationMaxwell equation
Maxwell equation
 
Classical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanicsClassical mechanics vs quantum mechanics
Classical mechanics vs quantum mechanics
 
Maxwell's equations 3rd 2
Maxwell's equations 3rd 2Maxwell's equations 3rd 2
Maxwell's equations 3rd 2
 
Maxwell's equation
Maxwell's equationMaxwell's equation
Maxwell's equation
 
Ppt19 magnetic-potential
Ppt19  magnetic-potentialPpt19  magnetic-potential
Ppt19 magnetic-potential
 
Physics barriers and tunneling
Physics barriers and tunnelingPhysics barriers and tunneling
Physics barriers and tunneling
 
5 slides
5 slides5 slides
5 slides
 
Electromagnetics
ElectromagneticsElectromagnetics
Electromagnetics
 
electromagnetic waves
electromagnetic waveselectromagnetic waves
electromagnetic waves
 
Free electron in_metal
Free electron in_metalFree electron in_metal
Free electron in_metal
 
Chapter3 introduction to the quantum theory of solids
Chapter3 introduction to the quantum theory of solidsChapter3 introduction to the quantum theory of solids
Chapter3 introduction to the quantum theory of solids
 
CHAPTER 6 Quantum Mechanics II
CHAPTER 6 Quantum Mechanics IICHAPTER 6 Quantum Mechanics II
CHAPTER 6 Quantum Mechanics II
 
Introduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equationIntroduction to quantum mechanics and schrodinger equation
Introduction to quantum mechanics and schrodinger equation
 
Electromagnetic Theory
Electromagnetic TheoryElectromagnetic Theory
Electromagnetic Theory
 
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Telegrapher's Equation
 

Viewers also liked

портфоліо 2 клас
портфоліо 2 класпортфоліо 2 клас
портфоліо 2 класdashootkagakh
 
MST of: hoe werkt een goede gezinstherapie voor probleemjongeren?
MST of: hoe werkt een goede gezinstherapie voor probleemjongeren?MST of: hoe werkt een goede gezinstherapie voor probleemjongeren?
MST of: hoe werkt een goede gezinstherapie voor probleemjongeren?GGZ de Viersprong
 
Ніжинська ЗОШ №8
Ніжинська ЗОШ №8Ніжинська ЗОШ №8
Ніжинська ЗОШ №8Sergiy Gakh
 
портфоліо 3 кл
портфоліо 3 клпортфоліо 3 кл
портфоліо 3 клdashootkagakh
 
Trivandrum Monorail Preliminary Study
Trivandrum Monorail Preliminary StudyTrivandrum Monorail Preliminary Study
Trivandrum Monorail Preliminary StudyAjay Prasad
 
Pencemaran lingkungan dan pengendaliannya print
Pencemaran lingkungan dan pengendaliannya printPencemaran lingkungan dan pengendaliannya print
Pencemaran lingkungan dan pengendaliannya printMarfizal Marfizal
 
Fisiologia del sistema nervioso sistema nervisos autonomo mioenterico 12
Fisiologia del sistema nervioso   sistema nervisos autonomo mioenterico 12Fisiologia del sistema nervioso   sistema nervisos autonomo mioenterico 12
Fisiologia del sistema nervioso sistema nervisos autonomo mioenterico 12Fernanda Pineda Gea
 
Business classification scheme (Taxonomy)
Business classification scheme (Taxonomy)Business classification scheme (Taxonomy)
Business classification scheme (Taxonomy)SOLOMON M KAMINDA
 
271083916 tekla-15-analysis-manual
271083916 tekla-15-analysis-manual271083916 tekla-15-analysis-manual
271083916 tekla-15-analysis-manualWSKT
 
Pengukuran aliran fluida pertemuan 9
Pengukuran aliran fluida pertemuan 9Pengukuran aliran fluida pertemuan 9
Pengukuran aliran fluida pertemuan 9Marfizal Marfizal
 
Different types of thyristors and their applications
Different types of thyristors and their applicationsDifferent types of thyristors and their applications
Different types of thyristors and their applicationselprocus
 

Viewers also liked (20)

Sell.Do
Sell.DoSell.Do
Sell.Do
 
портфоліо 2 клас
портфоліо 2 класпортфоліо 2 клас
портфоліо 2 клас
 
MST of: hoe werkt een goede gezinstherapie voor probleemjongeren?
MST of: hoe werkt een goede gezinstherapie voor probleemjongeren?MST of: hoe werkt een goede gezinstherapie voor probleemjongeren?
MST of: hoe werkt een goede gezinstherapie voor probleemjongeren?
 
Ніжинська ЗОШ №8
Ніжинська ЗОШ №8Ніжинська ЗОШ №8
Ніжинська ЗОШ №8
 
The motivations behind open access publishing judith schossboeck
The motivations behind open access publishing  judith schossboeckThe motivations behind open access publishing  judith schossboeck
The motivations behind open access publishing judith schossboeck
 
портфоліо 3 кл
портфоліо 3 клпортфоліо 3 кл
портфоліо 3 кл
 
Trivandrum Monorail Preliminary Study
Trivandrum Monorail Preliminary StudyTrivandrum Monorail Preliminary Study
Trivandrum Monorail Preliminary Study
 
Fisika industri 11
Fisika industri 11Fisika industri 11
Fisika industri 11
 
Pencemaran lingkungan dan pengendaliannya print
Pencemaran lingkungan dan pengendaliannya printPencemaran lingkungan dan pengendaliannya print
Pencemaran lingkungan dan pengendaliannya print
 
Lingkungan hidup-2
Lingkungan hidup-2Lingkungan hidup-2
Lingkungan hidup-2
 
Fisiologia del sistema nervioso sistema nervisos autonomo mioenterico 12
Fisiologia del sistema nervioso   sistema nervisos autonomo mioenterico 12Fisiologia del sistema nervioso   sistema nervisos autonomo mioenterico 12
Fisiologia del sistema nervioso sistema nervisos autonomo mioenterico 12
 
Business classification scheme (Taxonomy)
Business classification scheme (Taxonomy)Business classification scheme (Taxonomy)
Business classification scheme (Taxonomy)
 
271083916 tekla-15-analysis-manual
271083916 tekla-15-analysis-manual271083916 tekla-15-analysis-manual
271083916 tekla-15-analysis-manual
 
Kuliah 3-4-dinamika
Kuliah 3-4-dinamikaKuliah 3-4-dinamika
Kuliah 3-4-dinamika
 
Pengukuran aliran fluida pertemuan 9
Pengukuran aliran fluida pertemuan 9Pengukuran aliran fluida pertemuan 9
Pengukuran aliran fluida pertemuan 9
 
Mekanika fluida 2 ok
Mekanika fluida 2 okMekanika fluida 2 ok
Mekanika fluida 2 ok
 
Mekanika fluida
Mekanika fluidaMekanika fluida
Mekanika fluida
 
Remarketing: Precise Targeting in Real Estate Marketing
Remarketing: Precise Targeting in Real Estate MarketingRemarketing: Precise Targeting in Real Estate Marketing
Remarketing: Precise Targeting in Real Estate Marketing
 
Pune Ruby Meetup - November 2015
Pune Ruby Meetup - November 2015Pune Ruby Meetup - November 2015
Pune Ruby Meetup - November 2015
 
Different types of thyristors and their applications
Different types of thyristors and their applicationsDifferent types of thyristors and their applications
Different types of thyristors and their applications
 

Similar to Lecture 06 maxwell eqn

Maxwell's contribution to physics
Maxwell's contribution to physicsMaxwell's contribution to physics
Maxwell's contribution to physicsMayank Panchal
 
Magnetic Materials Assignment Help
Magnetic Materials Assignment HelpMagnetic Materials Assignment Help
Magnetic Materials Assignment HelpEdu Assignment Help
 
Interaction of light and matter
Interaction of light and matterInteraction of light and matter
Interaction of light and matterGabriel O'Brien
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission linesAmit Rastogi
 
PART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsPART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsMaurice R. TREMBLAY
 
Teoría Cuántica de la Radiacion
Teoría Cuántica de la RadiacionTeoría Cuántica de la Radiacion
Teoría Cuántica de la RadiacionAlejandro Correa
 
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solids
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solidsPolarization bremsstrahlung on atoms, plasmas, nanostructures and solids
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solidsSpringer
 
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...iosrjce
 
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon PlasmaNonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon PlasmaDaisuke Satow
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manualstudent
 
The electromagnetic field
The electromagnetic fieldThe electromagnetic field
The electromagnetic fieldGabriel O'Brien
 
Ch 2 - The Structure of Atoms.pdf
Ch 2 - The Structure of Atoms.pdfCh 2 - The Structure of Atoms.pdf
Ch 2 - The Structure of Atoms.pdfCharbelRahme2
 

Similar to Lecture 06 maxwell eqn (20)

Maxwell's contribution to physics
Maxwell's contribution to physicsMaxwell's contribution to physics
Maxwell's contribution to physics
 
maxwell equaction Devendra keer
maxwell equaction Devendra keermaxwell equaction Devendra keer
maxwell equaction Devendra keer
 
ch09.pdf
ch09.pdfch09.pdf
ch09.pdf
 
EM_Theory.pdf
EM_Theory.pdfEM_Theory.pdf
EM_Theory.pdf
 
Magnetic Materials Assignment Help
Magnetic Materials Assignment HelpMagnetic Materials Assignment Help
Magnetic Materials Assignment Help
 
Interaction of light and matter
Interaction of light and matterInteraction of light and matter
Interaction of light and matter
 
Falling magnet 2
Falling magnet 2Falling magnet 2
Falling magnet 2
 
Karpen generator
Karpen generatorKarpen generator
Karpen generator
 
Lecture 09 em transmission lines
Lecture 09   em transmission linesLecture 09   em transmission lines
Lecture 09 em transmission lines
 
PART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum ElectrodynamicsPART VII.2 - Quantum Electrodynamics
PART VII.2 - Quantum Electrodynamics
 
Electromagnetic waves
Electromagnetic wavesElectromagnetic waves
Electromagnetic waves
 
Teoría Cuántica de la Radiacion
Teoría Cuántica de la RadiacionTeoría Cuántica de la Radiacion
Teoría Cuántica de la Radiacion
 
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solids
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solidsPolarization bremsstrahlung on atoms, plasmas, nanostructures and solids
Polarization bremsstrahlung on atoms, plasmas, nanostructures and solids
 
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
Derivation of Schrodinger and Einstein Energy Equations from Maxwell's Electr...
 
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon PlasmaNonlinear Electromagnetic Response in Quark-Gluon Plasma
Nonlinear Electromagnetic Response in Quark-Gluon Plasma
 
optics chapter_07_solution_manual
optics chapter_07_solution_manualoptics chapter_07_solution_manual
optics chapter_07_solution_manual
 
Optics part i
Optics   part iOptics   part i
Optics part i
 
The electromagnetic field
The electromagnetic fieldThe electromagnetic field
The electromagnetic field
 
Ch 2 - The Structure of Atoms.pdf
Ch 2 - The Structure of Atoms.pdfCh 2 - The Structure of Atoms.pdf
Ch 2 - The Structure of Atoms.pdf
 
Problem 2 a ph o 2
Problem 2 a ph o 2Problem 2 a ph o 2
Problem 2 a ph o 2
 

More from Marfizal Marfizal

More from Marfizal Marfizal (20)

MKE Pertemuan 3 edit ok.pptx
MKE  Pertemuan 3 edit ok.pptxMKE  Pertemuan 3 edit ok.pptx
MKE Pertemuan 3 edit ok.pptx
 
MKE Pertemuan 7 edit tampil okk.pptx
MKE  Pertemuan 7 edit tampil okk.pptxMKE  Pertemuan 7 edit tampil okk.pptx
MKE Pertemuan 7 edit tampil okk.pptx
 
Ketel Dan Turbin Uap 8.pptx
Ketel Dan Turbin Uap 8.pptxKetel Dan Turbin Uap 8.pptx
Ketel Dan Turbin Uap 8.pptx
 
Motor listrik.docx
Motor listrik.docxMotor listrik.docx
Motor listrik.docx
 
Pengaruh Pencampuran Bahan Bakar Terhadap Performa Sepeda Motor Matic.pdf
Pengaruh Pencampuran Bahan Bakar Terhadap Performa Sepeda Motor Matic.pdfPengaruh Pencampuran Bahan Bakar Terhadap Performa Sepeda Motor Matic.pdf
Pengaruh Pencampuran Bahan Bakar Terhadap Performa Sepeda Motor Matic.pdf
 
[Philip_A._Schweitzer]_Fundamentals_of_metallic_co(BookFi).pdf
[Philip_A._Schweitzer]_Fundamentals_of_metallic_co(BookFi).pdf[Philip_A._Schweitzer]_Fundamentals_of_metallic_co(BookFi).pdf
[Philip_A._Schweitzer]_Fundamentals_of_metallic_co(BookFi).pdf
 
Bahan ajar 12 2017
Bahan ajar 12  2017Bahan ajar 12  2017
Bahan ajar 12 2017
 
Bahan ajar 11 2017
Bahan ajar 11  2017Bahan ajar 11  2017
Bahan ajar 11 2017
 
Bahan ajar 10 2017
Bahan ajar 10  2017Bahan ajar 10  2017
Bahan ajar 10 2017
 
Bahan ajar 9 2017
Bahan ajar 9  2017Bahan ajar 9  2017
Bahan ajar 9 2017
 
Bahan ajar 8 2017
Bahan ajar 8  2017Bahan ajar 8  2017
Bahan ajar 8 2017
 
Bahan ajar 7 2017
Bahan ajar 7  2017Bahan ajar 7  2017
Bahan ajar 7 2017
 
Bahan ajar 6 2017
Bahan ajar 6  2017Bahan ajar 6  2017
Bahan ajar 6 2017
 
Bahan ajar 5 2017
Bahan ajar 5  2017Bahan ajar 5  2017
Bahan ajar 5 2017
 
Bahan ajar 4 2017
Bahan ajar 4  2017Bahan ajar 4  2017
Bahan ajar 4 2017
 
Bahan ajar 3 2017
Bahan ajar 3  2017Bahan ajar 3  2017
Bahan ajar 3 2017
 
Bahan ajar 2 2017
Bahan ajar 2  2017Bahan ajar 2  2017
Bahan ajar 2 2017
 
Mekanika fluida 1 pertemuan 10
Mekanika fluida 1 pertemuan 10Mekanika fluida 1 pertemuan 10
Mekanika fluida 1 pertemuan 10
 
Mekanika fluida 1 pertemuan 10 [autosaved]
Mekanika fluida 1 pertemuan 10 [autosaved]Mekanika fluida 1 pertemuan 10 [autosaved]
Mekanika fluida 1 pertemuan 10 [autosaved]
 
Mekanika fluida 1 pertemuan 9
Mekanika fluida 1 pertemuan 9Mekanika fluida 1 pertemuan 9
Mekanika fluida 1 pertemuan 9
 

Recently uploaded

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docxPoojaSen20
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpinRaunakKeshri1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfsanyamsingh5019
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 

Recently uploaded (20)

Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"Mattingly "AI & Prompt Design: The Basics of Prompt Design"
Mattingly "AI & Prompt Design: The Basics of Prompt Design"
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
mini mental status format.docx
mini    mental       status     format.docxmini    mental       status     format.docx
mini mental status format.docx
 
Student login on Anyboli platform.helpin
Student login on Anyboli platform.helpinStudent login on Anyboli platform.helpin
Student login on Anyboli platform.helpin
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
 
Sanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdfSanyam Choudhary Chemistry practical.pdf
Sanyam Choudhary Chemistry practical.pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 

Lecture 06 maxwell eqn

  • 1. ELEN 3371 Electromagnetics Fall 2008 1 Maxwell’s Equations
  • 2. ELEN 3371 Electromagnetics Fall 2008 2 Maxwell’s equations The behavior of electric and magnetic waves can be fully described by a set of four equations (which we have learned already). B E t ∂ ∇× = − ∂ D H J t ∂ ∇× = + ∂ vD ρ∇ =g 0B∇ =gGauss’s Law for magnetism Gauss’s Law for electricity Ampere’s Law Faraday’s Law of induction (6.2.1) (6.2.2) (6.2.3) (6.2.4)
  • 3. ELEN 3371 Electromagnetics Fall 2008 3 Maxwell’s equations And the constitutive relations: D Eε= B Hµ= J Eσ= They relate the electromagnetic field to the properties of the material, in which the field exists. Together with the Maxwell’s equations, the constitutive relations completely describe the electromagnetic field. Even the EM fields in a nonlinear media can be described through a nonlinearity existing in the constitutive relations. (6.3.1) (6.3.2) (6.3.3)
  • 4. ELEN 3371 Electromagnetics Fall 2008 4 Maxwell’s equations L s B E dl ds t∆ ∆ ∂ = − ∂∫ ∫g gÑ Gauss’s Law for magnetism Gauss’s Law for electricity Ampere’s Law Faraday’s Law of induction (6.4.1) (6.4.2) (6.4.3) (6.4.4) Integral form L s D H dl J ds t∆ ∆ ∂  = − + ÷ ∂  ∫ ∫g gÑ v S v D ds dvρ ∆ ∆ =∫ ∫gÑ 0 S B ds ∆ =∫ gÑ
  • 5. ELEN 3371 Electromagnetics Fall 2008 5 Maxwell’s equations Example 6.1: In a conductive material we may assume that the conductive current density is much greater than the displacement current density. Show that the Maxwell’s equations can be put in a form of a Diffusion equation in this material. B E t ∂ ∇× = − ∂ H J Eσ∇× ≈ = We can write: and, neglecting the displacement current: (6.5.1) (6.5.2) Taking curl of (6.5.2): H Eσ∇×∇× = ∇× Expanding the LHS: 2 0 0 B B B t σ µ µ     ∂ ∇ ∇ −∇ = − ÷  ÷ ∂    g (6.5.3) (6.5.4) The first term is zero and 2 0 B B t µ σ ∂ ∇ = ∂ (6.5.5) Is the diffusion equation with a diffusion coefficient D = 1/(σµ0)
  • 6. ELEN 3371 Electromagnetics Fall 2008 6 Maxwell’s equations Example 6.2: Solve the diffusion equation for the case of the magnetic flux density Bx(z,t) near a planar vacuum-copper interface, assuming for copper: µ = µ0 and σ = 5.8 x 107 S/m. Assume that a 60-Hz time-harmonic EM signal is applied. Assuming ejωt time-variation, the diffusion equation is transformed to the ordinary differential equation: 2 02 ( ) ( )x x d B z j B z dz µ σω= 2 0 0j j jγ ωµ σ γ α β ωµ σ= ⇒ = + = Where z is the normal coordinate to the boundary. Assuming a variation in the z-direction to be Bx(z) = B0e-γz , we write: (6.6.1) (6.6.2)
  • 7. ELEN 3371 Electromagnetics Fall 2008 7 Maxwell’s equations The magnitude of the magnetic flux density decays exponentially in the z direction from the surface into the conductor 0( ) z xB z B e α− = where 7 7 1 0 60 4 10 5.8 10 117.2f mα π µ σ π π − − = = × × × × × = The quantity δ = 1/α is called a “skin depth” - the distance over which the current (or field) falls to 1/e of its original value. For copper, δ = 8.5 mm. (6.7.1) (6.7.2)
  • 8. ELEN 3371 Electromagnetics Fall 2008 8 Maxwell’s equations Example 6.3: Derive the equation of continuity starting from the Maxwell’s equations The Gauss’s law: vD ρ∇ =g Taking time derivatives: v D D t t t ρ∂ ∂ ∂ = ∇ = ∇ ∂ ∂ ∂ g g From the Ampere’s law D H J t ∂ = ∇× − ∂ Therefore: v H J t ρ∂ = ∇ ∇× −∇ ∂ g g The equation of continuity: v J t ρ∂ = −∇ ∂ g (6.8.1) (6.8.2) (6.8.3) (6.8.4) (6.8.5)
  • 9. ELEN 3371 Electromagnetics Fall 2008 9 Poynting’s Theorem It is frequently needed to determine the direction the power is flowing. The Poynting’s Theorem is the tool for such tasks. We consider an arbitrary shaped volume: B E t ∂ ∇× = − ∂ D H J t ∂ ∇× = + ∂ Recall: We take the scalar product of E and subtract it from the scalar product of H. B D H E E H H E J t t ∂ ∂  ∇× − ∇× = − − + ÷ ∂ ∂  g g g g (6.9.1) (6.9.2) (6.9.3)
  • 10. ELEN 3371 Electromagnetics Fall 2008 10 Poynting’s Theorem Using the vector identity ( )A B B A A B∇ × = ∇× − ∇×g g g Therefore: ( ) B D E H H E E J t t ∂ ∂ ∇ × = − − − ∂ ∂ g g g g Applying the constitutive relations to the terms involving time derivatives, we get: ( ) ( )2 21 1 2 2 B D H E H H E E H E t t t t µ ε µ ε ∂ ∂ ∂ ∂ − − = − + = − + ∂ ∂ ∂ ∂ g g g g (6.10.1) (6.10.2) (6.10.3) Combining (6.9.2) and (6.9.3) and integrating both sides over the same ∆v…
  • 11. ELEN 3371 Electromagnetics Fall 2008 11 Poynting’s Theorem ( )2 21 ( ) 2v v v E H dv H E dv E Jdv t µ ε ∂ ∇ × = − + − ∂∫ ∫ ∫V V V g g Application of divergence theorem and the Ohm’s law lead to the PT: ( )2 2 21 ( ) 2s v v E H ds H E dv E dv t µ ε σ ∂ × = − + − ∂∫ ∫ ∫V V V gÑ Here S E H= × is the Poynting vector – the power density and the direction of the radiated EM fields in W/m2 . (6.11.1) (6.11.2) (6.11.3)
  • 12. ELEN 3371 Electromagnetics Fall 2008 12 Poynting’s Theorem The Poynting’s Theorem states that the power that leaves a region is equal to the temporal decay in the energy that is stored within the volume minus the power that is dissipated as heat within it – energy conservation. EM energy density is 2 21 2 w H Eµ ε = +  Power loss density is 2 Lp Eσ= The differential form of the Poynting’s Theorem: L w S p t ∂ ∇ + = − ∂ g (6.12.1) (6.12.2) (6.12.3)
  • 13. ELEN 3371 Electromagnetics Fall 2008 13 Poynting’s Theorem Example 6.4: Using the Poynting’s Theorem, calculate the power that is dissipated in the resistor as heat. Neglect the magnetic field that is confined within the resistor and calculate its value only at the surface. Assume that the conducting surfaces at the top and the bottom of the resistor are equipotential and the resistor’s radius is much less than its length. The magnitude of the electric field is 0E V L= and it is in the direction of the current. (6.13.1) The magnitude of the magnetic field intensity at the outer surface of the resistor: ( )2H I aπ= (6.13.2)
  • 14. ELEN 3371 Electromagnetics Fall 2008 14 Poynting’s Theorem S E H= × (6.14.1)The Poynting’s vector is into the resistor. There is NO energy stored in the resistor. The magnitude of the current density is in the direction of a current and, therefore, the electric field. 2 I J aπ = (6.14.2) The PT: 20 0 2 0 0 2 (0 0) 2 v V VI d I aL dv a L L a dt a L V I V I π π π π − = − + − ⇒ − = − ∫V (6.14.3) (6.14.4) The electromagnetic energy of a battery is completely absorbed with the resistor in form of heat.
  • 15. ELEN 3371 Electromagnetics Fall 2008 15 Poynting’s Theorem Example 6.5: Using Poynting’s Theorem, calculate the power that is flowing through the surface area at the radial edge of a capacitor. Neglect the ohmic losses in the wires, assume that the radius of the plates is much greater than the separation between them: a >> b. Assuming the electric field E is uniform and confined between the plates, the total electric energy stored in the capacitor is: 2 2 2 E W a b ε π= The total magnetic energy stored in the capacitor is zero. (6.15.1)
  • 16. ELEN 3371 Electromagnetics Fall 2008 16 Poynting’s Theorem The time derivative of the electric energy is 2dW dE a bE dt dt επ− = − (6.16.1) This is the only nonzero term on the RHS of PT since an ideal capacitor does not dissipate energy. We express next the time-varying magnetic field intensity in terms of the displacement current. Since no conduction current exists in an ideal capacitor: s E H dl ds t ε ∂ = ∂∫ ∫V g gÑ (6.16.2) 2 2 2 dE a dE aH a H dt dt ε π ε π= ⇒ = Therefore: (6.16.3)
  • 17. ELEN 3371 Electromagnetics Fall 2008 17 Poynting’s Theorem (6.17.1) The power flow would be: ( )S s P E H ds= ×∫V gÑ In our situation: 2 rds ab uπ= and 1rS u = −g 2 2S abEH dE P a bE dt εππ= −− =Therefore: We observe that S dW P dt = − The energy is conserved in the circuit. (6.17.2) (6.17.3) (6.17.4) (6.17.5)
  • 18. ELEN 3371 Electromagnetics Fall 2008 18 Time-harmonic EM fields Frequently, a temporal variation of EM fields is harmonic; therefore, we may use a phasor representation: ( , , , ) Re ( , , ) ( , , , ) Re ( , , ) j t j t E x y z t E x y z e H x y z t H x y z e ω ω  =    =   It may be a phase angle between the electric and the magnetic fields incorporated into E(x,y,z) and H(x,y,z). (6.18.1) (6.18.2) Maxwell’s Eqn in phasor form: ( ) ( )E r j H rωµ∇× = − ( ) ( ) ( )H r j E r J rωε∇× = + ( ) ( )vE r rρ ε∇ =g ( ) 0B r∇ =g (6.18.3) (6.18.4) (6.18.5) (6.18.6)
  • 19. ELEN 3371 Electromagnetics Fall 2008 19 Time-harmonic EM fields Power is a real quantity and, keeping in mind that: Re ( ) Re ( ) Re ( ) ( )j t j t j t j t E r e H r e E r e H r eω ω ω ω      × ≠ ×      Since [ ] * Re 2 A A A + = complex conjugate Therefore: [ ] [ ] * * * * * * ( ) ( ) ( ) ( ) Re ( ) Re ( ) 2 2 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 4 E r E r H r H r E r H r E r H r E r H r E r H r E r H r    + + × = × ÷  ÷     × + × + × + × = Taking the time average, we obtain the average power as: *1 ( ) Re ( ) ( ) 2 avS r E r H r = ×  (6.19.1) (6.19.2) (6.19.3) (6.19.4)
  • 20. ELEN 3371 Electromagnetics Fall 2008 20 Time-harmonic EM fields Therefore, the Poynting’s theorem in phasors is: ( ) ( )* 2 2 2 ( ) ( ) s v v E r H r ds j H E dv E dvω µ ε σ× = − − −∫ ∫ ∫V V V gÑ (6.20.1) Total power radiated from the volume The power dissipated within the volume The energy stored within the volume Indicates that the power (energy) is reactive
  • 21. ELEN 3371 Electromagnetics Fall 2008 21 Time-harmonic EM fields Example 6.6: Compute the frequency at which the conduction current equals the displacement current in copper. Using the Ampere’s law in the phasor form, we write: ( ) ( ) ( )H r J r j E rωε∇× = + Since J Eσ= σ ωε= and ( ) ( ) ( ) ( )dJ r J r E r j E rσ ωε= ⇒ = Therefore: Finally: 7 18 90 5.8 10 1.04 10 12 2 2 10 36 f Hz ω σ π πε π π − × = = = ≈ × × × At much higher frequencies, cooper (a good conductor) acts like a dielectric. (6.21.1) (6.21.2) (6.21.3) (6.21.4) (6.21.5)
  • 22. ELEN 3371 Electromagnetics Fall 2008 22 Time-harmonic EM fields Example 6.7: The fields in a free space are: 4 10cos ; 3 120 z x u Ez E t u H π ω π ×  = + = ÷   Determine the Poynting vector if the frequency is 500 MHz. In a phasor notation: 4 4 3 3 10 ( ) 10 ( ) 120 z z j j x yE r e u H r e u π π π = = And the Poynting vector is: 2 *1 10 ( ) Re ( ) ( ) 0.133 2 2 120 av z zS r E r H r u u π  = × = =  × HW 5 is ready  (6.22.3) (6.22.2) (6.22.1)
  • 23. ELEN 3371 Electromagnetics Fall 2008 23 What is diffusion equation? The diffusion equation is a partial differential equation which describes density fluctuations in a material undergoing diffusion. Diffusion is the movement of particles of a substance from an area of high concentration to an area of low concentration, resulting in the uniform distribution of the substance. Similarly, a flow of free charges in a material, where a charge difference between two locations exists, can be described by the diffusion equation. Back