SlideShare une entreprise Scribd logo
1  sur  68
The  System of Rice Intensification  (SRI/SICA) -- New Opportunities for  Organic Rice Production 5th Meeting of Organic Agriculture Havana, Cuba, May 29, 2003 Norman Uphoff Cornell International Institute for  Food, Agriculture and Development
What Is SICA? ,[object Object],[object Object],[object Object],[object Object],[object Object]
More tillers and more than 400 grains per panicle
 
Variedad Los Palacios 9  (CFA Camilo Cienfuegos)
SICA is ‘too good to be true’?  -- changes paradigm of production ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SICA Is “Organic” for Pragmatic Reasons ,[object Object],[object Object],[object Object],[object Object]
OBSERVABLE  BENEFITS ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SRI Data from Sri Lanka ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
SICA IS BEING ADAPTED TO  UPLAND PRODUCTION Results of Trials by Philippine NGO (Broader Initiatives for Negros Development), w/ Traditional Variety
LESS OR NO NEED FOR: ,[object Object],[object Object],[object Object]
ADDITIONAL BENEFITS ,[object Object],[object Object],[object Object],[object Object],[object Object]
DISADVANTAGES / COSTS ,[object Object],[object Object],[object Object]
‘ Starting Points’ for SICA ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
SICA practices will produce a different RICE  PHENOTYPE: ,[object Object],[object Object],[object Object],[object Object],[object Object]
 
Plant Physical Structure and  Light Intensity Distribution  at Heading Stage   (CNRRI Research: Tao et al. 2002)
 
SICA goes against  LOGIC ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
These results have come more often from  farms  than experiment stations ,[object Object],[object Object],[object Object],[object Object]
 
 
Spread beyond Madagascar ,[object Object],[object Object],[object Object],[object Object]
Average Yields Impressive: Certain Cases Hard to Explain   ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
(1) Importance of ROOTS ,[object Object],[object Object],[object Object],[object Object]
Dry Matter Distribution of Roots in SRI and Conventionally-Grown Plants at Heading Stage  (CNRRI research: Tao et al. 2002) Root dry weight (g)
Root Activity in SRI and Conventional Rice Measured by  Oxygenation Ability Research at Nanjing Agricultural University, Wuxianggeng 9 variety (Wang et al. 2002)
 
 
 
(2) Importance of SOIL MICROBIAL PROCESSES ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Benefits from  Rhizobia   in rice being documented ,[object Object],[object Object],[object Object]
Factorial Trials Evaluating 6 Factors ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
 
Effects of SRI vs. Conventional Practices Comparing Varietal and Soil Differences
(3) Importance of Transplanting YOUNG SEEDLINGS ,[object Object],[object Object],[object Object]
Effect of Young Seedlings ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
(4) Importance of Enhancing SOIL ORGANIC MATTER ,[object Object],[object Object],[object Object],[object Object],[object Object]
SRI Confirms the Strategy of Organic Farming ,[object Object],[object Object],[object Object]
SICA Opens Opportunities for Organic Rice Production ,[object Object],[object Object],[object Object],[object Object]
Thank You for Opportunity to Share this With You ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Soil microbial activity  is critical for plant nutrition  and SRI performance ,[object Object]
Bacteria, funguses, protozoa, amoeba, actinomycetes, etc. ,[object Object],[object Object],[object Object]
Biological Nitrogen Fixation ,[object Object],[object Object]
Biological Nitrogen Fixation ,[object Object],[object Object],[object Object]
This helps to solve puzzle ,[object Object],[object Object],[object Object],[object Object]
 
Phosphorus Solubilization ,[object Object],[object Object],[object Object],[object Object]
Microbiological ‘Weathering’  of Soil? ,[object Object],[object Object],[object Object]
Mycorrhizal Associations ,[object Object],[object Object],[object Object],[object Object]
Benefits from  Rhizobia   in rice now being explored ,[object Object],[object Object],[object Object]
PROTOZOA ,[object Object],[object Object],[object Object],[object Object]
Root Exudation Is Crucial ,[object Object],[object Object],[object Object],[object Object],[object Object]
Soil Microbiology ,[object Object],[object Object],[object Object],[object Object]
SRI offers an intensified agronomic system for: ,[object Object],[object Object],[object Object],[object Object]
SRI  Raises More Questions than we have answers for   ,[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object]
 
 
 
 
 
.
 
THANK YOU ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Effects of Nutrient Amendments:  NPK vs. Compost (yield in t/ha)  HYV vs. Local Variety@ Morondava, 2000 Sandy soils ( sable roux )

Contenu connexe

Tendances

Ppt agri.engg362 (bablu)
Ppt agri.engg362 (bablu)Ppt agri.engg362 (bablu)
Ppt agri.engg362 (bablu)BABLUHRANGKHAWL
 
Effect of crop establishment/irrigation techniques and nitrogen levels on gro...
Effect of crop establishment/irrigation techniques and nitrogen levels on gro...Effect of crop establishment/irrigation techniques and nitrogen levels on gro...
Effect of crop establishment/irrigation techniques and nitrogen levels on gro...Innspub Net
 
Oft for higher productivity and ssustainability
Oft  for higher productivity and ssustainabilityOft  for higher productivity and ssustainability
Oft for higher productivity and ssustainabilityAshutosh Pal
 
rkvy project on conservation agriculture-Pijush Kanti Mukherjee
rkvy project on conservation agriculture-Pijush Kanti Mukherjeerkvy project on conservation agriculture-Pijush Kanti Mukherjee
rkvy project on conservation agriculture-Pijush Kanti MukherjeePIJUSH KANTI MUKHERJEE
 
Cropping system pijush kanti mukherjee (icar-ivri)
Cropping system pijush kanti mukherjee (icar-ivri)Cropping system pijush kanti mukherjee (icar-ivri)
Cropping system pijush kanti mukherjee (icar-ivri)PIJUSH KANTI MUKHERJEE
 

Tendances (20)

Ppt agri.engg362 (bablu)
Ppt agri.engg362 (bablu)Ppt agri.engg362 (bablu)
Ppt agri.engg362 (bablu)
 
Master Seminar ppt
Master Seminar pptMaster Seminar ppt
Master Seminar ppt
 
Effect of crop establishment/irrigation techniques and nitrogen levels on gro...
Effect of crop establishment/irrigation techniques and nitrogen levels on gro...Effect of crop establishment/irrigation techniques and nitrogen levels on gro...
Effect of crop establishment/irrigation techniques and nitrogen levels on gro...
 
Organic rice
Organic riceOrganic rice
Organic rice
 
Organic Rice
Organic RiceOrganic Rice
Organic Rice
 
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
1914 Towards a More Sustainable Rice Crop: System of Rice Intensification (SR...
 
Oft for higher productivity and ssustainability
Oft  for higher productivity and ssustainabilityOft  for higher productivity and ssustainability
Oft for higher productivity and ssustainability
 
1428 - Ratooning with high yield
1428 - Ratooning with high yield1428 - Ratooning with high yield
1428 - Ratooning with high yield
 
0327 The System of Rice Intensification (SRI)
0327 The System of Rice Intensification (SRI)0327 The System of Rice Intensification (SRI)
0327 The System of Rice Intensification (SRI)
 
0432 The Effect of Seedling Age, Spacing, Yield Season on Phyllochron, Yield ...
0432 The Effect of Seedling Age, Spacing, Yield Season on Phyllochron, Yield ...0432 The Effect of Seedling Age, Spacing, Yield Season on Phyllochron, Yield ...
0432 The Effect of Seedling Age, Spacing, Yield Season on Phyllochron, Yield ...
 
0503 The System of Rice Intensification (SRI): A Good Alternative for Increas...
0503 The System of Rice Intensification (SRI): A Good Alternative for Increas...0503 The System of Rice Intensification (SRI): A Good Alternative for Increas...
0503 The System of Rice Intensification (SRI): A Good Alternative for Increas...
 
Organic seed production
Organic seed productionOrganic seed production
Organic seed production
 
rkvy project on conservation agriculture-Pijush Kanti Mukherjee
rkvy project on conservation agriculture-Pijush Kanti Mukherjeerkvy project on conservation agriculture-Pijush Kanti Mukherjee
rkvy project on conservation agriculture-Pijush Kanti Mukherjee
 
The System of Rice Intensification (SRI)
The System of Rice Intensification (SRI)The System of Rice Intensification (SRI)
The System of Rice Intensification (SRI)
 
Cropping system pijush kanti mukherjee (icar-ivri)
Cropping system pijush kanti mukherjee (icar-ivri)Cropping system pijush kanti mukherjee (icar-ivri)
Cropping system pijush kanti mukherjee (icar-ivri)
 
1003 Study and Utilization of the SRI Technology
1003 Study and Utilization of the SRI Technology 1003 Study and Utilization of the SRI Technology
1003 Study and Utilization of the SRI Technology
 
1029 JEEVIKA What is System of Wheat Intensification (SWI)
1029 JEEVIKA What is System of Wheat Intensification (SWI)1029 JEEVIKA What is System of Wheat Intensification (SWI)
1029 JEEVIKA What is System of Wheat Intensification (SWI)
 
Potentials of integrated nutrient management systems in rice cultivation in...
Potentials of  integrated nutrient management systems in  rice cultivation in...Potentials of  integrated nutrient management systems in  rice cultivation in...
Potentials of integrated nutrient management systems in rice cultivation in...
 
2001 - System of Rice Intensification SRI in Iraq
2001 - System of Rice Intensification SRI in Iraq2001 - System of Rice Intensification SRI in Iraq
2001 - System of Rice Intensification SRI in Iraq
 
Organic Farming
Organic FarmingOrganic Farming
Organic Farming
 

Similaire à 0304 SRI/SICA New Opportunities for Organic Rice Production

Similaire à 0304 SRI/SICA New Opportunities for Organic Rice Production (20)

0211 The System of Rice Intensification (SRI): Opportunity for Food Security...
0211 The System of Rice Intensification (SRI):  Opportunity for Food Security...0211 The System of Rice Intensification (SRI):  Opportunity for Food Security...
0211 The System of Rice Intensification (SRI): Opportunity for Food Security...
 
0321 The System of Rice Intensification (SRI) : What It Is, and How/Why We Th...
0321 The System of Rice Intensification (SRI) : What It Is, and How/Why We Th...0321 The System of Rice Intensification (SRI) : What It Is, and How/Why We Th...
0321 The System of Rice Intensification (SRI) : What It Is, and How/Why We Th...
 
0416 System of Rice Intensification: An Opportunity for Raising Productivity ...
0416 System of Rice Intensification: An Opportunity for Raising Productivity ...0416 System of Rice Intensification: An Opportunity for Raising Productivity ...
0416 System of Rice Intensification: An Opportunity for Raising Productivity ...
 
0206 Potential Contributions of the System of Rice Intensification to Balanci...
0206 Potential Contributions of the System of Rice Intensification to Balanci...0206 Potential Contributions of the System of Rice Intensification to Balanci...
0206 Potential Contributions of the System of Rice Intensification to Balanci...
 
0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...
0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...
0424 The System of Rice Intensification (SRI) Understanding How and Why It Ra...
 
0302 A New Paradigm for Rice and Why We Think It Works
0302 A New Paradigm for Rice and Why We Think It Works0302 A New Paradigm for Rice and Why We Think It Works
0302 A New Paradigm for Rice and Why We Think It Works
 
0208 Implications of the System of Rice Intensification for Sustainable Agric...
0208 Implications of the System of Rice Intensification for Sustainable Agric...0208 Implications of the System of Rice Intensification for Sustainable Agric...
0208 Implications of the System of Rice Intensification for Sustainable Agric...
 
0317 Possible Soil Microbiological Explanations for High Yields with the Syst...
0317 Possible Soil Microbiological Explanations for High Yields with the Syst...0317 Possible Soil Microbiological Explanations for High Yields with the Syst...
0317 Possible Soil Microbiological Explanations for High Yields with the Syst...
 
0212 Opportunities for Rice Research and Production Deriving from the System ...
0212 Opportunities for Rice Research and Production Deriving from the System ...0212 Opportunities for Rice Research and Production Deriving from the System ...
0212 Opportunities for Rice Research and Production Deriving from the System ...
 
0419 The System of Rice Intensification (SRI): An Update on Its Spread and E...
0419 The System of Rice Intensification (SRI):  An Update on Its Spread and E...0419 The System of Rice Intensification (SRI):  An Update on Its Spread and E...
0419 The System of Rice Intensification (SRI): An Update on Its Spread and E...
 
0210 A Review of the System of Rice Intensification (SRI)
0210 A Review of the System of Rice Intensification (SRI)0210 A Review of the System of Rice Intensification (SRI)
0210 A Review of the System of Rice Intensification (SRI)
 
0428 An Opportunity for Africa: The System of Rice Intensification (SRI) [ l...
0428 An Opportunity for Africa: The System of Rice Intensification (SRI)  [ l...0428 An Opportunity for Africa: The System of Rice Intensification (SRI)  [ l...
0428 An Opportunity for Africa: The System of Rice Intensification (SRI) [ l...
 
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
0504 Scientific Opportunities and Challenges with the System of Rice Intensif...
 
0209 Working for Freedom from Hunger in Harmony with Nature
0209 Working for  Freedom from Hunger  in Harmony with Nature0209 Working for  Freedom from Hunger  in Harmony with Nature
0209 Working for Freedom from Hunger in Harmony with Nature
 
0328 The System of Rice Intensification (SRI): An Opportunity to Improve Foo...
0328 The System of Rice Intensification (SRI):  An Opportunity to Improve Foo...0328 The System of Rice Intensification (SRI):  An Opportunity to Improve Foo...
0328 The System of Rice Intensification (SRI): An Opportunity to Improve Foo...
 
0508 Opportunities for Raising Rice Yields and the Productivity of Land, Labo...
0508 Opportunities for Raising Rice Yields and the Productivity of Land, Labo...0508 Opportunities for Raising Rice Yields and the Productivity of Land, Labo...
0508 Opportunities for Raising Rice Yields and the Productivity of Land, Labo...
 
0502 The System of Rice Intensification's Potential for Food Security in Camb...
0502 The System of Rice Intensification's Potential for Food Security in Camb...0502 The System of Rice Intensification's Potential for Food Security in Camb...
0502 The System of Rice Intensification's Potential for Food Security in Camb...
 
0415 Opportunities for Raising Rice Yields and Factor Productivity with the S...
0415 Opportunities for Raising Rice Yields and Factor Productivity with the S...0415 Opportunities for Raising Rice Yields and Factor Productivity with the S...
0415 Opportunities for Raising Rice Yields and Factor Productivity with the S...
 
SRI An Opportunity for Improving Food Security in Latin America
SRI An Opportunity for Improving Food Security in Latin AmericaSRI An Opportunity for Improving Food Security in Latin America
SRI An Opportunity for Improving Food Security in Latin America
 
1018 The Emerging Shape of a Post-Modern Agriculture: Indications from the S...
1018 The Emerging Shape of  a Post-Modern Agriculture: Indications from the S...1018 The Emerging Shape of  a Post-Modern Agriculture: Indications from the S...
1018 The Emerging Shape of a Post-Modern Agriculture: Indications from the S...
 

Plus de SRI-Rice, Dept. of Global Development, CALS, Cornell University

Plus de SRI-Rice, Dept. of Global Development, CALS, Cornell University (20)

2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
2205 - System of Rice Intensification in Indonesia - Research, Adoption, and ...
 
2204 -System of Rice Intensification - Improving Rice Production and Saving W...
2204 -System of Rice Intensification - Improving Rice Production and Saving W...2204 -System of Rice Intensification - Improving Rice Production and Saving W...
2204 -System of Rice Intensification - Improving Rice Production and Saving W...
 
2203 - Overview of System of Rice Intensification SRI Around the World
2203 - Overview of System of Rice Intensification SRI Around the World2203 - Overview of System of Rice Intensification SRI Around the World
2203 - Overview of System of Rice Intensification SRI Around the World
 
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
2202 - Water Savings, Yield, and Income Benefits with SRI in Iraq.ppt
 
2201 - El Sistema Intensivo del Cultivo de Arroz
2201 - El Sistema Intensivo del Cultivo de Arroz2201 - El Sistema Intensivo del Cultivo de Arroz
2201 - El Sistema Intensivo del Cultivo de Arroz
 
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
2104 - El Sector Agropecuario Panameno Contribuyendo a la Lucha Frente al Cam...
 
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
2103 - Reduced Methane Emissions Rice Production Project in Northern Nigerian...
 
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
1711 - Sistema Intensivo del Cultivo del Arroz para la Producción y Sustentab...
 
1615 Ecological Intensification - Lessons from SRI from Green Revolution to...
1615   Ecological Intensification - Lessons from SRI from Green Revolution to...1615   Ecological Intensification - Lessons from SRI from Green Revolution to...
1615 Ecological Intensification - Lessons from SRI from Green Revolution to...
 
2102 - Establishing an equitable SRI value chain in the Philippines
2102 - Establishing an equitable SRI value chain in the Philippines2102 - Establishing an equitable SRI value chain in the Philippines
2102 - Establishing an equitable SRI value chain in the Philippines
 
2101 - Agroecological Opportunities with SRI and SCI
2101 - Agroecological Opportunities with SRI and SCI2101 - Agroecological Opportunities with SRI and SCI
2101 - Agroecological Opportunities with SRI and SCI
 
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
Farmers' Handbook on System of Rice Intensification - SRI (Burmese)
 
1913 Resuitados SRI MIDA-IICA Panama 2019
1913   Resuitados SRI MIDA-IICA Panama 2019 1913   Resuitados SRI MIDA-IICA Panama 2019
1913 Resuitados SRI MIDA-IICA Panama 2019
 
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
1912 - Agroecological Management of Soil Systems for Food, Water, Climate Res...
 
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
1910 - Integrating Climate Smart Rice Agriculture in Supply Networks - Lotus ...
 
1911- Gender Responsive Smallholder Rice Production Practices and equipment
1911- Gender Responsive Smallholder Rice Production Practices and equipment1911- Gender Responsive Smallholder Rice Production Practices and equipment
1911- Gender Responsive Smallholder Rice Production Practices and equipment
 
1908 Rice cultivation in Africa: How traditional practices relate to modern o...
1908 Rice cultivation in Africa: How traditional practices relate to modern o...1908 Rice cultivation in Africa: How traditional practices relate to modern o...
1908 Rice cultivation in Africa: How traditional practices relate to modern o...
 
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
1907 - The Effects of Exposure Intensity on Technology Adoption and Gains: Ex...
 
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
1906 - Improving Productivity of Rice under Water Scarcity in Africa: The Cas...
 
1905 - SRI en Venezuela - Resena Historica de la Parcela 234
1905 - SRI en Venezuela - Resena Historica de la Parcela 2341905 - SRI en Venezuela - Resena Historica de la Parcela 234
1905 - SRI en Venezuela - Resena Historica de la Parcela 234
 

Dernier

Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Strongerpanagenda
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch TuesdayIvanti
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxfnnc6jmgwh
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Nikki Chapple
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Farhan Tariq
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructureitnewsafrica
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfIngrid Airi González
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsNathaniel Shimoni
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesManik S Magar
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024TopCSSGallery
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 

Dernier (20)

Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better StrongerModern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
Modern Roaming for Notes and Nomad – Cheaper Faster Better Stronger
 
2024 April Patch Tuesday
2024 April Patch Tuesday2024 April Patch Tuesday
2024 April Patch Tuesday
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
Microsoft 365 Copilot: How to boost your productivity with AI – Part one: Ado...
 
Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...Genislab builds better products and faster go-to-market with Lean project man...
Genislab builds better products and faster go-to-market with Lean project man...
 
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical InfrastructureVarsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
Varsha Sewlal- Cyber Attacks on Critical Critical Infrastructure
 
Generative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdfGenerative Artificial Intelligence: How generative AI works.pdf
Generative Artificial Intelligence: How generative AI works.pdf
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Time Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directionsTime Series Foundation Models - current state and future directions
Time Series Foundation Models - current state and future directions
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotesMuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
MuleSoft Online Meetup Group - B2B Crash Course: Release SparkNotes
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024Top 10 Hubspot Development Companies in 2024
Top 10 Hubspot Development Companies in 2024
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 

0304 SRI/SICA New Opportunities for Organic Rice Production

  • 1. The System of Rice Intensification (SRI/SICA) -- New Opportunities for Organic Rice Production 5th Meeting of Organic Agriculture Havana, Cuba, May 29, 2003 Norman Uphoff Cornell International Institute for Food, Agriculture and Development
  • 2.
  • 3. More tillers and more than 400 grains per panicle
  • 4.  
  • 5. Variedad Los Palacios 9 (CFA Camilo Cienfuegos)
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.  
  • 11. SICA IS BEING ADAPTED TO UPLAND PRODUCTION Results of Trials by Philippine NGO (Broader Initiatives for Negros Development), w/ Traditional Variety
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.  
  • 18. Plant Physical Structure and Light Intensity Distribution at Heading Stage (CNRRI Research: Tao et al. 2002)
  • 19.  
  • 20.
  • 21.
  • 22.  
  • 23.  
  • 24.
  • 25.
  • 26.
  • 27. Dry Matter Distribution of Roots in SRI and Conventionally-Grown Plants at Heading Stage (CNRRI research: Tao et al. 2002) Root dry weight (g)
  • 28. Root Activity in SRI and Conventional Rice Measured by Oxygenation Ability Research at Nanjing Agricultural University, Wuxianggeng 9 variety (Wang et al. 2002)
  • 29.  
  • 30.  
  • 31.  
  • 32.
  • 33.  
  • 34.
  • 35.
  • 36.  
  • 37. Effects of SRI vs. Conventional Practices Comparing Varietal and Soil Differences
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.  
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.  
  • 61.  
  • 62.  
  • 63.  
  • 64.  
  • 65. .
  • 66.  
  • 67.
  • 68. Effects of Nutrient Amendments: NPK vs. Compost (yield in t/ha) HYV vs. Local Variety@ Morondava, 2000 Sandy soils ( sable roux )

Notes de l'éditeur

  1. Prepared with information available as of February 1, 2003. These slides can be used or adapted, even translated, however SRI colleagues would be useful for explaining this methodology to others.
  2. Prepared with information available as of February 1, 2003. These slides can be used or adapted, even translated, however SRI colleagues would be useful for explaining this methodology to others.
  3. Picture provided by Gamini Batuwitage, Sri Lanka, of field that yielded 17 t/ha in 2000.
  4. The "economist's $100 bill" refers to the joke about an economist and his friend who were walking together down the street one day when the friend saw a $100 bill on the sidewalk. Thinking that his friend, being concerned with money, would surely pick the bill up, he did not reach down himself. But the economist walked right by. The friend asked, didn't you see that $100 bill on the sidewalk? Why didn't you pick it up? The economist replied,It wasn't a real $100 bill. If it had been genuine, since people are rational, someone would have picked it up by now, so I am sure that it was a counterfeit, and I didn't want to waste any effort on it. Agronomists have regarded SRI with similar skepticism, dismissing it by saying if it were indeed as good as reported, it should have been discovered previously, given the many millions of farmers and thousands of scientists who have worked with rice. So, therefore, SRI must not be genuine. SRI contradicts a number of key concepts held by agronomists and economists, giving them reasons to reject it, without giving it an empirical evaluation. However, the evidence in support of SRI is mounting year by year, month by month.
  5. Average yields where farmers have learned SRI methods, understand them and use them, are about 8 t/ha. In some countries, the average is not yet at that level, but given experience in Madagascar and Sri Lanka, we feel confident that 8 t/ha is a reasonable average to expect with SRI. Maximum yields reported are very controversial. We report data as accurately and truthfully as we can. Farmers have had harvests -- some whole-field, some sampled -- calculated to be 15-20 t/ha, so we report what we think is correct. Over time this will be substantiated by other or not. Water requirement reductions of 40-60% are often reported. That productivity for all four factors of production can increase at the same time goes against the conventional idea of necessary tradeoffs in factor productivity. We have often seen across-the-board productivity improvements, which are more important than yield. Farmers and countries get richer by raising productivity, not by attaining highest yield (because one has to consider the cost of attaining this). Costs of production have been reported to be reduced by 10-50%, depending on how the cost of labor is figured. Because no purchase of external inputs is necessary, cash costs of production invariably go down with SRI. Whether or not labor costs are reduced depends on various factors.
  6. Dr. Janaiah visited Sri Lanka the last week of October, 2002, and talked with 30 farmers in four villages who had been practicing SRI and who could give him detailed data. He had previously done such an evaluation for IRRI of the costs and benefits of adopting hybrid rice, having been on the IRRI staff in Los Banos from 1999 to 2002. He found SRI to be a much more profitable innovation for rice production than adoption of hybrids. We have found that SRI methods give the highest yields with hybrid varieties so there is not necessary contradiction or competition between the two. The SRI results reported from the Philippines, by the Agricultural Training Institute of the Department of Agriculture, from trials with three varieties at its Cotobato center in Mindanao (slide 20), calculated that the cost of production per hectare was 25,000 pesos, while the value of the rice yield with SRI was 96,000 pesos, a return of almost four times. Thus there are other evaluations of net profit from SRI that are even more favorable than Janaiah's calculation.
  7. SRI methods have given improved yield and factor productivity with all varieties used so far, though some perform better than others (responding to the different growing environment with more tillering and root growth). Traditional varieties can increase from 1-3 t/ha to 4-10 t/ha with SRI methods, with the highest so far being 13.3 t/ha (Sri Lanka). HYVs and hybrid varieties have given yields in the 15-20 t/ha range. SRI was developed in the 1980s with use of fertilizer, but after subsidies were removed at the end of the decade, Fr. de Laulanie switched to using compost and found that it could give even better yields on most soils, and farmers could be spared out-of-pocket cash costs. We have good reason to believe that compost will give higher yield when using SRI than will chemical fertilizer, seen from factorial trials, because of the impact on soil microbiology. However, farmers can use fertilizer with SRI methods usually cost-effectively. We do not discourage use of fertilizer, but rather encourage use of compost. Similarly, farmers can use agrochemicals (insecticides, fungicides, etc.) with SRI, but most farmers so far have reported that their rice with SRI is resistent enough to pest and disease damage that chemical applications are not necessary, i.e., not cost-effective. We do not know why there is this apparent pest and disease resistance, though we have hypotheses (better and more balanced nutrient uptake with a larger root system reaching lower horizons, better growing conditions when fields are not kept flooded, etc.)
  8. This is usually a minor consideration, though for small farmers this can be important. Savings of 100 kg/ha are often reported with SRI, which is equivalent to a yield increase of 0.1 t/ha. No lodging is generally reported by farmers, though we have no systematic data on this. Also, farmers report that when harvesting SRI rice, there is less loss in the field from panicles. Environmental benefits remain to be evaluated systematically. It is known that emissions of methane are substantial from continuously flooded paddies, so SRI methods can be expected to reduce this greenhouse gas. Possibly the emission of nitrous oxide could increase when fields are not kept flooded, but if inorganic N is not being added in any large amounts, this is not likely to be much of a problem. The only capital requirement for SRI is purchase, or rental, of the hand push-weeder (rotating hoe) that controls weeds which are more of a problem when fields are not kept flooded. The weeder is not necessary, as hand weeding can control weeds. It will not, however, aerate the soil as the push-weeder does. (Herbicides can also control weeds with SRI, but they do nothing for soil aeration.) A study of SRI adoption and disadoption in Madagascar by Christine Moser from Cornell University in 2000, with CIIFAD support, found a good number of very poor households in her sample from four villages not adopting SRI, or giving it up, because they could not afford the additional labor required. Such households needed daily income during the crop season to meet their subsistance needs and could not afford to "invest" their labor in a higher SRI harvest. For them, SRI was "not more accessible." However, in countries such as Sri Lanka, Cambodia and Indonesia, farmers are now reporting that SRI is not more labor-intensive and has become even labor-saving for them. This matter is still being sorted out. But the statement here we think is generally true.
  9. As noted for Slide 7, we are hearing from farmers in a number of countries, that SRI is not more labor-intensive for them. However, we think it best to acknowledge that SRI can require more labor, at least in the first year or two. Studies in Madagascar have put this increase between 25 and 50%, with first-year farmers sometimes even higher. With a doubling of yield, the returns to labor are higher even so. We do not want to minimize -- indeed, we should emphasize -- that SRI requires more skill and knowedge. Farmers are expected not to adopt SRI methods but to gain an understanding of them, particularly why we recommend wide spacing, young seedlings, no continuous flooding, etc. They should adapt the specific practices to their local conditions. SRI was intended by Fr. de Laulanie and Association Tefy Saina to encourage farmers to become more independent thinkings and active innovators. The most objective limitation on SRI is the need for good water control to get best results. Continuous flooding as seen below, leads to root deterioration. Farmers who are part of a cascade (field-to-field) irrigation system will have a hard time managing water for SRI unless there is cooperation among neighbors. Once the economic profitability of SRI has been well established, farmers, governments and even donor agencies should be willing to make investments in improving irrigation infrastructure to make SRI management possible.
  10. We emphasize that these are "starting point" because farmers are expected and encouraged to do some experimentation and adaptation with these practices, based on their understanding of the core concepts. The reasons for transplanting young seedlings are given in Slides 34-39. Quick and careful transplanting is necessary so there is little or no trauma to the young roots, which would set back their subsequent growth. We recommend that the roots be laid gently into the soil, only 1-2 cm deep, with the root straight downward or at least horizontal (L-shaped) rather than being plunged vertically down into the soil which causes the tip of the root to invert back upwards (J-shaped). When there is such inversion, it takes days, even weeks, for the root to reposition itself for resumed downward growth. Single plants spaced widely have room for both the roots and canopy to grow vigorously, as they will with young seedlings and aerated soil. We recommend starting with 25x25 spacing, but with good soil (and the soil usually improves year-to-year with SRI culivation), higher yields will be achieved with 30x30 or 40x40 spacing. The highest yield we know was with 50x50 cm spacing once soil had been improved by plant, soil, water and nutrient management. So farmers should experiment with wider spacing each year to see whether it leads to better crop performance than 25x25. They can experiment with narrower spacing if they like. No continuous flooding at least up to panicle initiation is key. This can be done, however, either by adding small amounts of water each day to keep the soil moist but not saturated, and not watering the field for 3-6 days several times during the growing season to dry out the field, up to the point of surface cracking; or by flooding the field for 3-6 days, and then draining it and leaving it dry for 3-6 days, until there is enough cracking to make reflooding necessary. We are still learning how to manage water for best effect with SRI. The best practices for any particular farmer will surely depend on soil, climatic, topographic and other variables. We recommend that farmers keep 1-2 cm of water on the field after panicle initiation, up to 10 days before harvest when the field should be drained (as done with all irrigated rice cultivation systems). Possibly the soil should be kept more aerated than this after panicle initiation, but no systematic research has been done. Weeding is important, for soil aeration as well as removal of weeds. See Slide 44.
  11. The data summarize our observations and measurements. Regarding panicle size, we have had single panicles with as many as 900 grains, but this is so fantastic, few will believe it. The maximum of number of fertile tillers observed so far is 140, with 50x50 spacing. The most important phenotypic difference is the last one, discussed in Slides 21-22.
  12. This was one of the first data sets that began laying a scientific foundation for SRI. Data were gathered from 76 farmers around Ambatovaky, a town on the western side of the peripheral zone around Ranomafana National Park in Madagascar, during the 1996-97 season. We had confidence in the field worker who collected the data, Simon Pierre, who had worked with Fr. de Laulanie before his death. The correlation between number of tillers per plant and number of grains per panicle was +.65, rather than the negative one expected from the literature. We have seen this positive relationship many times since this first analysis was done.
  13. This figure is from research from the China National Rice Research Institute reported at the Sanya conference in April 2002 and published in the Proceedings. Two different rice varieties were used with SRI and conventional (CK) methods. The second responded more positively to the methods in terms of leaf area and dry matter as measured at different elevations, but there was a very obvious difference in the phenotypes produced from the first variety's genome by changing cultivation methods from conventional to SRI.
  14. This picture was contributed from Cambodia by Koma Yang Saing (CEDAC). Viewers should try to imagine the very small single young seedling from which this massive plant grew.
  15. This helps to explain our problem of "the agronomists' $100 bill." SRI is quite "counterintuitive." Indeed, it even sounds crazy. But we have experience and evidence that this "less is more" dynamic operates, and subsequent slides provide a number of scientific explanations for why fewer or smaller inpouts produce more in the case of irrigated rice
  16. Usually we find researchers getting higher yields with new methods and farmers having difficulty "replicating" those results on their own fields. With SRI, we have often the opposite situation: researchers get lower yield on-station than farmers get in their fields. This remains to be thoroughly documented and fully explained. Fortunately, there is growing interest from crop and soil scientists after a number of years of skepticism and even resistance. We want to acknowledge, and express our appreciation for, the work of Fr. Henri de Laulanie, who developed SRI as a labor of love and innovative "lay science" during 34 years of living in Madagascar. He came there from his native France in 1961 and synthesized SRI first in the 1983-84 season. He had been educated in agriculture at the best French agricultural university (ENA) before World War II (1937-39) and before entering a Jesuit seminar (1941-45). So he knew basic agricultural science. But he had not learned about rice in France, so learned about it from and with farmers. The following slide shows Fr. de Laulanie visiting a farmers' field shortly before he died in 1995. In 1990, with his friends Sebastien Rafaralahy and Justin Rabenandrasana, Fr. de Laulanie formed Association Tefy Saina, a Malagasy NGO dedicated to improving rural conditions in Madagascar, including through the dissemination of SRI. Sebastien and Justin, now President and Secretary-General of Tefy Saina, are seen in Slide 17.
  17. The first SRI evaluation outside Madagascar was done by Nanjing Agricultural University in China in 1999, getting 9.2-10.5 t/ha yields in three trials. Such yields can be attained in China using hybrid rice varieties and substantial inputs, but they could not be obtained using only half the usual amount of water. This is an important consideration in China where water for agricultural use is in increasingly short supply. Next, results came from AARD's Sukamandi rice research station. The first season gavie 1-1.5 t/ha higher yield than farmer practices, but the second season's yield reached 9.5 t/ha, spurring interest. After three years of evaluation, AARD made SRI part of its new "Integrated Crop and Resource Management" (ICM) strategy to get rice yields rising once again. Other countries learned about SRI through CIIFAD, through the International Institute for Rural Reconstruction, through ILEIA in the Netherlands, through ECHO in Ft. Myers, FL, and other channels. In April 2002, with a grant from the Rockefeller Foundation and CIIFAD support, an international meeting was held in China, hosted by the China National Hybrid Rice Research and Development Center and its director, Prof. L. P. Yuan. The proceedings include reports from 15 countries where SRI had been tried already, often with spectacular success, and only sometimes without seeing "the SRI effect" (Thailand, Nepal, Laos). The next slide gives a summary of results reported from the 10 countries where there had been most experience with SRI as of early 2002.
  18. Bruce Ewart, ADRA representative in Indonesia, got 7 farmers in West Timor to try SRI methods in 2002, with the encouragement of Roland Bunch. These are better farmers than their peers, as seen from their yield that season with current methods (4.4 t/ha), more than double the usual yield in the area. Their SRI plots averaged 11.7. Farmers working with ADRA in Lampung, Sumatra, got 8.5 t/ha with SRI methods compared to their usual production of 3 t/ha. Pablo Best reported that when farmers in Pucallpa, a lowland jungle area, tried SRI, they got a yield of 8 t/ha, four times their previous average, and not needing to do 8-10 hours/day of bird scaring at the end of the season because with SRI, the heavy panicles hung downward (but not lodging) so that birds could not get to them. Instead of letting cattle graze on the regrowth after harvest, the rice was allowed to produce a second (ratoon) crop, which was 5.5 t/ha, 70% of the first. Controlled trials in Benin, having read the account of SRI in ECHO Development Notes, found about a 5-fold difference in yield between SRI and conventional practice. The Agricultural Training Institute in the Philippines tried SRI methods with three varieties in Cotabato, Mindanao, and got an average yield of 12 t/ha, three times the usual yield in that area. The economic return averaged 290% as the value of rice produced was almost four times the cost of production.
  19. This is a figure also from research reported by the China National Rice Research Institute to the Sanya conference and published in its proceedings. It shows how the roots of the same variety (two varieties shown) grow deeper into the soil with SRI methods compared to conventional ones (CK).
  20. This figure from report by Nanjing Agricultural University researchers to the Sanya conference, and reproduced from those proceedings, shows that the oxygenation ability of rice roots growing under SRI conditions are about double the ability, throughout the growth cycle, compared to the same variety grown under conventional conditions.
  21. This picture from Sri Lanka shows two fields having the same soil, climate and irrigation access, during a drought period. On the left, the rice grown with conventional practices, with continuous flooding from the time of transplanting, has a shallower root system that cannot withstand water stress. On the right, SRI rice receiving less water during its growth has deeper rooting, and thus it can continue to thrive during the drought. Farmers in Sri Lanka are coming to accept SRI in part because it reduces their risk of crop failure during drought.
  22. This picture was provided by Koma Yang Saing (CEDAC) of a pleased Cambodian farmer, showing the size of a massive root ball with a SRI rice plant.
  23. These data from a study done by Fide Raobelison under the supervision of Prof. Robert Randriamiharisoa at Beforona station in Madagascar, and reported in Prof. Robert's paper in the Sanya conference proceedings, give the first direct evidence to support our thinking about the contribution of soil microbes to the super-yields achieved with SRI methods. The bacterium Azospirillum was studied as an "indicator species" presumably reflecting overall levels of microbial populations and activity in and around the plant roots. Somewhat surprisingly, there was no significant difference in Azospirillum populations in the rhizosphere. But there were huge differences in the counts of Azospirillum in the roots themselves according to soil types (clay vs. loam) and cultivation practices (traditional vs. SRI) and nutrient amendments (none vs. NPK vs. compost). NPK amendments with SRI produce very good results, a yield on clay soil five times higher than traditional methods with no amendments. But compost used with SRI gives a six times higher yield. The NPK increases Azospirillum (and other) populations, but most/much of the N that produced a 9 t/ha yield is coming from inorganic sources compared to the higher 10.5 t/ha yield with compost that depends entirely on organic N. On poorer soil, SRI methods do not have much effect, but when enriched with compost, even this poor soil can give a huge increase in production, attributable to the largest of the increases in microbial activity in the roots. At least, this is how we interpret these findings. Similar research should be repeated many times, with different soils, varieties and climates. We consider these findings significant because they mirror results we have seen in other carefully measured SRI results such as the Anjomakely factorial trials (Slide 24) and the previous season's trials with SRI at Beforona (10.2 t/ha).
  24. Research conducted in Egypt where farmers have for centuries alternated growing rice and berseem (clover) has shown that free-associated rhizobia in the root zone of rice (not living in nodules as they do on a legume) are abundant in this soil and have many measurable beneficial effects on rice growth. Surprisingly, the rhizobia do not contribute BNF for rice. Instead they stimulate nutrient uptake and plant growth in other ways. More research should be done on this particular microbe to understand what it could contribute to plant growth more generally. See Y. G. Yanni, et al., The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots, AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 28 (2001), pp. 845-870.
  25. To get a systematic understanding of how the different factors brought together in SRI contribute to greater yield, two top students in the faculty of agriculture at the University of Antananarivo did baccalaureate thesis research involving large-scale factorial trials in 2000 and 2001. Jean de Dieu Rajaonarison did his study near Morondava on the west coast of Madagascar at the Centre de Baobab. He did not vary soil quality (the soil there was poor sandy soil, sable roux) but evaluated SRI effects with different varieties (half of the 288 plots were planted with a high-yielding variety and half with a local variety). Andry Andriankaja did his study in the village of Anjomakely 18 south of the capital Antananarivo, on the high plateau and on farmers' fields. He used the same variety (riz rouge) on two different kinds of soil (better clay and poorer loam). These were contrasting locations agroecologically as the Morondava site was near sea level, with tropical climate and poor soil, while the Anjomakely site was about 1200 m elevation, with temperate climate, and better soils. Both varied water management (aeration according to SRI principles vs. continuously saturated soil), seedling age (8 days vs. 16 days at Morondava and 20 days at Anjomakely, these latter ages being equivalent given differences in ambient temperature), plants per hill (1 vs. 3), and fertilization (compost vs. NPK vs. none as a control with the Morondava soils). Spacing was 25x25 or 30x30, but both were within the SRI range and gave no significant difference (absolutely no difference in Morondava and only 80 kg/ha at Anjomakely, other factors being equal). This was in a way a "mistake" in research design, as we should have compared a SRI and non-SRI spacing. But because there was no significant difference according to the spacing factor, we could combine those trials, having thus SIX replications for all of the averages calculated for the 48 combinations at Morondava and 40 combinations at Anjomakely.
  26. Note that conventional practices -- 20-day seedlings, 3/hill, in saturated soil, with NPK amendments -- give 2-3 t/ha, while all-SRI practices -- 8-day seedlings, 1/hill, aerated soil, with compost -- give more than 3 times greater yield. (Note also that weeding and spacing were not varied in these factorial trials, which would have doubled the number of plots needed to 480, assuming just 3 rather than 6 replications.) The individual practice adding most to yield was young seedlings, then aerated soil, then single seedling, then compost. Pooling results from better and poorer soil (last column), we see that going from 75% to 100% SRI adds more to yield (almost 2 t/ha) than going from 0 to 25%, 25 to 50%, or 50 to 75%, an indication of synergistic effects among practices. The pattern of increase was similar for the trials at Morondava on poorer soil, with SRI practices increasing the HYV yield from 2.84 to 6.83 t/ha for the HYV and from 2.11 to 5.96 for the traditional variety, by 2.4 and 2.8 times respectively.
  27. Summary results from two sets of factorial trials in two different agroecological settings in 2000 and 2001 by honors students in the Faculty of Agriculture at the University of Antananarivo. The first setting was on the west coast of Madagascar, at an agricultural experiment center near Morondava, with a tropical climate, near sea level, and poor sandy soil. (This location was chosen because there are few pest or disease problems during that season which could affect plant performance.) The second was on the high plateau near the village of Anjomakely, 18 km south of Antananarivo, with a temperate climate, about 1200 m elevation, and better soils, comparing results on better clay soil and poorer loam soil. In 2000, Jean de Dieu Rajonarison did trials on 288 plots (2.5x2.5 m) at the Centre de Baobab, with sandy soil [ sable roux], evaluating the effects of five factors: variety – HYV [2798] vs. traditional [riz rouge]; age of seedling [16-day vs. 8-day], seedlings per hill [3 vs. 1], water management [continuous flooding vs. water control, with deliberate aeration of the soil during the vegetative growth period], and nutrient amendments [none vs. NPK vs. compost]. The study was designed with spacing as a sixth factor [25x25 vs. 30x30cm], sok that there were 96 combinations (2x2x2x3x2x2), with three replications. But both spacings were within the SRI range, and the average yield distinguished by spacing [each N = 144] was identical, 3.18 t/ha. So the analysis deals with only five factors, having six replications for each average reported. Plots were randomly distributed according to a modified Fisher bloc design, except for water management, for which the plot with these two different treatments had to be separate to avoid effects of lateral seepage. In 2000, Andry Andriankaja did trials on 240 plots (2.5x2.5m) on a farmer’s fields near Anjomakely, using a traditional rice variety [ riz rouge], evaluating the effects of five factors: soil [clay vs. loam], age of seedling [20-day vs. 8-day – with colder temperatures, the onset of the 4 th phyllochron of growth is later than at Morondava], seedlings per hill [3 vs. 1], water management [continuous flooding vs. water control, with deliberate aeration of the soil during the vegetative growth period], and nutrient amendments [none vs. NPK vs. compost]. The reason why there are only 240 trials rather than 288 is that trials with no amendments were done only on the clay soil plots, not on the poorer loam soil plots, which were known to have low inherent fertility. This made for 40 combinations, with six replications. [The spacing factor as in the Morondava trials was not significant, with a difference of only 80 kg/ha for the two sets, each N = 120.] Again, all yields reported are averages for 6 replicated plots randomly distributed.
  28. Here we look just at the effect of young seedlings, on better and poorer soil, at Anjomakely. The synergistic effect of compost with aerated soil is seen in the bottom three lines. Compost with saturated soil does less well (7.7 t/ha) than NPK with aerated soil (8.77 t/ha), but compost with aerated soil does by far the best (10.35 t/ha) on better soil. The same relationship is seen on poorer soil (right-hand column).
  29. These last slides get into an area of SRI explanation that is more tentative, but probably more important for highest SRI yields. There is a lot of country-to-country variation in SRI results, and also within countries, much larger variations than can be explained by differences in practices or by differences in soil chemical and physical properties. We cite an observation by S. K. DeDatta in his well-known text on rice. We add our own emphasis to underscore our conclusion that there needs to be much more consideration of soil microbes and their contributions to rice yield. There is, however, little research on this subject, so DeDatta devoted very few pages to this compared to genetic, soil and other factors.
  30. These are just the most obvious contributions. Our understanding of this netherworld is limited, though fortunately there are a growing number of microbiologists using very advanced modern techniques, such as DNA analysis, to map and track what is going on in the soil. The discussion that follows is can be viewed as introductory or superficial, or both.
  31. Most people know that leguminous plants "fix" N in their roots through nodules on the roots inhabited by certain bacteria, rhizobia. And by implication, most thinks that non-leguminous plants "do not fix nitrogen." This is correct in terms of locus, but it misleads. All of the gramineae species (rice, wheat, sugar cane, etc.) have free-living bacteria in their root zones (referred to as 'associated' microbes) that fix N. Even in fertilized crops, a majority of the N taken up by the roots is from organic sources. And there is evidence that adding inorganic N to the root zone inhibits or suppresses the roots' and microbes' production of nitrogenase, the enzyme needed to fix N. So there is a tradeoff, in that adding inorganic N fertilizer reduces the N that is produced by natural biological processes. Or most relevance to SRI is research published more than 30 years ago reporting that when aerobic and anaerobic horizons of soil are mixed, BNF increases greatly compared to that originating from either aerobic or anaerobic soil. This suggests that the water management and weeding practices of SRI could be actively promoting N production in the soil. We have no research results to support this inference (though see data in Slide 49), but the yield increases with SRI practices require large amounts of N. BNF is the most plausible explanation.
  32. Johanna Dobereiner has spend almost 40 years working on BNF particularly in sugar cane in Brazil, but also looking at BNF in other non-leguminous crops. Her 1987 book is the most extensive consideration of this subject, though there are a number of symposia also providing scientific information. In Brazil, it is well documented that BNF provides 150-200 kg/ha of N to the crop -- provided that soil has not been previously fertilized with inorganic N for some years, and provided (this is a little hard to understand) the sugar cane cultivars have not been fertilized for several generations. Applying N to the soil or to cultivars inhibits production of nitrogenase needed for BNF. Dobereiner's work is regarded as "controversial" within the agronomy profession because many efforts to replicate her results have failed. But this could be due to a mechanistic (non-biological) concept of the process, not appreciating how prior use of inorganic N can affect BNF potential, an effect documented in the literature (see van Berkum and Sloger).
  33. These data are taken from the article by Ladha et al. (1998) but they did not draw any implication from their finding that optimum N fertilizer application was LOWER for late-maturing varieties than for early-maturing varieties -- and that the late-maturing varieties had higher yield with less fertilizer application than did early-maturing varieties. If volatilization and leaching of nutrients, particularl N, is as big a problem as stated in the article, these numbers should have been reversed. If, on the other hand, the N applied can "prime" soil microbiological processes that contribute to plant nutrition, a smaller amount over time could give higher yield. This is speculation, but it is consistent with relationships observed with SRI. It seems worth exploring.
  34. The increase in yields around Ranomafana National Park during 1994/95-1998/99 from 2 t/ha to 8 t/ha ith SRI were quite inexplicable given that soil analyses by North Carolina State found on average that available P was only 3-4 ppm, which is less than half the minimum usually considered necessary for an acceptable yield. SRI farmers got twice as much as an acceptable yield without adding any P to the soil. Where did the P come from? The research reported by Turner and Haygarth in NATURE (May 17, 2001) could explain this since SRI methods involved alternate wetting and drying of the soil which the authors showed greatly increased levels of P in the soil solution, almost all from organic sources. They suggested that this effect probably applies for other nutrients too, but they were measuring only P.
  35. Mycorrhizal associations have been largely ignored in rice because most is grown under continuously flooded conditions, which are inhospitable to growth of funguses. Yet we now know that 80-90% of plants depend in small to large part on the nutrient acquisition of funguses that "infect" their roots and provide access to a much larger volume of soil through the network of hyphae (filaments) that spread out in all directions. These hyphae acquire water and nutrients that ar shared with the plant, particularly P but also many others. Mycorrhizal hyphae are thinner even than hair roots so can access places in the soil that the root system cannot. One study found that "infected" plants could grow as well with 1/60th as much P in the soil as could "uninfected" plants, reported in the review on mycorrhizae by M. Habte and N.W. Osorio, Mycorrhizas: Producing and applying arbuscular mycorrhizal inoculum (2002). This is available on the web in The Overstory, #102 <http://agroforester.com/overstory/ovbook.html>
  36. Research conducted in Egypt where farmers have for centuries alternated growing rice and berseem (clover) has shown that free-associated rhizobia in the root zone of rice (not living in nodules as they do on a legume) are abundant in this soil and have many measurable beneficial effects on rice growth. Surprisingly, the rhizobia do not contribute BNF for rice. Instead they stimulate nutrient uptake and plant growth in other ways. More research should be done on this particular microbe to understand what it could contribute to plant growth more generally. See Y. G. Yanni, et al., The beneficial plant growth-promoting association of Rhizobium leguminosarum bv. trifolii with rice roots, AUSTRALIAN JOURNAL OF PLANT PHYSIOLOGY, 28 (2001), pp. 845-870.
  37. Research on rhizosphere function and dynamics is increasing. See the literature review by Robert Pinton et al., THE RHIZOSPHERE: BIOCHEMICAL AND ORGANIC SUBSTANCES AT THE SOIL-PLANT INTERFACE (Marcel Dekker, 2000) which gives an up-to-date review of what is currently known about this domain, with chapters on root exudation,rhizo- deposition, the contributions of mycorrhizae, etc.
  38. Research on rhizosphere function and dynamics is increasing. See the literature review by Robert Pinton et al., THE RHIZOSPHERE: BIOCHEMICAL AND ORGANIC SUBSTANCES AT THE SOIL-PLANT INTERFACE (Marcel Dekker, 2000) which gives an up-to-date review of what is currently known about this domain, with chapters on root exudation,rhizo- deposition, the contributions of mycorrhizae, etc.
  39. This review of what is known, and what we think we know, about SRI is not a conclusive or final discussion of the subject. We expect that in 3-5 years' time, much more will be known as scientists become engaged on these topics and as farmers and NGOs continue producing new data that begs for explanations. The two main areas for research that have emerged from our SRI experence is (a) the growth and performance of roots, and (b) the dynamics and contributions of soil microbes. Both of these areas of research should be useful for improving the production of other crops. The explanations for greater root growth with SRI are quite straightforward: young seedlings, wide spacing, aerated soil. What results from this remains to be better documented and explained.
  40. More complicated and difficult to examine and understand than roots will be soil microbial dynamics, though these two subjects should be looked at jointly, not totally separately. The contributions of exudates to microbial growth are well documented in Pinton et al. (2001), but we do not know much about this process for irrigated (SRI) rice.
  41. This is a SRI rice nursery in Sri Lanka, showing one way (but only one of many ways) to grow young seedlings. The soil in this raised bed was a mixture of one-third soil, one-third compost, and one-third chicken manure. (The flooding around it is because the surrounding field is being readied for transplanting; normally there would not be so much water standing around the nursery.)
  42. Here the seedlings are being removed. We would recommend that they be lifted with a trowel, to have minimum disturbance of the roots, but these seedlings are so vigorous that this manual method is successful. This farmer has found that his seedlings, when transplanted with two leaves at time of transplanting, already put out a third leave the next day after transplanting, indicating that there was no transplant 'shock.'
  43. Here the field is being 'marked' for transplanting with a simple wooden 'rake.' If the soil is too wet, these lines will not remain long enough for transplanting. There are drains within the field to carry excess water away from the root zone.
  44. Here are seedlings being removed from a clump for transplanting. Note that the yellow color comes from the sunlight reflecting off the plant. The plant's color is a rich green, indicating no N deficiency.
  45. Here the seedlings are being set into the soil, very shallow (only 1-2 cm deep). The transplanted seedlings are barely visible at the intersections of the lines. This operation proceeds very quickly once the transplanters have gained some skill and confidence in the method. As noted already, these seedling set out with two leaves can already have a third leaf by the next day.
  46. The SRI field looks rather sparse and unproductive at first. Up to the 5th or 6th week, SRI fields look rather miserable, and farmers can wonder why they ever tried this method and 'wasted' their precious land with such a crazy scheme. But the SRI plot here will yield twice as much rice as the surrounding ones once the rapid tillering (and root growth) begins between 35 and 45 days.
  47. This is one of many happy Sri Lankan farmers with his SRI field nearing harvest time. Some young farmers have taken up growing "eco-rice," i.e., traditional varieties grown organically to be sold for a much higher price than conventional HYV rice, because of better texture, taste, smell and aroma and more assurance of healthy food. SRI in this way is starting to contribute to the preservation of rice biodiversity. As noted above, SRI methods work well with hybrid varieties and HYVs. These give the highest yields with SRI methods. But as SRI methods can double or triple traditional-variety yields, these old varieties become economically more advantageous with SRI. Much more remains to be learned about and from SRI. But we have now enough accumulated evidence, based on experience in farmers' fields, not just on experiment stations, and consistent with what is known in the literature (though often not previously connected up to promote increased rice productivity), to have confidence that this methodology will contribute to greater food security and a better environment. SRI, developed by Fr. de Laulanie and promoted by his friends in Association Tefy Saina, and by a growing number of colleagues in many countries around the world, could help to improve other crop production. The world does not need a doubling of rice production, but it does need increased productivity in the rice sector, as this is the largest single agricultural sector in the world in terms of the resources devoted to it. By raising the productivity of land, labor, water and capital in the rice sector, we should be able to meet our staple food needs with less of these resources, which have significant opportunity costs. We hope that SRI methods will enable farmers to redeploy some of their land, labor, water and capital to producing other, higher-value and more nutritious crops, thereby enhancing the well-being of rural households and urban populations. The urban poor should benefit from lower prices for rice that will follow from higher productivity. SRI is not a labor-intensive method that will 'keep rice production backward,' as was alleged by its critics in Madagascar for many years, but a strategy for achieving diversification and modernization in the agricultural sector.