SlideShare une entreprise Scribd logo
1  sur  35
P.A. e P.G.
Progressão Aritmética (P.A.)
🠶São sequências numéricas em que cada termo, a partir do
segundo, é igual a soma do termo anterior com uma
constante r (Razão da P.A.). Ou seja, em todas as
progressões aritméticas, temos:
an = an-1 + r, com n ∈ 𝑁 e n ≥ 2.
 Exemplo: A sequência (2, 5, 8, 11, 14, 17) é uma P.A. de
razão r = 3, pois 5 = 2 + 3, 8 = 5 + 3, 11 = 8 + 3, 14 =
11 + 3 𝑒 17 = 14 + 3.
Razão da P.A.
🠶Em qualquer P
.A. de razão r, temos:
an = an-1 + r ↔ r = an – an-1.
Ou seja,
r = a2 – a1 = a3 – a2 = a4 – a3 = ... = an – an-1.
Classificação
🠶Crescente: Quando cada termo é maior que o anterior (r > 0).
Ex.: (5, 9, 13, 17,...) é uma P.A. crescente de razão r = 4.
Quando todos os termos são iguais entre si
🠶Constante:
(r = 0).
Ex.: (8, 8, 8, 8, 8) é uma P.A. constante de razão r = 0.
Quando cada termo é menor que o anterior
🠶Decrescente:
(r < 0).
(8, 3, - 2, - 7,...) é uma P.A. decrescente de razão r = - 5.
Notações especiais
🠶P.A. de três termos:
(x – r, x, x + r) ou (x, x + r, x + 2r).
🠶P.A. de quatro termos:
(x, x + r, x + 2r, x + 3r).
🠶P.A. de cinco termos:
(x – 2r, x – r, x, x + r, x + 2r) ou (x, x + r, x + 2r, x + 3r, x + 4r).
Exemplo
🠶Em uma P
.A. de três termos, o primeiro termo é 5 e a soma
dos três termos é 36. Determine a P.A.
Solução: Podemos representar a P.A. por (5, 5 + r, 5 + 2r).
Como a soma dos três termos é 36, temos:
5 + 5 + 𝑟 + 5 + 2𝑟 = 36
15 + 3𝑟 = 36
3𝑟 = 36 − 15
3𝑟 = 21
𝑟 = 7.
Logo, a P.A. procurada é (5,12,19).
Propriedade
🠶Dada uma P.A. qualquer (a1, a2,...,an-1, an, an+1,...), temos:
𝑎𝑛−1 + 𝑎𝑛+1
𝑎𝑛 =
2
𝑎2 =
2 2 2
Ou seja, em toda P
.A., cada termo, a partir do segundo, é a
média aritmética entre o anterior e o posterior.
𝑎1 + 𝑎3 𝑎2 + 𝑎4 𝑎3 + 𝑎5
, 𝑎3 = , 𝑎4 = , …
Exemplo
🠶Sabendo que a sequência (x, x + 3, 2x + 1,...) é uma P.A.,
determine sua razão.
Solução:
𝑥 + 3 =
𝑥 + 2𝑥 + 1
2
𝑥 + 2𝑥 + 1 = 2 𝑥 + 3
3𝑥 + 1 = 2𝑥 + 6
3𝑥 − 2𝑥 = 6 − 1
𝑥 = 5.
Desse modo, a P.A. é (5, 5+3, 2∙5 + 1) = (5, 8, 11). Assim, r
= 3.
Fórmula do termo geral da P.A.
🠶Dada uma P
.A. de razão r e ordem n, o termo 𝑎𝑛 é dado
pela seguinte expressão:
𝑎𝑛 = 𝑎1 + (𝑛 − 1) ∙ 𝑟
Exemplos:
1) 𝑎9 = 𝑎1 +
2) 𝑎6 = 𝑎1 +
9 − 1 ∙ 𝑟 ↔ 𝑎9 = 𝑎1 + 8𝑟;
6 − 1 ∙ 𝑟 ↔ 𝑎6 = 𝑎1 + 5𝑟.
Questão 1 (termo geral)
🠶Observe, na figura abaixo, a quantidade de mesas e o
número máximo de lugares disponíveis em cada
configuração:
Considere que
segundo o padrão apresentado. Então, qual o
a sequência de configurações continue,
número
máximo de lugares disponíveis em uma configuração com 75
mesas?
Solução:
🠶Observe que os números de cadeiras nas configurações
formam a P.A. (4, 6, 8, 10,...), com 𝑎1 = 4 𝑒 𝑟 = 2 .
Assim:
𝑎75 = 𝑎1 + 75 − 1 ∙ 2
𝑎75 = 4 + 74 ∙ 2
𝑎75 = 4 + 148
𝑎75 = 152.
Logo, o número máximo de cadeiras em uma configuração
com 75 mesas é 152.
Questão 2 (termo geral)
🠶(Ufrgs 2020) Considere o padrão de construção de triângulos
com palitos, representado nas figuras abaixo.
Na etapa n serão utilizados 245 palitos. Nessas condições, n é
igual a
a) 120 b) 121 c)122 d)123 e)124
Solução:
🠶Como podemos observar, os números de palitos nas etapas
formam a P.A. (3, 5, 7,...) com 𝑎1 = 3 𝑒 𝑟 = 2. De acordo
com o enunciado devemos encontrar o valor de n, sabendo
que 𝑎𝑛 = 245.Assim:
𝑎𝑛 = 𝑎1 + 𝑛 − 1 ∙ 𝑟
245 = 3 + 𝑛 − 1 ∙ 2
245 − 3 = 2𝑛 − 2
242 + 2 = 2𝑛
2𝑛 = 244
𝑛 = 122.
Logo, a alternativa correta é a letra c).
Soma dos n primeiros termos de uma P.A.
🠶Ilustração: Qual a soma de todos os números inteiros de 1
até 100?
Solução: temos que somar todos os números da P.A. (1, 2, 3,
4, ...,97, 98, 99, 100). Observem que:
1 + 100 = 101
2 + 99 = 101
3 + 98 = 101
4 + 97 = 101
⋮
Assim, temos 50 pares de números cuja a soma de cada um
deles é igual a 101. Logo, o valor procurado é 101 ∙ 50 =
5050.
Soma dos n primeiros termos de uma P.A.
🠶Para somar os n primeiros termos de uma P.A., podemos
utilizar a fórmula a seguir:
(𝒂𝟏 + 𝒂𝒏) ∙ 𝒏
𝑺𝒏 =
𝟐
Onde
• 𝑎1 é o primeiro termo somado;
• 𝑎𝑛 é o último termo somado;
• 𝑛 é o número de termos somados.
Exemplo
🠶Qual a soma de todos os números pares positivos menores ou
iguais a 20?
Solução: Para resolver a soma pedida, basta somar os dez
termos da P.A. (2, 4, 6, 8, 10, 12, 14, 16, 18, 20). Utilizando a
fórmula da soma, temos:
(𝑎1 + 𝑎10) ∙ 10
𝑆10 =
𝑆10 =
2
(2 + 20) ∙ 10
2
𝑆10 = 22 ∙ 5
𝑆10 = 110
Logo, a soma desejada é 110.
Questão 1 (Soma dos termos)
🠶(G1 - ifpe 2019) No país Diasmelhores, um candidato à
Presidência da República foi convidado pela rádio
SOMALTO para, durante 20 semanas antes das eleições,
divulgar, semanalmente, suas propostas de governo. Ficou
estabelecido pela rádio que, na primeira semana, o candidato
teria 120 minutos disponíveis para fazer sua propaganda
eleitoral e que, a cada semana seguinte, teria 5 minutos a
menos que na semana anterior. No final das 20 semanas, o
candidato terá utilizado um total de
a) 2900 minutos
d) 6700 minutos
b) 1450 minutos c) 3350 minutos
e) 2400 minutos
Solução:
🠶 Para determinar a quantidade total de
minutos utilizado pelo candidato,
devemos somar o tempo utilizado em
todas as 20 semanas que é equivalente
a somar os 20 primeiros termos da
P.A. (120, 115, 110, 105, ...). Desse
modo, temos:
𝑆20
= (𝑎1+𝑎20)∙20
2
Como não sabemos o valor de 𝑎20 ,
precisamos encontrá-lo antes de resolver
a soma. Faremos isso com o auxílio da
fórmula do termo geral.
𝑎20 = 𝑎1 + 20 − 1 ∙ 𝑟
𝑎20 = 120 + 19 ∙ −5
𝑎20 = 120 − 95
𝑎20 = 25.
Encontrado o valor de 𝑎20 ,
voltaremos a fórmula da soma
para concluir a resolução.
𝑆20 =
(120 + 25) ∙ 20
2
𝑆20 = 145 ∙ 10
𝑆20 = 1450.
Logo, a alternativa correta é a
letra b).
Progressão Geométrica (P.G.)
🠶São sequências numéricas em que cada termo, a partir do
segundo, é igual ao produto do termo anterior com uma
constante q (Razão da P.G.). Ou seja, em todas as
progressões geométricas, temos:
𝒂𝒏 = 𝒂𝒏−𝟏 ∙ 𝒒, com n ∈ 𝑁 e n ≥ 2.
 Exemplo: A sequência (2, 4, 8, 16, 32, 64) é uma P.G. de
razão q = 2, pois 4 = 2 ∙ 2, 8 = 4 ∙ 2, 16 = 8 ∙ 2, 32 =
16 ∙ 2 𝑒 64 = 32 ∙ 2.
Razão da P.G.
🠶Em qualquer P
.G. de razão q, temos:
𝒂𝒏
𝒂𝒏 = 𝒂𝒏−𝟏 ∙ 𝒒 ↔ 𝒒 =
𝒂𝒏−𝟏
Ou seja, 𝒂𝟐 𝒂𝟑 𝒂𝟒
𝒒 = = = = ⋯ =
𝒂𝟏 𝒂𝟐 𝒂𝟑
𝒂𝒏
𝒂𝒏−𝟏
Exemplo
🠶(PUC-RJ) Asequência (2,x,y,8) representa uma progressão
geométrica. O produto xy vale
a) 8 b) 10 c) 12 d) 14 e) 16.
2
Solução: Observem que 𝑞 = 𝑥
e 𝑞 = 8
, logo;
𝑥 8
2
=
𝑦
→𝑦𝑥𝑦 = 16.
Classificação
🠶Crescente: Quando cada termo é maior que o anterior.
🠶Constante: Quando todos os termos são iguais entre si.
Quando todos os termos, a partir do segundo,
🠶Estacionária:
são nulos.
🠶Decrescente: Quando cada termo é menor que o anterior.
🠶Alternante: Quando cada termo tem sinal contrário ao do
anterior (q < 0).
Exemplos (Classificação)
🠶Crescente: (2,6,18,54,...), (- 60; - 30; - 15; -7,5;...).
🠶Constante: (5,5,5,5,5,5,5,5,5,5)
🠶Estacionária: (6,0,0,0,0,0,0,0,0,...)
🠶Decrescente: (81,27,9,3,1), (- 5, - 10, - 20, - 40,...)
🠶Alternante: (1,- 4,16,- 64,256), (- 2, 4,- 8,16,-32,...)
Notações especiais
🠶P.G. de três termos:
𝑥
, 𝑥, 𝑥 ∙ 𝑞 𝑜𝑢 (𝑥, 𝑥 ∙ 𝑞, 𝑥 ∙ 𝑞2)
𝑞
🠶P.G. de quatro termos:
(𝑥, 𝑥 ∙ 𝑞, 𝑥 ∙ 𝑞2, 𝑥 ∙ 𝑞3)
2
🠶P.A. de cinco termos:
𝑥 𝑥
𝑞2 , 𝑞 , 𝑥, 𝑥 ∙ 𝑞, 𝑥 ∙ 𝑞
2 3 4
𝑜𝑢 (𝑥, 𝑥 ∙ 𝑞, 𝑥 ∙ 𝑞 , 𝑥 ∙ 𝑞 , 𝑥 ∙ 𝑞 )
Exemplo
🠶(PUC-RJ) Vamos empilhar 5 caixas em ordem crescente
de altura.Aprimeira caixa tem 1m de altura, e cada caixa
seguinte tem o triplo da altura da anterior. A altura da
nossa pilha de caixas será
a) 121m b) 81m c) 32m d) 21m e) 15m.
Solução: Encontraremos a seguir a altura das 5 caixas:
Caixa 1 = 1m, Caixa 2 = 3m, Caixa 3 = 9m, Caixa 4 = 27m e
Caixa 5 = 81m.
Assim a altura da pilha é 1 + 3 + 9 + 27 + 81 = 121m.
Propriedade
🠶Dada uma P.G. qualquer (a1, a2,...,an-1, an, an+1,...), temos:
(𝑎𝑛)² = 𝑎𝑛−1 ∙ 𝑎𝑛+1
Ou seja,
(𝑎2)² = 𝑎1 ∙ 𝑎3, (𝑎3)² = 𝑎2 ∙ 𝑎4, (𝑎4)² = 𝑎3 ∙ 𝑎5, …
Exemplo
🠶Sabendo que a sequência (x, x + 2, 2x + 4,...) é uma P.G.
crescente, determine sua razão.
Solução: Aplicando a propriedade, temos:
𝑥 + 2 2 = 𝑥 ∙ 2𝑥 + 4
𝑥2 + 4𝑥 + 4 = 2𝑥2 + 4𝑥 2
𝑥2 − 𝑥2 + 4𝑥 − 4𝑥 − 4 = 0
𝑥2 − 4 = 0
𝑥2 = 4
𝑥 = ± 4 → 𝑥 = ±2.
Desse modo, temos (2,4,8) ou (-2,0,0). Como a P.G. (2,4,8) é
a única crescente, a razão é q = 2.
Fórmula do termo geral da P.G.
🠶Dada uma P.G. 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛, ⋯ de razão q, temos:
𝑎2 = 𝑎1 ∙ 𝑞
𝑎3 = 𝑎1 ∙ 𝑞2
𝑎4= 𝑎1 ∙ 𝑞3
𝑎5= 𝑎1 ∙ 𝑞4
⋮ ⋮ ⋮
𝑎𝑛= 𝑎1 ∙ 𝑞𝑛−1
Fórmula do termo geral da P.G.
🠶Dada uma P.G.de razão q e ordem n, o termo 𝑎𝑛 é dado
pela seguinte expressão:
𝑎𝑛 = 𝑎1 ∙ 𝑞𝑛−1
Onde
𝑎𝑛 é um termo qualquer da P.G.
n é a posição do termo 𝑎𝑛
𝑎1 é o primeiro termo da P.G.
q é a razão da P.G.
Exemplo
🠶Determine o sétimo termo da P.G. (5,10,20,...).
Solução: Na P
.G., temos que 𝑎1 = 5 𝑒 𝑞 = 2. Assim:
𝑎𝑛 = 𝑎1 ∙ 𝑞𝑛−1
𝑎7 = 𝑎1 ∙ 𝑞6
𝑎7 = 5 ∙ 26
𝑎7 = 5 ∙ 64
𝑎7 = 320.
Exemplo
🠶 AP
.G. 10, 2, 2
, … ,
2
5 625
possui quantos termos?
1
Solução: Observando a P.G., notamos que 𝑎 = 10 𝑒 𝑞 =
2
10 5
= 1
. Desse modo, para saber o
2
número de termos da P.G., devemos descobrir qual a posição do termo 𝑎𝑛 = 625. Utilizando
a fórmula do termo geral, temos:
𝑎𝑛 = 𝑎1 ∙ 𝑞𝑛−1
𝑛 −1
2
625
= 10 ∙
2 1
∙ =
1
5
1
5
𝑛 −1
625 10
1 1
5
𝑛 −1
3125
1
5
=
5
=
1
5
𝑛 −1
𝑛 − 1 = 5 → 𝑛 = 6.
Logo, a P
.G. possui 6 termos.
Soma dos n primeiros termos de uma P.G.
🠶Para somar os n primeiros termos de uma P.G., podemos
utilizar a fórmula a seguir:
𝑺𝒏 =
𝒂𝟏 ∙ (𝒒𝒏 − 𝟏)
𝒒 − 𝟏
, 𝒄𝒐𝒎 𝒒 ≠ 𝟏.
Onde
• 𝑎1 é o primeiro termo somado;
• q é a razão da P.G.;
• 𝑛 é o número de termos somados.
Exemplo
🠶 Uma fábrica de panelas
inaugurada em 2014 produziu
500 panelas nesse mesmo ano.
Considerando que sua
produção triplica a cada ano,
em 2019, o dono da fábrica
pôde dizer que, em toda a
história da fábrica, foram
produzidas quantas panelas?
Solução: O
panelas
formam
produzidas
a
número de
nos anos
P.G.
(500,1500,4500,...).
O valor procurado é a soma
dos 6 primeiros termos dessa
P
.G., logo esse valor é:
𝑆6 =
𝑎1 ∙ (𝑞6 − 1)
𝑞 − 1
𝑆6 =
𝑆6 =
500 ∙ (36 − 1)
3 − 1
500 ∙ 728
2
𝑆6 = 182000.
Soma dos termos de uma P.G. infinita
🠶O limite da soma dos infinitos termos de uma P.G.
𝑎1, 𝑎2, 𝑎3, ⋯ de razão q, com −1 < 𝑞 < 1, é dado pela
seguinte expressão:
𝒂𝟏
𝑺𝒏 =
𝟏 − 𝒒
Onde
𝑆𝑛 é o limite da soma infinitos termos da P.G.
𝑎1 é o primeiro termo da P.G.
Q é a razão da P.G.
Exemplo
🠶Qual o valor da soma 4 + 2 + 1 + 1
+ 1
+ ⋯?
2 4
Solução: Observando o enunciado, percebemos que devemos somar
2
os termos de uma P.G. infinita com 𝑎1 = 4 𝑒 𝑞 = 1
.Aplicando a
fórmula, temos:
𝑆𝑛 =
𝑎1
𝑆𝑛 = 1 − 𝑞
4
1
1 − 2
4
𝑆𝑛 = 1
2
2
𝑆𝑛 = 4 ∙ 1 = 8.

Contenu connexe

Tendances

Sistemas de equações do 1° grau com 2 incógnitas
Sistemas de equações do 1° grau com 2 incógnitasSistemas de equações do 1° grau com 2 incógnitas
Sistemas de equações do 1° grau com 2 incógnitasGleidson Luis
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritméticaleilamaluf
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau pptktorz
 
Probabilidade. 3º ano
Probabilidade. 3º anoProbabilidade. 3º ano
Probabilidade. 3º anowelixon
 
Classificação das equações do 1º grau com uma
Classificação das equações do 1º grau com umaClassificação das equações do 1º grau com uma
Classificação das equações do 1º grau com umaAlexandre Cirqueira
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricasLarissa Souza
 
Slide equaçoes 1 grau
Slide equaçoes 1 grauSlide equaçoes 1 grau
Slide equaçoes 1 grauestrelaeia
 
Funções de duas variáveis reais e curvas de nível
Funções de duas variáveis reais e curvas de nívelFunções de duas variáveis reais e curvas de nível
Funções de duas variáveis reais e curvas de nívelFran Cristina
 
Multiplicação e divisão de inteiros
Multiplicação e divisão de inteirosMultiplicação e divisão de inteiros
Multiplicação e divisão de inteirosProfessora Andréia
 
Respostas do livro geometria analítica alfredo steinbruch e paulo-winterle 16...
Respostas do livro geometria analítica alfredo steinbruch e paulo-winterle 16...Respostas do livro geometria analítica alfredo steinbruch e paulo-winterle 16...
Respostas do livro geometria analítica alfredo steinbruch e paulo-winterle 16...Diego Santiago De Lima
 
Exercícios Resolvidos: Regra da cadeia
Exercícios Resolvidos: Regra da cadeia Exercícios Resolvidos: Regra da cadeia
Exercícios Resolvidos: Regra da cadeia Diego Oliveira
 
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiroswww.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática - Conjunto de Números InteirosEnsinoFundamental
 
Exercícios de razões trigonométricas
Exercícios de razões trigonométricasExercícios de razões trigonométricas
Exercícios de razões trigonométricasAndré Luís Nogueira
 

Tendances (20)

Sistemas de equações do 1° grau com 2 incógnitas
Sistemas de equações do 1° grau com 2 incógnitasSistemas de equações do 1° grau com 2 incógnitas
Sistemas de equações do 1° grau com 2 incógnitas
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
 
Probabilidade. 3º ano
Probabilidade. 3º anoProbabilidade. 3º ano
Probabilidade. 3º ano
 
Derivadas direcionais
Derivadas direcionaisDerivadas direcionais
Derivadas direcionais
 
Classificação das equações do 1º grau com uma
Classificação das equações do 1º grau com umaClassificação das equações do 1º grau com uma
Classificação das equações do 1º grau com uma
 
Progressão aritmética
Progressão aritméticaProgressão aritmética
Progressão aritmética
 
Função modular
Função modularFunção modular
Função modular
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
Slide equaçoes 1 grau
Slide equaçoes 1 grauSlide equaçoes 1 grau
Slide equaçoes 1 grau
 
Gabarito pa
Gabarito paGabarito pa
Gabarito pa
 
Funções de duas variáveis reais e curvas de nível
Funções de duas variáveis reais e curvas de nívelFunções de duas variáveis reais e curvas de nível
Funções de duas variáveis reais e curvas de nível
 
Multiplicação e divisão de inteiros
Multiplicação e divisão de inteirosMultiplicação e divisão de inteiros
Multiplicação e divisão de inteiros
 
Respostas do livro geometria analítica alfredo steinbruch e paulo-winterle 16...
Respostas do livro geometria analítica alfredo steinbruch e paulo-winterle 16...Respostas do livro geometria analítica alfredo steinbruch e paulo-winterle 16...
Respostas do livro geometria analítica alfredo steinbruch e paulo-winterle 16...
 
Exercícios Resolvidos: Regra da cadeia
Exercícios Resolvidos: Regra da cadeia Exercícios Resolvidos: Regra da cadeia
Exercícios Resolvidos: Regra da cadeia
 
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiroswww.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
 
Logaritmos
LogaritmosLogaritmos
Logaritmos
 
Sistemas de equações so 1º grau apresentação
Sistemas de equações so 1º grau apresentaçãoSistemas de equações so 1º grau apresentação
Sistemas de equações so 1º grau apresentação
 
Aula 21 vetores
Aula 21   vetoresAula 21   vetores
Aula 21 vetores
 
Exercícios de razões trigonométricas
Exercícios de razões trigonométricasExercícios de razões trigonométricas
Exercícios de razões trigonométricas
 

Similaire à P.A. e P.G. - Conceitos e propriedades

Similaire à P.A. e P.G. - Conceitos e propriedades (20)

08 - Progressões
08 - Progressões08 - Progressões
08 - Progressões
 
Gerando triângulos pitagóricos
Gerando triângulos pitagóricosGerando triângulos pitagóricos
Gerando triângulos pitagóricos
 
Matemática - PA e PG
Matemática - PA e PGMatemática - PA e PG
Matemática - PA e PG
 
24052014
2405201424052014
24052014
 
Progressão geometrica
Progressão geometricaProgressão geometrica
Progressão geometrica
 
Mat progressao aritmetica ( pa ) i
Mat progressao aritmetica ( pa ) iMat progressao aritmetica ( pa ) i
Mat progressao aritmetica ( pa ) i
 
Teoria do números - Classificações especiais
Teoria do números - Classificações especiaisTeoria do números - Classificações especiais
Teoria do números - Classificações especiais
 
P.a. e p.g.
P.a. e p.g.P.a. e p.g.
P.a. e p.g.
 
Papg
PapgPapg
Papg
 
Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
 
PA e PG
PA e PGPA e PG
PA e PG
 
Exercicio de progresssao aritimetica
Exercicio de progresssao aritimeticaExercicio de progresssao aritimetica
Exercicio de progresssao aritimetica
 
Aula 02 sequências
Aula 02   sequênciasAula 02   sequências
Aula 02 sequências
 
22032014
2203201422032014
22032014
 
Sequencias e mf 2016
Sequencias e mf 2016Sequencias e mf 2016
Sequencias e mf 2016
 
Pg
PgPg
Pg
 
Progressões
ProgressõesProgressões
Progressões
 
Teoria elementar dos numeros
Teoria elementar dos numerosTeoria elementar dos numeros
Teoria elementar dos numeros
 
Calculo Integral - Conceito de primitiva e técnicas de primitivação
Calculo Integral - Conceito de primitiva e técnicas de primitivaçãoCalculo Integral - Conceito de primitiva e técnicas de primitivação
Calculo Integral - Conceito de primitiva e técnicas de primitivação
 
Mat progressoes aritmeticas 001
Mat progressoes aritmeticas  001Mat progressoes aritmeticas  001
Mat progressoes aritmeticas 001
 

Plus de RonaldoAlves153492

analise critica do desempenho e identificacao de causa raiz.pptx
analise critica do desempenho e identificacao de causa raiz.pptxanalise critica do desempenho e identificacao de causa raiz.pptx
analise critica do desempenho e identificacao de causa raiz.pptxRonaldoAlves153492
 
HISTÓRIA_DA_CIÊNCIA_aula_inicial-ca67902e9c27492ba25471ed239ffd9a.pptx
HISTÓRIA_DA_CIÊNCIA_aula_inicial-ca67902e9c27492ba25471ed239ffd9a.pptxHISTÓRIA_DA_CIÊNCIA_aula_inicial-ca67902e9c27492ba25471ed239ffd9a.pptx
HISTÓRIA_DA_CIÊNCIA_aula_inicial-ca67902e9c27492ba25471ed239ffd9a.pptxRonaldoAlves153492
 
As regras de nomenclatura binomial de Lineu e formas de classificação biológi...
As regras de nomenclatura binomial de Lineu e formas de classificação biológi...As regras de nomenclatura binomial de Lineu e formas de classificação biológi...
As regras de nomenclatura binomial de Lineu e formas de classificação biológi...RonaldoAlves153492
 

Plus de RonaldoAlves153492 (9)

HISTOLOGIA VEGETAL.pptx
HISTOLOGIA VEGETAL.pptxHISTOLOGIA VEGETAL.pptx
HISTOLOGIA VEGETAL.pptx
 
analise critica do desempenho e identificacao de causa raiz.pptx
analise critica do desempenho e identificacao de causa raiz.pptxanalise critica do desempenho e identificacao de causa raiz.pptx
analise critica do desempenho e identificacao de causa raiz.pptx
 
78104.pptx
78104.pptx78104.pptx
78104.pptx
 
HISTÓRIA_DA_CIÊNCIA_aula_inicial-ca67902e9c27492ba25471ed239ffd9a.pptx
HISTÓRIA_DA_CIÊNCIA_aula_inicial-ca67902e9c27492ba25471ed239ffd9a.pptxHISTÓRIA_DA_CIÊNCIA_aula_inicial-ca67902e9c27492ba25471ed239ffd9a.pptx
HISTÓRIA_DA_CIÊNCIA_aula_inicial-ca67902e9c27492ba25471ed239ffd9a.pptx
 
Apresentação1.pptx
Apresentação1.pptxApresentação1.pptx
Apresentação1.pptx
 
02. Apresentação.pptx
02. Apresentação.pptx02. Apresentação.pptx
02. Apresentação.pptx
 
Aula 7 - Texto.pptx
Aula 7 - Texto.pptxAula 7 - Texto.pptx
Aula 7 - Texto.pptx
 
As regras de nomenclatura binomial de Lineu e formas de classificação biológi...
As regras de nomenclatura binomial de Lineu e formas de classificação biológi...As regras de nomenclatura binomial de Lineu e formas de classificação biológi...
As regras de nomenclatura binomial de Lineu e formas de classificação biológi...
 
_eletrodinmica.ppt
_eletrodinmica.ppt_eletrodinmica.ppt
_eletrodinmica.ppt
 

Dernier

Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditaduraAdryan Luiz
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024Jeanoliveira597523
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfAdrianaCunha84
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxOsnilReis1
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
Regência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfRegência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfmirandadudu08
 
Bullying - Texto e cruzadinha
Bullying        -     Texto e cruzadinhaBullying        -     Texto e cruzadinha
Bullying - Texto e cruzadinhaMary Alvarenga
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfManuais Formação
 
Slides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptxSlides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptxSilvana Silva
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
Governo Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 BrasilGoverno Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 Brasillucasp132400
 
Guia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfGuia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfEyshilaKelly1
 
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptxAD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptxkarinedarozabatista
 
Lírica Camoniana- A mudança na lírica de Camões.pptx
Lírica Camoniana- A mudança na lírica de Camões.pptxLírica Camoniana- A mudança na lírica de Camões.pptx
Lírica Camoniana- A mudança na lírica de Camões.pptxfabiolalopesmartins1
 
Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.keislayyovera123
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresaulasgege
 

Dernier (20)

Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditadura
 
ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024ABRIL VERDE.pptx Slide sobre abril ver 2024
ABRIL VERDE.pptx Slide sobre abril ver 2024
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdf
 
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptxATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
ATIVIDADE AVALIATIVA VOZES VERBAIS 7º ano.pptx
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
Regência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdfRegência Nominal e Verbal português .pdf
Regência Nominal e Verbal português .pdf
 
Bullying - Texto e cruzadinha
Bullying        -     Texto e cruzadinhaBullying        -     Texto e cruzadinha
Bullying - Texto e cruzadinha
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdf
 
Slides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptxSlides 1 - O gênero textual entrevista.pptx
Slides 1 - O gênero textual entrevista.pptx
 
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
Governo Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 BrasilGoverno Provisório Era Vargas 1930-1934 Brasil
Governo Provisório Era Vargas 1930-1934 Brasil
 
Guia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdfGuia completo da Previdênci a - Reforma .pdf
Guia completo da Previdênci a - Reforma .pdf
 
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptxAD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
AD2 DIDÁTICA.KARINEROZA.SHAYANNE.BINC.ROBERTA.pptx
 
Lírica Camoniana- A mudança na lírica de Camões.pptx
Lírica Camoniana- A mudança na lírica de Camões.pptxLírica Camoniana- A mudança na lírica de Camões.pptx
Lírica Camoniana- A mudança na lírica de Camões.pptx
 
Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.Época Realista y la obra de Madame Bovary.
Época Realista y la obra de Madame Bovary.
 
Em tempo de Quaresma .
Em tempo de Quaresma                            .Em tempo de Quaresma                            .
Em tempo de Quaresma .
 
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptxSlides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
Slides Lição 4, CPAD, Como se Conduzir na Caminhada, 2Tr24.pptx
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autores
 

P.A. e P.G. - Conceitos e propriedades

  • 2. Progressão Aritmética (P.A.) 🠶São sequências numéricas em que cada termo, a partir do segundo, é igual a soma do termo anterior com uma constante r (Razão da P.A.). Ou seja, em todas as progressões aritméticas, temos: an = an-1 + r, com n ∈ 𝑁 e n ≥ 2.  Exemplo: A sequência (2, 5, 8, 11, 14, 17) é uma P.A. de razão r = 3, pois 5 = 2 + 3, 8 = 5 + 3, 11 = 8 + 3, 14 = 11 + 3 𝑒 17 = 14 + 3.
  • 3. Razão da P.A. 🠶Em qualquer P .A. de razão r, temos: an = an-1 + r ↔ r = an – an-1. Ou seja, r = a2 – a1 = a3 – a2 = a4 – a3 = ... = an – an-1.
  • 4. Classificação 🠶Crescente: Quando cada termo é maior que o anterior (r > 0). Ex.: (5, 9, 13, 17,...) é uma P.A. crescente de razão r = 4. Quando todos os termos são iguais entre si 🠶Constante: (r = 0). Ex.: (8, 8, 8, 8, 8) é uma P.A. constante de razão r = 0. Quando cada termo é menor que o anterior 🠶Decrescente: (r < 0). (8, 3, - 2, - 7,...) é uma P.A. decrescente de razão r = - 5.
  • 5. Notações especiais 🠶P.A. de três termos: (x – r, x, x + r) ou (x, x + r, x + 2r). 🠶P.A. de quatro termos: (x, x + r, x + 2r, x + 3r). 🠶P.A. de cinco termos: (x – 2r, x – r, x, x + r, x + 2r) ou (x, x + r, x + 2r, x + 3r, x + 4r).
  • 6. Exemplo 🠶Em uma P .A. de três termos, o primeiro termo é 5 e a soma dos três termos é 36. Determine a P.A. Solução: Podemos representar a P.A. por (5, 5 + r, 5 + 2r). Como a soma dos três termos é 36, temos: 5 + 5 + 𝑟 + 5 + 2𝑟 = 36 15 + 3𝑟 = 36 3𝑟 = 36 − 15 3𝑟 = 21 𝑟 = 7. Logo, a P.A. procurada é (5,12,19).
  • 7. Propriedade 🠶Dada uma P.A. qualquer (a1, a2,...,an-1, an, an+1,...), temos: 𝑎𝑛−1 + 𝑎𝑛+1 𝑎𝑛 = 2 𝑎2 = 2 2 2 Ou seja, em toda P .A., cada termo, a partir do segundo, é a média aritmética entre o anterior e o posterior. 𝑎1 + 𝑎3 𝑎2 + 𝑎4 𝑎3 + 𝑎5 , 𝑎3 = , 𝑎4 = , …
  • 8. Exemplo 🠶Sabendo que a sequência (x, x + 3, 2x + 1,...) é uma P.A., determine sua razão. Solução: 𝑥 + 3 = 𝑥 + 2𝑥 + 1 2 𝑥 + 2𝑥 + 1 = 2 𝑥 + 3 3𝑥 + 1 = 2𝑥 + 6 3𝑥 − 2𝑥 = 6 − 1 𝑥 = 5. Desse modo, a P.A. é (5, 5+3, 2∙5 + 1) = (5, 8, 11). Assim, r = 3.
  • 9. Fórmula do termo geral da P.A. 🠶Dada uma P .A. de razão r e ordem n, o termo 𝑎𝑛 é dado pela seguinte expressão: 𝑎𝑛 = 𝑎1 + (𝑛 − 1) ∙ 𝑟 Exemplos: 1) 𝑎9 = 𝑎1 + 2) 𝑎6 = 𝑎1 + 9 − 1 ∙ 𝑟 ↔ 𝑎9 = 𝑎1 + 8𝑟; 6 − 1 ∙ 𝑟 ↔ 𝑎6 = 𝑎1 + 5𝑟.
  • 10. Questão 1 (termo geral) 🠶Observe, na figura abaixo, a quantidade de mesas e o número máximo de lugares disponíveis em cada configuração: Considere que segundo o padrão apresentado. Então, qual o a sequência de configurações continue, número máximo de lugares disponíveis em uma configuração com 75 mesas?
  • 11. Solução: 🠶Observe que os números de cadeiras nas configurações formam a P.A. (4, 6, 8, 10,...), com 𝑎1 = 4 𝑒 𝑟 = 2 . Assim: 𝑎75 = 𝑎1 + 75 − 1 ∙ 2 𝑎75 = 4 + 74 ∙ 2 𝑎75 = 4 + 148 𝑎75 = 152. Logo, o número máximo de cadeiras em uma configuração com 75 mesas é 152.
  • 12. Questão 2 (termo geral) 🠶(Ufrgs 2020) Considere o padrão de construção de triângulos com palitos, representado nas figuras abaixo. Na etapa n serão utilizados 245 palitos. Nessas condições, n é igual a a) 120 b) 121 c)122 d)123 e)124
  • 13. Solução: 🠶Como podemos observar, os números de palitos nas etapas formam a P.A. (3, 5, 7,...) com 𝑎1 = 3 𝑒 𝑟 = 2. De acordo com o enunciado devemos encontrar o valor de n, sabendo que 𝑎𝑛 = 245.Assim: 𝑎𝑛 = 𝑎1 + 𝑛 − 1 ∙ 𝑟 245 = 3 + 𝑛 − 1 ∙ 2 245 − 3 = 2𝑛 − 2 242 + 2 = 2𝑛 2𝑛 = 244 𝑛 = 122. Logo, a alternativa correta é a letra c).
  • 14. Soma dos n primeiros termos de uma P.A. 🠶Ilustração: Qual a soma de todos os números inteiros de 1 até 100? Solução: temos que somar todos os números da P.A. (1, 2, 3, 4, ...,97, 98, 99, 100). Observem que: 1 + 100 = 101 2 + 99 = 101 3 + 98 = 101 4 + 97 = 101 ⋮ Assim, temos 50 pares de números cuja a soma de cada um deles é igual a 101. Logo, o valor procurado é 101 ∙ 50 = 5050.
  • 15. Soma dos n primeiros termos de uma P.A. 🠶Para somar os n primeiros termos de uma P.A., podemos utilizar a fórmula a seguir: (𝒂𝟏 + 𝒂𝒏) ∙ 𝒏 𝑺𝒏 = 𝟐 Onde • 𝑎1 é o primeiro termo somado; • 𝑎𝑛 é o último termo somado; • 𝑛 é o número de termos somados.
  • 16. Exemplo 🠶Qual a soma de todos os números pares positivos menores ou iguais a 20? Solução: Para resolver a soma pedida, basta somar os dez termos da P.A. (2, 4, 6, 8, 10, 12, 14, 16, 18, 20). Utilizando a fórmula da soma, temos: (𝑎1 + 𝑎10) ∙ 10 𝑆10 = 𝑆10 = 2 (2 + 20) ∙ 10 2 𝑆10 = 22 ∙ 5 𝑆10 = 110 Logo, a soma desejada é 110.
  • 17. Questão 1 (Soma dos termos) 🠶(G1 - ifpe 2019) No país Diasmelhores, um candidato à Presidência da República foi convidado pela rádio SOMALTO para, durante 20 semanas antes das eleições, divulgar, semanalmente, suas propostas de governo. Ficou estabelecido pela rádio que, na primeira semana, o candidato teria 120 minutos disponíveis para fazer sua propaganda eleitoral e que, a cada semana seguinte, teria 5 minutos a menos que na semana anterior. No final das 20 semanas, o candidato terá utilizado um total de a) 2900 minutos d) 6700 minutos b) 1450 minutos c) 3350 minutos e) 2400 minutos
  • 18. Solução: 🠶 Para determinar a quantidade total de minutos utilizado pelo candidato, devemos somar o tempo utilizado em todas as 20 semanas que é equivalente a somar os 20 primeiros termos da P.A. (120, 115, 110, 105, ...). Desse modo, temos: 𝑆20 = (𝑎1+𝑎20)∙20 2 Como não sabemos o valor de 𝑎20 , precisamos encontrá-lo antes de resolver a soma. Faremos isso com o auxílio da fórmula do termo geral. 𝑎20 = 𝑎1 + 20 − 1 ∙ 𝑟 𝑎20 = 120 + 19 ∙ −5 𝑎20 = 120 − 95 𝑎20 = 25. Encontrado o valor de 𝑎20 , voltaremos a fórmula da soma para concluir a resolução. 𝑆20 = (120 + 25) ∙ 20 2 𝑆20 = 145 ∙ 10 𝑆20 = 1450. Logo, a alternativa correta é a letra b).
  • 19. Progressão Geométrica (P.G.) 🠶São sequências numéricas em que cada termo, a partir do segundo, é igual ao produto do termo anterior com uma constante q (Razão da P.G.). Ou seja, em todas as progressões geométricas, temos: 𝒂𝒏 = 𝒂𝒏−𝟏 ∙ 𝒒, com n ∈ 𝑁 e n ≥ 2.  Exemplo: A sequência (2, 4, 8, 16, 32, 64) é uma P.G. de razão q = 2, pois 4 = 2 ∙ 2, 8 = 4 ∙ 2, 16 = 8 ∙ 2, 32 = 16 ∙ 2 𝑒 64 = 32 ∙ 2.
  • 20. Razão da P.G. 🠶Em qualquer P .G. de razão q, temos: 𝒂𝒏 𝒂𝒏 = 𝒂𝒏−𝟏 ∙ 𝒒 ↔ 𝒒 = 𝒂𝒏−𝟏 Ou seja, 𝒂𝟐 𝒂𝟑 𝒂𝟒 𝒒 = = = = ⋯ = 𝒂𝟏 𝒂𝟐 𝒂𝟑 𝒂𝒏 𝒂𝒏−𝟏
  • 21. Exemplo 🠶(PUC-RJ) Asequência (2,x,y,8) representa uma progressão geométrica. O produto xy vale a) 8 b) 10 c) 12 d) 14 e) 16. 2 Solução: Observem que 𝑞 = 𝑥 e 𝑞 = 8 , logo; 𝑥 8 2 = 𝑦 →𝑦𝑥𝑦 = 16.
  • 22. Classificação 🠶Crescente: Quando cada termo é maior que o anterior. 🠶Constante: Quando todos os termos são iguais entre si. Quando todos os termos, a partir do segundo, 🠶Estacionária: são nulos. 🠶Decrescente: Quando cada termo é menor que o anterior. 🠶Alternante: Quando cada termo tem sinal contrário ao do anterior (q < 0).
  • 23. Exemplos (Classificação) 🠶Crescente: (2,6,18,54,...), (- 60; - 30; - 15; -7,5;...). 🠶Constante: (5,5,5,5,5,5,5,5,5,5) 🠶Estacionária: (6,0,0,0,0,0,0,0,0,...) 🠶Decrescente: (81,27,9,3,1), (- 5, - 10, - 20, - 40,...) 🠶Alternante: (1,- 4,16,- 64,256), (- 2, 4,- 8,16,-32,...)
  • 24. Notações especiais 🠶P.G. de três termos: 𝑥 , 𝑥, 𝑥 ∙ 𝑞 𝑜𝑢 (𝑥, 𝑥 ∙ 𝑞, 𝑥 ∙ 𝑞2) 𝑞 🠶P.G. de quatro termos: (𝑥, 𝑥 ∙ 𝑞, 𝑥 ∙ 𝑞2, 𝑥 ∙ 𝑞3) 2 🠶P.A. de cinco termos: 𝑥 𝑥 𝑞2 , 𝑞 , 𝑥, 𝑥 ∙ 𝑞, 𝑥 ∙ 𝑞 2 3 4 𝑜𝑢 (𝑥, 𝑥 ∙ 𝑞, 𝑥 ∙ 𝑞 , 𝑥 ∙ 𝑞 , 𝑥 ∙ 𝑞 )
  • 25. Exemplo 🠶(PUC-RJ) Vamos empilhar 5 caixas em ordem crescente de altura.Aprimeira caixa tem 1m de altura, e cada caixa seguinte tem o triplo da altura da anterior. A altura da nossa pilha de caixas será a) 121m b) 81m c) 32m d) 21m e) 15m. Solução: Encontraremos a seguir a altura das 5 caixas: Caixa 1 = 1m, Caixa 2 = 3m, Caixa 3 = 9m, Caixa 4 = 27m e Caixa 5 = 81m. Assim a altura da pilha é 1 + 3 + 9 + 27 + 81 = 121m.
  • 26. Propriedade 🠶Dada uma P.G. qualquer (a1, a2,...,an-1, an, an+1,...), temos: (𝑎𝑛)² = 𝑎𝑛−1 ∙ 𝑎𝑛+1 Ou seja, (𝑎2)² = 𝑎1 ∙ 𝑎3, (𝑎3)² = 𝑎2 ∙ 𝑎4, (𝑎4)² = 𝑎3 ∙ 𝑎5, …
  • 27. Exemplo 🠶Sabendo que a sequência (x, x + 2, 2x + 4,...) é uma P.G. crescente, determine sua razão. Solução: Aplicando a propriedade, temos: 𝑥 + 2 2 = 𝑥 ∙ 2𝑥 + 4 𝑥2 + 4𝑥 + 4 = 2𝑥2 + 4𝑥 2 𝑥2 − 𝑥2 + 4𝑥 − 4𝑥 − 4 = 0 𝑥2 − 4 = 0 𝑥2 = 4 𝑥 = ± 4 → 𝑥 = ±2. Desse modo, temos (2,4,8) ou (-2,0,0). Como a P.G. (2,4,8) é a única crescente, a razão é q = 2.
  • 28. Fórmula do termo geral da P.G. 🠶Dada uma P.G. 𝑎1, 𝑎2, 𝑎3, ⋯ , 𝑎𝑛, ⋯ de razão q, temos: 𝑎2 = 𝑎1 ∙ 𝑞 𝑎3 = 𝑎1 ∙ 𝑞2 𝑎4= 𝑎1 ∙ 𝑞3 𝑎5= 𝑎1 ∙ 𝑞4 ⋮ ⋮ ⋮ 𝑎𝑛= 𝑎1 ∙ 𝑞𝑛−1
  • 29. Fórmula do termo geral da P.G. 🠶Dada uma P.G.de razão q e ordem n, o termo 𝑎𝑛 é dado pela seguinte expressão: 𝑎𝑛 = 𝑎1 ∙ 𝑞𝑛−1 Onde 𝑎𝑛 é um termo qualquer da P.G. n é a posição do termo 𝑎𝑛 𝑎1 é o primeiro termo da P.G. q é a razão da P.G.
  • 30. Exemplo 🠶Determine o sétimo termo da P.G. (5,10,20,...). Solução: Na P .G., temos que 𝑎1 = 5 𝑒 𝑞 = 2. Assim: 𝑎𝑛 = 𝑎1 ∙ 𝑞𝑛−1 𝑎7 = 𝑎1 ∙ 𝑞6 𝑎7 = 5 ∙ 26 𝑎7 = 5 ∙ 64 𝑎7 = 320.
  • 31. Exemplo 🠶 AP .G. 10, 2, 2 , … , 2 5 625 possui quantos termos? 1 Solução: Observando a P.G., notamos que 𝑎 = 10 𝑒 𝑞 = 2 10 5 = 1 . Desse modo, para saber o 2 número de termos da P.G., devemos descobrir qual a posição do termo 𝑎𝑛 = 625. Utilizando a fórmula do termo geral, temos: 𝑎𝑛 = 𝑎1 ∙ 𝑞𝑛−1 𝑛 −1 2 625 = 10 ∙ 2 1 ∙ = 1 5 1 5 𝑛 −1 625 10 1 1 5 𝑛 −1 3125 1 5 = 5 = 1 5 𝑛 −1 𝑛 − 1 = 5 → 𝑛 = 6. Logo, a P .G. possui 6 termos.
  • 32. Soma dos n primeiros termos de uma P.G. 🠶Para somar os n primeiros termos de uma P.G., podemos utilizar a fórmula a seguir: 𝑺𝒏 = 𝒂𝟏 ∙ (𝒒𝒏 − 𝟏) 𝒒 − 𝟏 , 𝒄𝒐𝒎 𝒒 ≠ 𝟏. Onde • 𝑎1 é o primeiro termo somado; • q é a razão da P.G.; • 𝑛 é o número de termos somados.
  • 33. Exemplo 🠶 Uma fábrica de panelas inaugurada em 2014 produziu 500 panelas nesse mesmo ano. Considerando que sua produção triplica a cada ano, em 2019, o dono da fábrica pôde dizer que, em toda a história da fábrica, foram produzidas quantas panelas? Solução: O panelas formam produzidas a número de nos anos P.G. (500,1500,4500,...). O valor procurado é a soma dos 6 primeiros termos dessa P .G., logo esse valor é: 𝑆6 = 𝑎1 ∙ (𝑞6 − 1) 𝑞 − 1 𝑆6 = 𝑆6 = 500 ∙ (36 − 1) 3 − 1 500 ∙ 728 2 𝑆6 = 182000.
  • 34. Soma dos termos de uma P.G. infinita 🠶O limite da soma dos infinitos termos de uma P.G. 𝑎1, 𝑎2, 𝑎3, ⋯ de razão q, com −1 < 𝑞 < 1, é dado pela seguinte expressão: 𝒂𝟏 𝑺𝒏 = 𝟏 − 𝒒 Onde 𝑆𝑛 é o limite da soma infinitos termos da P.G. 𝑎1 é o primeiro termo da P.G. Q é a razão da P.G.
  • 35. Exemplo 🠶Qual o valor da soma 4 + 2 + 1 + 1 + 1 + ⋯? 2 4 Solução: Observando o enunciado, percebemos que devemos somar 2 os termos de uma P.G. infinita com 𝑎1 = 4 𝑒 𝑞 = 1 .Aplicando a fórmula, temos: 𝑆𝑛 = 𝑎1 𝑆𝑛 = 1 − 𝑞 4 1 1 − 2 4 𝑆𝑛 = 1 2 2 𝑆𝑛 = 4 ∙ 1 = 8.