SlideShare a Scribd company logo
1 of 27
Row Space, Column Space, Null Space
And
Rank Nullity Theorem
A part of active learning assignment.
An initiative by GTU.
Prepared by,
Ronak Machhi (130410109042)
(130410109044)
(130410109046)
(130410109048)
(130410109050)
Guided by:
Prof. Harshad R. Patel
Prof. J. B. Patel
Vector Calculus and Linear
Algebra
Outline
 Row Space
 Column Space
 Null space
 Rank And Nullity
Definition
11 12 1
21 22 2
1 2
1 11 12 1
2 21 22 2
For an m n matrix
...
...
A=
: : :
...
the vectors
[ ]
[ ]
:
n
n
m m mn
n
n
a a a
a a a
a a a
a a a
a a a
×
 
 
 
 
 
  
=
=
r
r
...
...
m 1 2
n
11 12 1
21 22 2
1 2
1 2
[ ]
in R formed form the rows of Aare called the row vectors of A, and the vectors
, , ...,
: : :
in
m m mn
n
n
n
m m mn
a a a
a a a
a a a
a a a
=
     
     
     = = =
     
     
          
r
c c c
...
m
R formed from the columns of A are called the column vectors of A.
Example 1
Row and Column Vectors in a 2×3
Matrix
 Let
The row vectors of A are
and the column vectors of A are
2 1 0
3 1 4
A
 
=  − 
[ ] [ ]1 22 1 0 and 3 1 4= = −r r
2 1 0
, , and
3 1 4
     
= = =     −     
1 2 3c c c
Definition
 If A is an m×n matrix, then the
subspace of Rn
spanned by the row
vectors of A is called the row space of
A, and the subspace of Rm
spanned by
the column vectors is called the column
space of A. The solution space of the
homogeneous system of equation
Ax=0, which is a subspace of Rn
, is
called the nullsapce of A.
Theorem
 Elementary row operations do not
change the nullspace of a matrix.
Example 4
Basis for Nullspace
 Find a basis for the nullspace of
Solution.
The nullspace of A is the solution space of the homogeneous
system
After solution we find that the vectors
Form a basis for this space.
2 2 1 0 1
1 1 2 3 1
1 1 2 0 1
0 0 1 1 1
A
− 
 − − − =
 − −
 
 
1 2 3 5
1 2 3 4 5
1 2 3 5
3 4 5
2 2 0
2 3 0
2 0
0
x x x x
x x x x x
x x x x
x x x
+ − + =
− − + − + =
+ − − =
+ + =
1 2
1 1
1 0
and0 1
0 0
0 1
− −   
   
   
   = = −
   
   
      
v v
Theorem
 Elementary row operations do not
change the row space of a matrix.
Theorem
 If a matrix R is in row echelon form,
then the row vectors with the leading
1’s (i.e., the nonzero row vectors) form
a basis for the row space of R, and the
column vectors with the leading 1’s of
the row vectors form a basis for the
column space of R.
Example 5
Bases for Row and Column Spaces
1
2
3
The matrix
1 2 5 0 3
0 1 3 0 0
0 0 0 1 0
0 0 0 0 0
is in row-echelon form. From Theorem 5.5.6 the vectors
[1 -2 5 0 3]
[0 1 3 0 0]
[0 0 0 1 0]
form a
R
− 
 
 =
 
 
 
=
=
=
r
r
r
1 2 4
basis for the row space of R, and the vectors
1 2 0
0 1 0
, ,
0 0 1
0 0 0
form a basis for the column space of R.
−     
     
     = = =
     
     
     
c c c
Example 6
Bases for Row and Column Spaces
(1/2)
 Find bases for the row and column spaces of
Solution.
Reducing A to row-echelon form we obtain
By Theorem 5.5.6 the nonzero row vectors of R form a basis for row space
of R, and hence form a basis for the row space of A. These basis
vectors are
1 3 4 2 5 4
2 6 9 1 8 2
2 6 9 1 9 7
1 3 4 2 5 4
A
− − 
 − − =
 − −
 
− − − − 
1 3 4 2 5 4
0 0 1 3 2 6
0 0 0 0 1 5
0 0 0 0 0 0
R
− − 
 − − =
 
 
 
[ ]
[ ]
[ ]
1
2
3
r 1 3 4 2 5 4
r 0 0 1 3 2 6
r 0 0 0 0 1 5
= − −
= − −
=
Example 6
Bases for Row and Column Spaces
(2/2)
We can find a set of column vectors of R that forms a basis for the column
space of R, then the corresponding column vectors of A will form a basis
for the column space of A.
The first, third, and fifth columns of R contain the leading 1’s of the row
vector , so
Form a basis for the column space of R; thus
Form a basis for the column space of A.
1 4 5
0 1 2
, ,
0 0 1
0 0 0
     
     −     = = =
     
     
     
' ' '
1 5 5c c c
1 4 5
2 9 8
, ,
2 9 9
1 4 5
     
     
     = = =
     
     
− − −     
1 3 5c c c
Example 7
Basis for a Vector Space Using Row
Operations (1/2)
 Find a basis for the space spanned by the vectors
v1=(1, -2, 0, 0, 3), v2=(2, -5, -3, -2, 6), v3=(0, 5, 15, 10, 0), v4=(2, 6,
18, 8, 6)
Solution.
Except for a variation in notation, the space spanned by these
vectors is row space of the matrix
Reducing this matrix to row-echelon form we obtain
1 2 0 0 3
2 5 3 2 6
0 5 15 10 0
2 6 18 8 6
− 
 − − − 
 
 
 
1 2 0 0 3
0 1 3 2 0
0 0 1 1 0
0 0 0 0 0
− 
 
 
 
 
 
Example 7
Basis for a Vector Space Using Row
Operations (2/2)
The nonzero row vectors in this matrix are
w1=(1, -2, 0, 0, 3), w2=(0, 1, 3, 2, 0),
w3=(0, 0, 1, 1, 0)
These vectors form a basis for the row
space and consequently form a basis
for the subspace of R5
spanned by v1,
v2, v3, and v4.
Example 8
Basis for the Row Space of a Matrix
(1/2)
 Find a basis for the row space of
Consisting entirely of row vectors from A.
Solution.
Transposing A yields
1 2 0 0 3
2 5 3 2 6
0 5 15 10 0
2 6 18 8 6
A
− 
 − − − =
 
 
 
1 2 0 2
2 5 5 6
0 3 15 18
0 2 10 8
3 6 0 6
T
A
 
 − − 
 = −
 
− 
  
Example 8
Basis for the Row Space of a Matrix
(2/2)
Reducing this matrix to row-echelon form yields
The first, second, and fourth columns contain the leading 1’s, so the
corresponding column vectors in AT
form a basis for the column
space of ; these are
Transposing again and adjusting the notation appropriately yields the
basis vectors
r1=[1 -2 0 0 3], r2=[2 -5 -3 -2 6], and r3=[2 -5 -3 -2 6]
for the row space of A.
1 2 0 2
0 1 5 10
0 0 0 1
0 0 0 0
0 0 0 0
 
 − 
 
 
 
  
1 2 2
2 5 6
, , and0 3 18
0 2 8
3 6 6
     
     − −     
     = = =−
     
−     
          
1 2 4c c c
Rank And Nullity
Theorem
 If A is any matrix, then the row space
and column space of A have the same
dimension.
Definition
 The common dimension of the row and
column space of a matrix A is called the
rank of A and is denoted by rank(A); the
dimension of the nullspace of a is called
the nullity of A and is denoted by
nullity(A).
Example 1
Rank and Nullity of a 4×6 Matrix
(1/2)
 Find the rank and nullity of the matrix
Solution.
The reduced row-echelon form of A is
Since there are two nonzero rows, the row space and column space
are both two-dimensional, so rank(A)=2.
1 2 0 4 5 3
3 7 2 0 1 4
2 5 2 4 6 1
4 9 2 4 4 7
A
− − 
 − =
 −
 
− − − 
1 0 4 28 37 13
0 1 2 12 16 5
0 0 0 0 0 0
0 0 0 0 0 0
− − − 
 − − − 
 
 
 
Example 1
Rank and Nullity of a 4×6 Matrix
(2/2)
The corresponding system of equations will be
x1-4x3-28x4-37x5+13x6=0
x2-2x3-12x4-16x5+5x6=0
It follows that the general solution of the system is
x1=4r+28s+37t-13u; x2=2r+12s+16t-5u; x3=r; x4=s; x5=t; x6=u
Or
So that nullity(A)=4.
1
2
3
4
5
6
4 28 37 13
2 12 16 5
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
x
x
x
r s t u
x
x
x
−         
         −         
         
= + + +         
         
         
         
                 
Theorem
 If A is any matrix, then rank(A)=
rank(AT
).
Theorem 5.6.3
Dimension Theorem for Matrices
 If A is a matrix with n columns, then
rank(A)+nullity(A)=n
Theorem
 If A is an m×n matrix, then:
a) rank(A)=the number of leading
variables in the solution of Ax=0.
b) nullity(A)=the number of parameters in
the general solution of Ax=0.
Example 2
The Sum of Rank and Nullity
 The matrix
has 6 columns, so
rank(A)+nullity(A)=6
This is consistent with Example 1, where we should
showed that
rank(A)=2 and nullity(A)=4
1 2 0 4 5 3
3 7 2 0 1 4
2 5 2 4 6 1
4 9 2 4 4 7
A
− − 
 − =
 −
 
− − − 
References:
 Textbook of Vector Calculus and
Linear Algebra (Atul Publications)
Note: All the excerpts taken from the
respective book were used only for
academic purpose. NO commercial
purpose was entertained.
Thank you. 

More Related Content

What's hot

Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2SamsonAjibola
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and EigenvectorsVinod Srivastava
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisRavi Gelani
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - MathematicsDrishti Bhalla
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsJaydev Kishnani
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectorsAmit Singh
 
Eigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to DiagonalisationEigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to DiagonalisationChristopher Gratton
 
2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and Dimension2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and DimensionCeni Babaoglu, PhD
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equationsDiler4
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equationssaahil kshatriya
 
Lu decomposition
Lu decompositionLu decomposition
Lu decompositiongilandio
 
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...Sukhvinder Singh
 
Null space and rank nullity theorem
Null space and rank nullity theoremNull space and rank nullity theorem
Null space and rank nullity theoremDhrumil Panchal
 
Matrix inverse
Matrix inverseMatrix inverse
Matrix inversemstf mstf
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIADheeraj Kataria
 

What's hot (20)

Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2Numerical solution of eigenvalues and applications 2
Numerical solution of eigenvalues and applications 2
 
Eigenvalues and Eigenvectors
Eigenvalues and EigenvectorsEigenvalues and Eigenvectors
Eigenvalues and Eigenvectors
 
Matrices ppt
Matrices pptMatrices ppt
Matrices ppt
 
Vector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,BasisVector Spaces,subspaces,Span,Basis
Vector Spaces,subspaces,Span,Basis
 
Hamilton path and euler path
Hamilton path and euler pathHamilton path and euler path
Hamilton path and euler path
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
 
Maths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectorsMaths-->>Eigenvalues and eigenvectors
Maths-->>Eigenvalues and eigenvectors
 
Vector space
Vector spaceVector space
Vector space
 
Eigen values and eigenvectors
Eigen values and eigenvectorsEigen values and eigenvectors
Eigen values and eigenvectors
 
Eigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to DiagonalisationEigenvectors & Eigenvalues: The Road to Diagonalisation
Eigenvectors & Eigenvalues: The Road to Diagonalisation
 
2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and Dimension2. Linear Algebra for Machine Learning: Basis and Dimension
2. Linear Algebra for Machine Learning: Basis and Dimension
 
System of linear equations
System of linear equationsSystem of linear equations
System of linear equations
 
MEAN VALUE THEOREM
MEAN VALUE THEOREMMEAN VALUE THEOREM
MEAN VALUE THEOREM
 
System Of Linear Equations
System Of Linear EquationsSystem Of Linear Equations
System Of Linear Equations
 
Lu decomposition
Lu decompositionLu decomposition
Lu decomposition
 
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION   KERNEL AND RANGE OF LINEAR TR...
Vcla.ppt COMPOSITION OF LINEAR TRANSFORMATION KERNEL AND RANGE OF LINEAR TR...
 
Null space and rank nullity theorem
Null space and rank nullity theoremNull space and rank nullity theorem
Null space and rank nullity theorem
 
Matrix inverse
Matrix inverseMatrix inverse
Matrix inverse
 
rank of matrix
rank of matrixrank of matrix
rank of matrix
 
Matrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIAMatrix presentation By DHEERAJ KATARIA
Matrix presentation By DHEERAJ KATARIA
 

Viewers also liked

Lesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsLesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsMatthew Leingang
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalharshid panchal
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session SlidesMatthew Leingang
 
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6njit-ronbrown
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and applicationshreyansp
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.pptRaj Parekh
 
Lecture 9 dim & rank - 4-5 & 4-6
Lecture 9   dim & rank -  4-5 & 4-6Lecture 9   dim & rank -  4-5 & 4-6
Lecture 9 dim & rank - 4-5 & 4-6njit-ronbrown
 
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5njit-ronbrown
 
Taller de teatro para competencias lomce
Taller de teatro para competencias lomceTaller de teatro para competencias lomce
Taller de teatro para competencias lomcevictor diaz gomez
 
Serviciogastronomia en un hotel
Serviciogastronomia en un hotelServiciogastronomia en un hotel
Serviciogastronomia en un hotelCarlos Lucero
 
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...Mexican Ministry of Foreign Affairs
 
Social media und recht claudia keller
Social media und recht claudia kellerSocial media und recht claudia keller
Social media und recht claudia kellerSocial Hub Zürich
 
Diagnostico Motor
Diagnostico MotorDiagnostico Motor
Diagnostico Motorguest07963
 
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature EmployeesPaullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature EmployeesCheryl Paullin
 
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...InfoAndina CONDESAN
 
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escalaENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escalachicorasia
 

Viewers also liked (20)

Lesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear EquationsLesson 13: Rank and Solutions to Systems of Linear Equations
Lesson 13: Rank and Solutions to Systems of Linear Equations
 
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchalppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
ppt on Vector spaces (VCLA) by dhrumil patel and harshid panchal
 
ppt of VCLA
ppt of VCLAppt of VCLA
ppt of VCLA
 
Midterm II Review Session Slides
Midterm II Review Session SlidesMidterm II Review Session Slides
Midterm II Review Session Slides
 
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6Lecture 8   nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
Lecture 8 nul col bases dim & rank - section 4-2, 4-3, 4-5 & 4-6
 
Linear transformation and application
Linear transformation and applicationLinear transformation and application
Linear transformation and application
 
Linear transformation.ppt
Linear transformation.pptLinear transformation.ppt
Linear transformation.ppt
 
Lecture 9 dim & rank - 4-5 & 4-6
Lecture 9   dim & rank -  4-5 & 4-6Lecture 9   dim & rank -  4-5 & 4-6
Lecture 9 dim & rank - 4-5 & 4-6
 
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5Lecture  11   diagonalization & complex eigenvalues -  5-3 & 5-5
Lecture 11 diagonalization & complex eigenvalues - 5-3 & 5-5
 
Matrices
MatricesMatrices
Matrices
 
Taller de teatro para competencias lomce
Taller de teatro para competencias lomceTaller de teatro para competencias lomce
Taller de teatro para competencias lomce
 
Serviciogastronomia en un hotel
Serviciogastronomia en un hotelServiciogastronomia en un hotel
Serviciogastronomia en un hotel
 
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
Crisis climaticas riesgo y vulnerabilidad en un mundo desigual: el caso del S...
 
Social media und recht claudia keller
Social media und recht claudia kellerSocial media und recht claudia keller
Social media und recht claudia keller
 
Diagnostico Motor
Diagnostico MotorDiagnostico Motor
Diagnostico Motor
 
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature EmployeesPaullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
Paullin_SHRM Foundation EPG 2014_Leverage Talents of Mature Employees
 
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
Modelamiento para el Desarrollo Sostenible de la Cuenca Chira – Piura mediant...
 
Los blogs
Los blogsLos blogs
Los blogs
 
Rapport environnement en
Rapport environnement enRapport environnement en
Rapport environnement en
 
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escalaENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
ENVI-met como uma ferramenta de análise da qualidade do ar em micro-escala
 

Similar to Null space, Rank and nullity theorem

Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...Hemin Patel
 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxfroilandoblon1
 
Matrix and linear algebra Introduced by: Khalid Jawad Kadhim
Matrix and linear algebra Introduced by: Khalid Jawad KadhimMatrix and linear algebra Introduced by: Khalid Jawad Kadhim
Matrix and linear algebra Introduced by: Khalid Jawad KadhimKhalidJawadKadhimALK
 
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By PearsonChapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By PearsonChaimae Baroudi
 
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfEigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfAugustoMiguel Ramos
 
Mat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.pptMat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.pptabidraufv
 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxAlokSingh205089
 
Mathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMadhavRao65
 
ArrayBasics.ppt
ArrayBasics.pptArrayBasics.ppt
ArrayBasics.pptRaselAzam1
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Ali Farooq
 
Lecture 3 Inverse matrices(hotom).pdf
Lecture 3 Inverse matrices(hotom).pdfLecture 3 Inverse matrices(hotom).pdf
Lecture 3 Inverse matrices(hotom).pdfSakith1
 
Chapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChaimae Baroudi
 
Eigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptxEigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptxAtulTiwari892261
 
Row space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityRow space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityVishvesh Jasani
 
Module 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfModule 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfPrathamPatel560716
 
Setting linear algebra problems
Setting linear algebra problemsSetting linear algebra problems
Setting linear algebra problemsJB Online
 

Similar to Null space, Rank and nullity theorem (20)

Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
Row space, column space, null space And Rank, Nullity and Rank-Nullity theore...
 
Rank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptxRank, Nullity, and Fundamental Matrix Spaces.pptx
Rank, Nullity, and Fundamental Matrix Spaces.pptx
 
Matrix and linear algebra Introduced by: Khalid Jawad Kadhim
Matrix and linear algebra Introduced by: Khalid Jawad KadhimMatrix and linear algebra Introduced by: Khalid Jawad Kadhim
Matrix and linear algebra Introduced by: Khalid Jawad Kadhim
 
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By PearsonChapter 4: Vector Spaces - Part 4/Slides By Pearson
Chapter 4: Vector Spaces - Part 4/Slides By Pearson
 
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdfEigenvalues, Eigenvectors and Quadratic Forms.pdf
Eigenvalues, Eigenvectors and Quadratic Forms.pdf
 
Mat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.pptMat 223_Ch4-VectorSpaces.ppt
Mat 223_Ch4-VectorSpaces.ppt
 
MODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptxMODULE_05-Matrix Decomposition.pptx
MODULE_05-Matrix Decomposition.pptx
 
Mathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data MiningMathematical Foundations for Machine Learning and Data Mining
Mathematical Foundations for Machine Learning and Data Mining
 
ArrayBasics.ppt
ArrayBasics.pptArrayBasics.ppt
ArrayBasics.ppt
 
Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1Electromagnetic theory Chapter 1
Electromagnetic theory Chapter 1
 
Lecture 3 Inverse matrices(hotom).pdf
Lecture 3 Inverse matrices(hotom).pdfLecture 3 Inverse matrices(hotom).pdf
Lecture 3 Inverse matrices(hotom).pdf
 
Mat 223_Ch5-Eigenvalues.ppt
Mat 223_Ch5-Eigenvalues.pptMat 223_Ch5-Eigenvalues.ppt
Mat 223_Ch5-Eigenvalues.ppt
 
Chapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/SlidesChapter 3: Linear Systems and Matrices - Part 3/Slides
Chapter 3: Linear Systems and Matrices - Part 3/Slides
 
Eigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptxEigen value and vector of linear transformation.pptx
Eigen value and vector of linear transformation.pptx
 
Row space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | NullityRow space | Column Space | Null space | Rank | Nullity
Row space | Column Space | Null space | Rank | Nullity
 
Module 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdfModule 1 Theory of Matrices.pdf
Module 1 Theory of Matrices.pdf
 
Linear Algebra.pptx
Linear Algebra.pptxLinear Algebra.pptx
Linear Algebra.pptx
 
Setting linear algebra problems
Setting linear algebra problemsSetting linear algebra problems
Setting linear algebra problems
 
matricesMrtices
matricesMrticesmatricesMrtices
matricesMrtices
 
Matrix ppt
Matrix pptMatrix ppt
Matrix ppt
 

Recently uploaded

Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYKayeClaireEstoconing
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxMaryGraceBautista27
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfTechSoup
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Mark Reed
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfphamnguyenenglishnb
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 

Recently uploaded (20)

Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITYISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
ISYU TUNGKOL SA SEKSWLADIDA (ISSUE ABOUT SEXUALITY
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Science 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptxScience 7 Quarter 4 Module 2: Natural Resources.pptx
Science 7 Quarter 4 Module 2: Natural Resources.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdfInclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
Inclusivity Essentials_ Creating Accessible Websites for Nonprofits .pdf
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)Influencing policy (training slides from Fast Track Impact)
Influencing policy (training slides from Fast Track Impact)
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdfAMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
AMERICAN LANGUAGE HUB_Level2_Student'sBook_Answerkey.pdf
 
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptxYOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
YOUVE GOT EMAIL_FINALS_EL_DORADO_2024.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 

Null space, Rank and nullity theorem

  • 1. Row Space, Column Space, Null Space And Rank Nullity Theorem A part of active learning assignment. An initiative by GTU. Prepared by, Ronak Machhi (130410109042) (130410109044) (130410109046) (130410109048) (130410109050) Guided by: Prof. Harshad R. Patel Prof. J. B. Patel Vector Calculus and Linear Algebra
  • 2. Outline  Row Space  Column Space  Null space  Rank And Nullity
  • 3. Definition 11 12 1 21 22 2 1 2 1 11 12 1 2 21 22 2 For an m n matrix ... ... A= : : : ... the vectors [ ] [ ] : n n m m mn n n a a a a a a a a a a a a a a a ×              = = r r ... ... m 1 2 n 11 12 1 21 22 2 1 2 1 2 [ ] in R formed form the rows of Aare called the row vectors of A, and the vectors , , ..., : : : in m m mn n n n m m mn a a a a a a a a a a a a =                  = = =                        r c c c ... m R formed from the columns of A are called the column vectors of A.
  • 4. Example 1 Row and Column Vectors in a 2×3 Matrix  Let The row vectors of A are and the column vectors of A are 2 1 0 3 1 4 A   =  −  [ ] [ ]1 22 1 0 and 3 1 4= = −r r 2 1 0 , , and 3 1 4       = = =     −      1 2 3c c c
  • 5. Definition  If A is an m×n matrix, then the subspace of Rn spanned by the row vectors of A is called the row space of A, and the subspace of Rm spanned by the column vectors is called the column space of A. The solution space of the homogeneous system of equation Ax=0, which is a subspace of Rn , is called the nullsapce of A.
  • 6. Theorem  Elementary row operations do not change the nullspace of a matrix.
  • 7. Example 4 Basis for Nullspace  Find a basis for the nullspace of Solution. The nullspace of A is the solution space of the homogeneous system After solution we find that the vectors Form a basis for this space. 2 2 1 0 1 1 1 2 3 1 1 1 2 0 1 0 0 1 1 1 A −   − − − =  − −     1 2 3 5 1 2 3 4 5 1 2 3 5 3 4 5 2 2 0 2 3 0 2 0 0 x x x x x x x x x x x x x x x x + − + = − − + − + = + − − = + + = 1 2 1 1 1 0 and0 1 0 0 0 1 − −               = = −                v v
  • 8. Theorem  Elementary row operations do not change the row space of a matrix.
  • 9. Theorem  If a matrix R is in row echelon form, then the row vectors with the leading 1’s (i.e., the nonzero row vectors) form a basis for the row space of R, and the column vectors with the leading 1’s of the row vectors form a basis for the column space of R.
  • 10. Example 5 Bases for Row and Column Spaces 1 2 3 The matrix 1 2 5 0 3 0 1 3 0 0 0 0 0 1 0 0 0 0 0 0 is in row-echelon form. From Theorem 5.5.6 the vectors [1 -2 5 0 3] [0 1 3 0 0] [0 0 0 1 0] form a R −     =       = = = r r r 1 2 4 basis for the row space of R, and the vectors 1 2 0 0 1 0 , , 0 0 1 0 0 0 form a basis for the column space of R. −                 = = =                   c c c
  • 11. Example 6 Bases for Row and Column Spaces (1/2)  Find bases for the row and column spaces of Solution. Reducing A to row-echelon form we obtain By Theorem 5.5.6 the nonzero row vectors of R form a basis for row space of R, and hence form a basis for the row space of A. These basis vectors are 1 3 4 2 5 4 2 6 9 1 8 2 2 6 9 1 9 7 1 3 4 2 5 4 A − −   − − =  − −   − − − −  1 3 4 2 5 4 0 0 1 3 2 6 0 0 0 0 1 5 0 0 0 0 0 0 R − −   − − =       [ ] [ ] [ ] 1 2 3 r 1 3 4 2 5 4 r 0 0 1 3 2 6 r 0 0 0 0 1 5 = − − = − − =
  • 12. Example 6 Bases for Row and Column Spaces (2/2) We can find a set of column vectors of R that forms a basis for the column space of R, then the corresponding column vectors of A will form a basis for the column space of A. The first, third, and fifth columns of R contain the leading 1’s of the row vector , so Form a basis for the column space of R; thus Form a basis for the column space of A. 1 4 5 0 1 2 , , 0 0 1 0 0 0            −     = = =                   ' ' ' 1 5 5c c c 1 4 5 2 9 8 , , 2 9 9 1 4 5                  = = =             − − −      1 3 5c c c
  • 13. Example 7 Basis for a Vector Space Using Row Operations (1/2)  Find a basis for the space spanned by the vectors v1=(1, -2, 0, 0, 3), v2=(2, -5, -3, -2, 6), v3=(0, 5, 15, 10, 0), v4=(2, 6, 18, 8, 6) Solution. Except for a variation in notation, the space spanned by these vectors is row space of the matrix Reducing this matrix to row-echelon form we obtain 1 2 0 0 3 2 5 3 2 6 0 5 15 10 0 2 6 18 8 6 −   − − −        1 2 0 0 3 0 1 3 2 0 0 0 1 1 0 0 0 0 0 0 −           
  • 14. Example 7 Basis for a Vector Space Using Row Operations (2/2) The nonzero row vectors in this matrix are w1=(1, -2, 0, 0, 3), w2=(0, 1, 3, 2, 0), w3=(0, 0, 1, 1, 0) These vectors form a basis for the row space and consequently form a basis for the subspace of R5 spanned by v1, v2, v3, and v4.
  • 15. Example 8 Basis for the Row Space of a Matrix (1/2)  Find a basis for the row space of Consisting entirely of row vectors from A. Solution. Transposing A yields 1 2 0 0 3 2 5 3 2 6 0 5 15 10 0 2 6 18 8 6 A −   − − − =       1 2 0 2 2 5 5 6 0 3 15 18 0 2 10 8 3 6 0 6 T A    − −   = −   −    
  • 16. Example 8 Basis for the Row Space of a Matrix (2/2) Reducing this matrix to row-echelon form yields The first, second, and fourth columns contain the leading 1’s, so the corresponding column vectors in AT form a basis for the column space of ; these are Transposing again and adjusting the notation appropriately yields the basis vectors r1=[1 -2 0 0 3], r2=[2 -5 -3 -2 6], and r3=[2 -5 -3 -2 6] for the row space of A. 1 2 0 2 0 1 5 10 0 0 0 1 0 0 0 0 0 0 0 0    −           1 2 2 2 5 6 , , and0 3 18 0 2 8 3 6 6            − −           = = =−       −                 1 2 4c c c
  • 18. Theorem  If A is any matrix, then the row space and column space of A have the same dimension.
  • 19. Definition  The common dimension of the row and column space of a matrix A is called the rank of A and is denoted by rank(A); the dimension of the nullspace of a is called the nullity of A and is denoted by nullity(A).
  • 20. Example 1 Rank and Nullity of a 4×6 Matrix (1/2)  Find the rank and nullity of the matrix Solution. The reduced row-echelon form of A is Since there are two nonzero rows, the row space and column space are both two-dimensional, so rank(A)=2. 1 2 0 4 5 3 3 7 2 0 1 4 2 5 2 4 6 1 4 9 2 4 4 7 A − −   − =  −   − − −  1 0 4 28 37 13 0 1 2 12 16 5 0 0 0 0 0 0 0 0 0 0 0 0 − − −   − − −       
  • 21. Example 1 Rank and Nullity of a 4×6 Matrix (2/2) The corresponding system of equations will be x1-4x3-28x4-37x5+13x6=0 x2-2x3-12x4-16x5+5x6=0 It follows that the general solution of the system is x1=4r+28s+37t-13u; x2=2r+12s+16t-5u; x3=r; x4=s; x5=t; x6=u Or So that nullity(A)=4. 1 2 3 4 5 6 4 28 37 13 2 12 16 5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 x x x r s t u x x x −                   −                    = + + +                                                         
  • 22. Theorem  If A is any matrix, then rank(A)= rank(AT ).
  • 23. Theorem 5.6.3 Dimension Theorem for Matrices  If A is a matrix with n columns, then rank(A)+nullity(A)=n
  • 24. Theorem  If A is an m×n matrix, then: a) rank(A)=the number of leading variables in the solution of Ax=0. b) nullity(A)=the number of parameters in the general solution of Ax=0.
  • 25. Example 2 The Sum of Rank and Nullity  The matrix has 6 columns, so rank(A)+nullity(A)=6 This is consistent with Example 1, where we should showed that rank(A)=2 and nullity(A)=4 1 2 0 4 5 3 3 7 2 0 1 4 2 5 2 4 6 1 4 9 2 4 4 7 A − −   − =  −   − − − 
  • 26. References:  Textbook of Vector Calculus and Linear Algebra (Atul Publications) Note: All the excerpts taken from the respective book were used only for academic purpose. NO commercial purpose was entertained.