Nous avons mis à jour notre politique de confidentialité. Cliquez ici pour consulter les détails. Cliquez ici pour consulter les détails.
Activez votre essai gratuit de 30 jours pour accéder à une lecture illimitée
Activez votre essai gratuit de 30 jours pour continuer votre lecture.
Télécharger pour lire hors ligne
Preventing biases and digital literacy with the "no-code-movement"
What is the impact of sex and gender differences in Artificial Intelligence (AI) used in biomedicine and healthcare? How can AI biases threaten our health and mitigate inequalities? According to Dr. Antonella Santuccione Chadha, founder of the Women’s Brain Project, ambitious goals set by precision medicine will be achieved using the latest advances in AI to identify the role of inter-individual differences. Yet, we need to consider more than ever that our decisions significantly impact the future treatment of patients and society. Despite scientific progress, most biomedical solutions do not account for (neither desirable nor desirable) bias detection. Furthermore, most algorithms neglect the sex and gender factor and their relevance to individual variances in health and illness. Failure to account for these variations could result in errors and discriminatory consequences (Cirillo et al., 2020).
A solution to this issue would be “no-code-movement,” which stands for a type of web development that allows non-programmers or people with great creative rather than technical skills to build immersive online interactions, such as 2D (Web 2.0) and 3D (Web 3.0) applications, and create software using a user-friendly graphical interface, instead of writing boring code. The no-code movement rests upon the fundamental belief that technology should enable and facilitate the creation and understanding and not be a barrier to entry. In this regard, user experience (UX) approaches can be taken to make it inclusive, adaptable, and customized for each sex and gender variation representation.
Historical sex and gender inequities and prejudices can infect health research and practice (Cirillo et al., 2020). Thus, developing AI precision systems in healthcare will enable the differentiation of vulnerabilities for disease and response to treatments among individuals while avoiding discriminatory biases. Furthermore, the no-code movement allows visualizations, logical statements, and dimensionality reduction techniques, which can be implemented to achieve interpretability (Cirillo et al., 2020). Therefore, developing and applying fair approaches is critical for implementing unbiased and interpretable models for everyone.
The no-code approach also saves money since it requires less upkeep and upfront investment. Coding money could now be better utilized for all sex and gender well-designed research, implying that post-trials are essential to scientific advancements (Rich-Edwards et al., 2018).
Furthermore, it allows for decentralized autonomy and innovation. When decentralizing development–by removing the barriers preventing healthcare users and professionals from experimenting and testing–no-code platforms, autonomy, and innovation are encouraged. It also enables to be known inside and out, thus avoiding the “black box” effect. (...)
Preventing biases and digital literacy with the "no-code-movement"
What is the impact of sex and gender differences in Artificial Intelligence (AI) used in biomedicine and healthcare? How can AI biases threaten our health and mitigate inequalities? According to Dr. Antonella Santuccione Chadha, founder of the Women’s Brain Project, ambitious goals set by precision medicine will be achieved using the latest advances in AI to identify the role of inter-individual differences. Yet, we need to consider more than ever that our decisions significantly impact the future treatment of patients and society. Despite scientific progress, most biomedical solutions do not account for (neither desirable nor desirable) bias detection. Furthermore, most algorithms neglect the sex and gender factor and their relevance to individual variances in health and illness. Failure to account for these variations could result in errors and discriminatory consequences (Cirillo et al., 2020).
A solution to this issue would be “no-code-movement,” which stands for a type of web development that allows non-programmers or people with great creative rather than technical skills to build immersive online interactions, such as 2D (Web 2.0) and 3D (Web 3.0) applications, and create software using a user-friendly graphical interface, instead of writing boring code. The no-code movement rests upon the fundamental belief that technology should enable and facilitate the creation and understanding and not be a barrier to entry. In this regard, user experience (UX) approaches can be taken to make it inclusive, adaptable, and customized for each sex and gender variation representation.
Historical sex and gender inequities and prejudices can infect health research and practice (Cirillo et al., 2020). Thus, developing AI precision systems in healthcare will enable the differentiation of vulnerabilities for disease and response to treatments among individuals while avoiding discriminatory biases. Furthermore, the no-code movement allows visualizations, logical statements, and dimensionality reduction techniques, which can be implemented to achieve interpretability (Cirillo et al., 2020). Therefore, developing and applying fair approaches is critical for implementing unbiased and interpretable models for everyone.
The no-code approach also saves money since it requires less upkeep and upfront investment. Coding money could now be better utilized for all sex and gender well-designed research, implying that post-trials are essential to scientific advancements (Rich-Edwards et al., 2018).
Furthermore, it allows for decentralized autonomy and innovation. When decentralizing development–by removing the barriers preventing healthcare users and professionals from experimenting and testing–no-code platforms, autonomy, and innovation are encouraged. It also enables to be known inside and out, thus avoiding the “black box” effect. (...)
Il semblerait que vous ayez déjà ajouté cette diapositive à .
Vous avez clippé votre première diapositive !
En clippant ainsi les diapos qui vous intéressent, vous pourrez les revoir plus tard. Personnalisez le nom d’un clipboard pour mettre de côté vos diapositives.La famille SlideShare vient de s'agrandir. Profitez de l'accès à des millions de livres numériques, livres audio, magazines et bien plus encore sur Scribd.
Annulez à tout moment.Lecture illimitée
Apprenez plus vite et de façon plus astucieuse avec les meilleurs spécialistes
Téléchargements illimités
Téléchargez et portez vos connaissances avec vous hors ligne et en déplacement
Vous bénéficiez également d'un accés gratuit à Scribd!
Accès instantané à des millions de livres numériques, de livres audio, de magazines, de podcasts, et bien plus encore.
Lisez et écoutez hors ligne depuis n'importe quel appareil.
Accès gratuit à des services premium tels que TuneIn, Mubi, et bien plus encore.
Nous avons mis à jour notre politique de confidentialité pour nous conformer à l'évolution des réglementations mondiales en matière de confidentialité et pour vous informer de la manière dont nous utilisons vos données de façon limitée.
Vous pouvez consulter les détails ci-dessous. En cliquant sur Accepter, vous acceptez la politique de confidentialité mise à jour.
Merci!