SlideShare une entreprise Scribd logo
1  sur  41
Télécharger pour lire hors ligne
Bases Físicas del Medio
Ambiente
Inducción Magnética y Corriente
de Circuitos de Corriente
Alterna
Programa
• XIV. INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS DE
CORRIENTE ALTERNA (2h)
• Ley de inducción de Faraday. Ley de Lenz. Aplicaciones de la ley
de Faraday. Corrientes de Foucault. Inducción mutua.
Autoinducción. Circuito LR. Energía magnética. Circuitos LC y
LRC: oscilaciones eléctricas. Generadores de corriente alterna.
Corriente alterna en una resistencia. Corriente alterna en un
condensador. Corriente alterna en una bobina. Circuito LRC en
serie con un generador. Potencia. Resonancia.
Programa
• XIV. INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS DE
CORRIENTE ALTERNA (2h)
• Ley de inducción de Faraday. Ley de Lenz. Aplicaciones de la ley
de Faraday. Corrientes de Foucault. Inducción mutua.
Autoinducción. Circuito LR. Energía magnética. Circuitos LC y
LRC: oscilaciones eléctricas. Generadores de corriente alterna.
Corriente alterna en una resistencia. Corriente alterna en un
condensador. Corriente alterna en una bobina. Circuito LRC en
serie con un generador. Potencia. Resonancia.
Inducción Magnética
• Electricidad y magnetismo hasta el momento:
– debido a una carga estacionaria
– debido a una carga en movimiento (o una corriente)
• Para un lazo sin corriente
– Existe o no un campo magnético constante … no importa
• Como no tiene ningún momento magnético
• No experimenta ninguna fuerza
• Ahora: ¿si varía en tiempo?
– Produce una “Fuerza” Electromotriz
– (Experimentos en 1831)
• Importancia
– Corriente sin batería
– “Corriente inducida”
B
r
B
r
E
r
Michael Faraday (1791 – 1867)
El experimento de Faraday
• Al cerrar el interruptor
– Un campo se forma en el hierro
– Fuerza electromotriz momentáneo
• En el instante que se cierra el interruptor
• Luego, en el instante que se abre
– En estos instantes, cambia en el hierro
• Conclusión de Faraday
– Corriente inducida (lazo secundario) debido a
– Campo magnético variando
B
r
B
r
B
r
Ley de inducción de Faraday
dt
d B
Φ
−
=
ε
Ley de inducción de Faraday
• Empíricamente: relación entre
– Cambio de flujo magnético ( ) en hierro
– Número (N) de espiras de igual superficie
– Fuerza electromotriz
• Más generalmente, para un lazo tenemos:
dt
d
N B
Φ
−
=
ε
dt
d B
Φ
−
=
ε
∫
=
Φ A
d
B
B
r
r
Ley de inducción de Faraday:
Un caso sencillo
• Lazo en un campo magnético constante
• Una fuerza electromagnética se
puede generar si:
– Cambia la magnitud de con tiempo
– Cambia la superficie A con tiempo
– Cambia el ángulo θ entre y el
vector normal a la superficie
– Combinación de los anteriores
dt
d B
Φ
−
=
ε
B
r
( )
θ
ε cos
BA
dt
d
−
=
B
r
A
Ley Faraday: Aplicaciones
Interruptor por fallas a tierra
• La corriente (220V, 50Hz) de la red
– Corrientes (alternas) opuestas en 1 y 2
• 1 Hasta el electrodoméstico (del enchufe en la pared)
• 2 Volviendo del electrodoméstico
– Flujo magnético (ΦB) en la bobina detectora = 0
• Si pasa algo con el electrodoméstico
Bobina
Detectora
corta-
circuitos
Corriente
de la red
anillo de
hierro
– Cambia la corriente I2
– Varía ΦB en el anillo
– Causa (según Faraday,) una ε en
la bobina detectora
• Detecta anormalidad
– Corta el circuito
– Protege al usuario
• Cuerda de guitarra eléctrica
– Fabricada de un metal magnetizable
– El imán permanente magnetiza una porción de la cuerda
• Al vibrar la cuerda con cierta frecuencia
– Flujo magnético (ΦB) variable debido al segmento magnetizado
– (Faraday) : fuerza electromotriz (ε) en la bobina de toma
• La ε alimenta a un amplificador
Ley Faraday: Aplicaciones
Bobina de toma (guitarra eléctrica)
Dirección de la Corriente
• La ley de Faraday indica signos opuestos para
– El cambio en el flujo magnético (ΦB)
– La ε inducida
• Físicamente, esto implica que
– La corriente inducida es en la dirección que creé un
campo magnético que oponga el cambio de flujo
magnético (ΦB)
Ley de Lenz
Fuerza Electromotriz Inducida y
el Campo Eléctrico
• El cambio en el flujo magnético (ΦB) induce
– Tanto una ε como una corriente en un lazo
– De la electrodinámica (Tema 12) sabemos que
• Una corriente eléctrica en un conductor se asocia con
• Un campo eléctrico en el conductor
• Conclusión: el cambio en ΦB induce un
• El campo eléctrico inducido no es conservativo
– Diferente al campo creado por cargas estacionarias
– Al fluctuar ΦB, en la dirección tangencial
E
r
dt
d B
Φ
−
=
ε
E
r
El Campo Eléctrico inducido no es
conservativo
• Examinamos el trabajo hecho por para que una
carga de prueba q da la vuelta una vez
– De la definición de potencial eléctrico
– Paralelamente
• Igualando:
• (Faraday)
• integrado por el camino cerrado:
ε
q
W =
( ) r
qE π
2
=
E
r
d
F
W ∆
=
( ) r
qE
q π
ε 2
=
r
E
π
ε
2
=
dt
d
r
B
Φ
−
=
π
2
1
dt
dB
r
2
−
=
ΦB=BA =Bπr2
E
r
dt
d
s
d
E B
Φ
−
=
⋅
∫
r
r
El campo eléctrico
inducido por un campo
magnético fluctuando:
No es conservativo.
No es electrostático.
Corriente de Foucault
• Placa metálica colgando de un pivote,
balanceándose entre polos de imán
• Velocidad a la derecha; dos puntos
– A: aumentando conforme entre en el campo
– B: reduciéndose conforme sale del campo
– Lenz: corrientes circulatorios que oponen el
• El efecto neto de los frena
• Finalmente, deja de balacearse
• Conversión
– Energía cinética
– Energía interna
• Aplicaciones
– Frenos de metros
B
r
B
r
B
F
r Pivote
B
r
B
F
r
B
F
r
A
B
B
r
∆
Programa
• XIV. INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS DE
CORRIENTE ALTERNA (2h)
• Ley de inducción de Faraday. Ley de Lenz. Aplicaciones de la ley
de Faraday. Corrientes de Foucault. Inducción mutua.
Autoinducción. Circuito LR. Energía magnética. Circuitos LC y
LRC: oscilaciones eléctricas. Generadores de corriente alterna.
Corriente alterna en una resistencia. Corriente alterna en un
condensador. Corriente alterna en una bobina. Circuito LRC en
serie con un generador. Potencia. Resonancia.
Autoinducción
• Consideramos un circuito con:
– Interruptor (S)
– Resistencia (R)
– Fuerza Electromotriz (ε)
• El cerrar el interruptor,
– La corriente pasa de cero al máximo ε /R
– Pero no salta inmediatamente; ¿porqué?
• Como empiece a subir la corriente I
• Aumenta el flujo magnético (ΦB=IA) por el lazo
– Faraday: induce otra fuerza electromotriz (εL)
– Lenz: en el sentido opuesto
Fuerza Electromotríz
Autoinducida
Inductancia
• La corriente en una bobina quiere
mantenerse constante
– (a) Corriente y campo magnético
– (b) Aumento de corriente
• Fuerza electromotriz (ε)
• Reduce la corriente
– (c) Disminución de corriente
• Fuerza electromotriz (ε)
• Aumenta la corriente
• Faraday:
εL
εL
Ley de Lenz
dt
d B
L
Φ
−
=
ε
( )
dt
BA
d
−
=
I
n
B 0
µ
=
en un solenoide
(Lección 13)
( )
( )
dt
A
nI
d o
µ
−
=
I subiendo
I cayendo
dt
dI
L
L −
=
ε
nA
L o
µ
=
Inductancia
Unidades y Significación
• Para la bobina
• Inductancia:
• Analogía:
– Recordar que R = ∆V / I representa una medida de la
oposición a la corriente
– Pues L = ∆V / (∆I/ ∆t) representa una medida de la
oposición al cambio en la corriente
dt
dI
L L
ε
−
=
dt
dI
L
L −
=
ε La unidad de inductancia
es el Henry (H):
1H = 1 V / (1 A / 1 s)
1H = 1 V s / A
Joseph Henry (1797 – 1878)
Circuitos de Corriente Alterna
• Circuitos: combinaciones de elementos
– Pilas, resistencias, y condensadores
– Alambres con resistencia despreciable
• Dos tipos de corriente, según alimentación
– Corriente Continua (CC): alimentación constante
• Ejm: la batería de un coche da 12V (cuando conectada)
– Corriente Alterna (CA): forma sinusoidal
• Los 220V (50Hz) de un enchufe de la pared
I
dt
dI
Inducción Mutua
• Consideramos el circuito siguiente
– La resistencia opone la corriente (pero hay corriente)
– La inductancia opone el cambio de corriente (pero hay)
– Entonces, hay un flujo magnético fluctuando, ΦB(t)
• Si se acerca otro circuito (sin corriente)
• Ahora, Φ21 es el flujo magnético en cada espira de
L2 inducido por la corriente en L1
• La inductancia mutua, M21 es el flujo magnético en
cada espira de L2 inducido por la corriente I1
~
R1
L1
I1
Φ
R2
L2
CA
1
12
2
12
I
N
M
Φ
≡
Inducción Mutua
• Hemos definido la inductancia mutua
• Fuerza electromotriz inducida en el 2º circuito
– Faraday:
• Se puede demostrar (simetría) que
• M tiene unidades de Henry (H)
~
R1
L1
I1
Φ
R2
L2
CA
1
12
2
12
I
N
M
Φ
≡
dt
d
N 12
2
2
Φ
−
=
ε
dt
dI
M 1
12
−
=
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
=
2
1
12
2
N
I
M
dt
d
N
21
12 M
M = M
=
dt
dI
M 1
2 −
=
ε
dt
dI
M 2
1 −
=
ε
Inducción mutua: la fuerza
electromotriz inducida en una
bobina es proporcional al
cambio de corriente en la otra
Programa
• XIV. INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS DE
CORRIENTE ALTERNA (2h)
• Ley de inducción de Faraday. Ley de Lenz. Aplicaciones de la ley
de Faraday. Corrientes de Foucault. Inducción mutua.
Autoinducción. Circuito LR. Energía magnética. Circuitos LC y
LRC: oscilaciones eléctricas. Generadores de corriente alterna.
Corriente alterna en una resistencia. Corriente alterna en un
condensador. Corriente alterna en una bobina. Circuito LRC en
serie con un generador. Potencia. Resonancia.
Circuitos LR
• Una bobina en un circuito
– Auto inductancia importante
– Resiste cambios de corriente
– Elemento llamado un “inductor” (L)
• Cerrar interruptor (t=0); I(t) sube (¿cómo?)
• Sabiendo que
• Aplicamos la 2ª de Kirchhoff (mallas)
dt
dI
L
VL =
dI
dx −
=
I
R
x −
=
ε
0
=
−
−
dt
dI
L
IR
ε
R
L
=
τ
0
=
+
dt
dx
R
L
x
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
−
=
−
τ
ε t
e
R
I 1
L
Rt
e
x
x
−
= 0
dt
L
R
x
dx
−
=
Sea
Inductores
Circuitos LR
• Un inductor resiste un cambio de
corriente, incluso negativo
– Interruptor inicialmente en la
posición a (equilibrio)
– En t=0, cambia a posición b
• Circuito sin batería
• Aún hay corriente (2ª Ley de Kirchhoff)
– La ecuación del circuito
– Tiene solución
Inductores
R
I
ε
=
)
0
(
I
0
=
−
−
dt
dI
L
IR
τ
ε t
e
R
I
−
=
El inductor
almacena energía en
su campo magnético
• Para el circuito recién conectado
• Multiplicando cada término por I:
0
=
−
−
dt
dI
L
IR
ε
Energía magnética en un inductor
dt
dI
LI
R
I
I +
= 2
ε
Potencia entregada
de la batería
Potencia “perdida”
(calor) en la
resistencia
Potencia
almacenada en el
campo magnético
del inductor
dt
dI
I
L
dt
dU
=
∫ ∫
2
2
1
LI
U =
Energía que se
almacena en un
inductor
• Examinamos la energía
– En t=0, en el del condensador
– Crece una corriente (I), para descargar C
– Al crecer, almacena energía en L
• La energía total almacenada es constante
• Condensador inicialmente cargado
con Qmax, y se cierra interruptor:
C
Q
U
2
max
2
=
El Circuito LC
E
r
2
2
1
LI
U =
I
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
= 2
2
2
1
2
I
L
C
Q
dt
d
dt
dU
L
C U
U
U +
=
C
Q
2
max
2
= 2
2
1
LI
+
0
=
dt
dI
LI
dt
dQ
C
Q
+
=
0
2
2
=
+
dt
Q
d
L
C
Q
• La solución es clásica
• Desfase entre
– Corriente
– Carga del condensador
• Circuito determinado por una
ecuación diferencial de orden 2:
El Circuito LC I
0
2
2
=
+
dt
Q
d
L
C
Q
( )
ϕ
ω +
= t
Q
Q cos
max
LC
1
=
ω
El Circuito RLC
• Aún así, la solución es parecida:
• Más realista: el circuito también
tiene resistencia
– “Pierde” energía en la R (calor)
– No sigue oscilando indefinidamente
I
⎟
⎟
⎠
⎞
⎜
⎜
⎝
⎛
+
= 2
2
2
1
2
I
L
C
Q
dt
d
dt
dU
L
C U
U
U +
=
C
Q
2
max
2
= 2
2
1
LI
+
R
I 2
−
=
dt
dI
LI
dt
dQ
C
Q
+
=
0
2
2
=
+
+
dt
Q
d
L
IR
C
Q
0
2
2
=
+
+
dt
Q
d
L
dt
dQ
R
C
Q
El Circuito RLC
• Otra solución clásica:
I
t
e
Q
Q d
L
Rt
ω
cos
2
max
−
=
0
2
2
=
+
+
dt
Q
d
L
dt
dQ
R
C
Q
2
1
2
2
1
⎥
⎥
⎦
⎤
⎢
⎢
⎣
⎡
⎟
⎠
⎞
⎜
⎝
⎛
−
=
L
R
LC
d
ω
damped=amortiguada
Críticamente amortiguada (Lección 5):
C
L
Rc
4
=
Programa
• XIV. INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS DE
CORRIENTE ALTERNA (2h)
• Ley de inducción de Faraday. Ley de Lenz. Aplicaciones de la ley
de Faraday. Corrientes de Foucault. Inducción mutua.
Autoinducción. Circuito LR. Energía magnética. Circuitos LC y
LRC: oscilaciones eléctricas. Generadores de corriente alterna.
Corriente alterna en una resistencia. Corriente alterna en un
condensador. Corriente alterna en una bobina. Circuito LRC en
serie con un generador. Potencia. Resonancia.
Generadores de Corriente Alterna
Corriente alterna en una resistencia
• Fuente de alimentación que suministra un
voltaje alterna
• Leyes se aplican igualmente
– Kirchhoff:
– Ohm:
t
V
v ω
sin
max
=
~ R
+
-
+
-
v R
v
0
=
− R
v
v
R
v
i R
=
R
V
I max
max =
t
R
V
ω
sin
max
= t
I ω
sin
max
=
La corriente
y el voltaje
están en fase
Potencia de Corriente Alterna
• A largo plazo, <iR> = 0, (cambios de sentido)
• Papel energético de R
– Conversión de energía : eléctrica a interna
– No depende del sentido de la corriente
• A largo plazo, para la potencia promedia de R
– La corriente efectiva; corriente rms
– Analógicamente
IV
=
Ρ
R
I 2
=
Ρ
2
max
I
Irms =
R
Irms
med
2
=
Ρ
max
707
.
0 I
=
2
max
V
Vrms = max
707
.
0 V
=
Corriente Alterna en un Condensador
• Leyes se aplican igualmente
– Kirchhoff:
– Def. de Capacidad:
t
V
v ω
sin
max
=
0
=
− C
v
v
c
Cv
q =
t
CV
q ω
sin
max
=
( )
dt
d
t
CV
iC ω
ω cos
max
=
⎟
⎠
⎞
⎜
⎝
⎛
+
=
2
sin
max
π
ω
ω t
CV
iC
Identidad trigonométrica
La corriente adelanta
al voltaje en 90° en un
condensador
max
I
C
X
Vmax
=
=
C
v
“Reactancia capacitativa”
Unidades = ¡ ohmios !
C
X C
ω
1
=
Corriente Alterna en un Inductor
• Leyes se aplican igualmente
– Kirchhoff:
t
V
v ω
sin
max
=
0
=
− L
v
v 0
=
−
dt
di
L
v
t
L
V
di ω
sin
max
=
⎟
⎠
⎞
⎜
⎝
⎛
−
=
2
sin
max π
ω
ω
t
L
V
iL
ID Trig.
La corriente en un
inductor está
siempre retrasada
90º del voltaje
max
I
L
X
Vmax
=
=
L
v
Reactancia inductiva
Unidades = ¡ ohmios!
t
V
dt
di
L ω
sin
max
= ∫ ∫
( )dt
t
L
V
iL ∫
= ω
sin
max t
L
V
ω
ω
cos
max
−
=
L
X L ω
=
Corriente Alterna en
Condensadores e Inductores
• Para un condensador
– Muy alta frec. wC Æ ∞, XC Æ 0
• Actúa como un corto circuito
– Muy baja frec. (corriente directa)
• wC Æ 0, XC Æ ∞ (un circuito abierto)
C
X C
ω
1
=
• Para un inductor
– Muy alta frec. wL Æ ∞, XL Æ ∞
– Muy baja frec. wL Æ 0, XL Æ 0
L
X L ω
=
L
X
V
I max
max =
C
X
V
I max
max =
REACTANCIAS
El Circuito RLC
• Se aplica un voltaje CA
• Corre una sola corriente
– Por R, i estaría en fase con v (φ = 0º)
– Por C, i estaría adelantada (φ = 90º)
– Por L, i estaría retrasada (φ = -90º)
• ¿Qué efecto domina? Método:
• Suponer y examinar los v:
t
V
v ω
sin
max
=
( )
ϕ
ω +
= t
I
i sin
max
t
R
I
vR ω
sin
max
= t
VR ω
sin
=
⎟
⎠
⎞
⎜
⎝
⎛
+
=
2
sin
max
π
ωt
X
I
v L
L
t
VL ω
cos
=
⎟
⎠
⎞
⎜
⎝
⎛
−
=
2
sin
max
π
ωt
X
I
v C
C
t
VC ω
cos
−
=
Magnitudes
relativos
El Circuito RLC
• Tenemos tres tensiones
• Tensiones en dos componentes independientes:
– En fase con la fuente (v): efecto de R
– 90º de desfase: combinación de efectos de L y C
– Tratamiento vectorial
t
V
v ω
sin
max
=
t
V
v R
R ω
sin
=
t
V
v L
L ω
cos
=
t
V
v C
C ω
cos
−
=
Imax
VL
VR
VC
ω
ω=0
ω =π/2
ω =-π/2
VL-VC
VR
φ
Vmax
El Circuito RLC
• Suma vectorial:
• Impedancia:
t
V
v ω
sin
max
=
( )2
2
max C
L
R V
V
V
V −
+
=
VL
VR
Imax
VC
ω
ω=0
ω =π/2
ω =-π/2
VL-VC
VR
φ
Vmax
( ) ( )2
max
max
2
max
max C
L X
I
X
I
R
I
V −
+
=
( )2
2
max
max C
L X
X
R
I
V −
+
=
( )2
2
C
L X
X
R
Z −
+
≡
Unidades = ¡ ohmios !
( )2
2
max
max
C
L X
X
R
V
I
−
+
=
R
X
X C
L −
= −1
tan
ϕ
Potencia en el Circuito RLC
• Potencia eléctrica instantánea:
– Una función complicada del tiempo
– No es muy interesante resolver
• Su promedio sí
iv
=
Ρ
t
V
v ω
sin
max
=
( ) t
V
t
I ω
ϕ
ω sin
sin max
max −
=
( ) φ
ω
φ
ω
ϕ
ω sin
cos
cos
sin
sin t
t
t −
=
−
ID Trig.
φ
cos
2
1
max
max V
I
=
Ρ
“factor de potencia”
φ
cos
rms
rms V
I
=
Ρ
más Trig.
Promedio
(integrar)
Para la resistencia (en fase):
ϕ
cos
max
V
VR =
( )( ) φ
cos
2
2
2
1
rms
rms V
I
=
Ρ
R
Imax
=
rms
rms V
I
=
Ρ
La “perdida” de potencia en
un circuito LRC se debe
puramente a la(s)
resistencia(s) en el circuito
Resonancia en el Circuito RLC
• Un circuito RLC está en resonancia
cuando tenga una frecuencia que
maximiza la corriente Irms
• En general tenemos
Z
V
I rms
rms =
( )2
2
C
L
rms
X
X
R
V
−
+
=
– Tanto XL como XC dependen de la frecuencia ω
– Resonancia cuando XL iguale XC (y así φ=0)
• Frecuencia de resonancia
LC
1
0 =
ω
La frecuencia de la fuente
de alimentación iguala la
frecuencia natural del
circuito
Conceptos/Ecuaciones a Dominar
• Ley de inducción de Faraday
• Ley de Lenz: Corriente inducida en la dirección que creé un campo
magnético que oponga el cambio de flujo magnético (ΦB)
• Campos ; conservativo (carga estática) y no (Faraday)
Corriente de Foucault
• Autoinducción e inducción mutua
• Inductores
• Circuitos LR, LC, RLC
• Circuitos CA (Irms, Potencia, resonancia)
dt
d B
Φ
−
=
ε
E
r
dt
dI
L
L −
=
ε
dt
dI
M 2
1 −
=
ε
dt
dI
L
VL =
nA
L o
µ
=
14.pdf

Contenu connexe

Similaire à 14.pdf

Asignacion5 lindabartolome
Asignacion5 lindabartolomeAsignacion5 lindabartolome
Asignacion5 lindabartolomelindabarcam
 
63957670 introduccion-a-las-maquinas-electricas-rotativas
63957670 introduccion-a-las-maquinas-electricas-rotativas63957670 introduccion-a-las-maquinas-electricas-rotativas
63957670 introduccion-a-las-maquinas-electricas-rotativasGabriel Pacovilca
 
asignacion5 Ricardo Hernandez Transformadores
asignacion5 Ricardo Hernandez Transformadoresasignacion5 Ricardo Hernandez Transformadores
asignacion5 Ricardo Hernandez Transformadoresrphe1988
 
Transformadores
TransformadoresTransformadores
Transformadoresrphe1988
 
Conceptos y-leyes-fundamentales-de-la-electricidad-1226433464130144-8-1110261...
Conceptos y-leyes-fundamentales-de-la-electricidad-1226433464130144-8-1110261...Conceptos y-leyes-fundamentales-de-la-electricidad-1226433464130144-8-1110261...
Conceptos y-leyes-fundamentales-de-la-electricidad-1226433464130144-8-1110261...meempecinado
 
MilagrosA.Asignacion5
MilagrosA.Asignacion5MilagrosA.Asignacion5
MilagrosA.Asignacion5Mila Alvarez
 
Transformador.
Transformador.Transformador.
Transformador.eglisp
 
Transformador.asig5
Transformador.asig5Transformador.asig5
Transformador.asig5solyoselys
 

Similaire à 14.pdf (20)

Asignacion5 lindabartolome
Asignacion5 lindabartolomeAsignacion5 lindabartolome
Asignacion5 lindabartolome
 
63957670 introduccion-a-las-maquinas-electricas-rotativas
63957670 introduccion-a-las-maquinas-electricas-rotativas63957670 introduccion-a-las-maquinas-electricas-rotativas
63957670 introduccion-a-las-maquinas-electricas-rotativas
 
asignacion5 Ricardo Hernandez Transformadores
asignacion5 Ricardo Hernandez Transformadoresasignacion5 Ricardo Hernandez Transformadores
asignacion5 Ricardo Hernandez Transformadores
 
Transformadores
TransformadoresTransformadores
Transformadores
 
Asignacion5wjla
Asignacion5wjlaAsignacion5wjla
Asignacion5wjla
 
Conceptos y-leyes-fundamentales-de-la-electricidad-1226433464130144-8-1110261...
Conceptos y-leyes-fundamentales-de-la-electricidad-1226433464130144-8-1110261...Conceptos y-leyes-fundamentales-de-la-electricidad-1226433464130144-8-1110261...
Conceptos y-leyes-fundamentales-de-la-electricidad-1226433464130144-8-1110261...
 
MilagrosA.Asignacion5
MilagrosA.Asignacion5MilagrosA.Asignacion5
MilagrosA.Asignacion5
 
Transformador.
Transformador.Transformador.
Transformador.
 
Transformadores
TransformadoresTransformadores
Transformadores
 
Bioelectricidad
BioelectricidadBioelectricidad
Bioelectricidad
 
Transformador
TransformadorTransformador
Transformador
 
Inductancia
InductanciaInductancia
Inductancia
 
Electrónica Básica. Tema 6
Electrónica Básica. Tema 6Electrónica Básica. Tema 6
Electrónica Básica. Tema 6
 
Transformador.asig5
Transformador.asig5Transformador.asig5
Transformador.asig5
 
Asignacion 5
Asignacion 5Asignacion 5
Asignacion 5
 
Asignacion 5
Asignacion 5Asignacion 5
Asignacion 5
 
Inducción electromagnética
Inducción electromagnéticaInducción electromagnética
Inducción electromagnética
 
Transformadores
TransformadoresTransformadores
Transformadores
 
Acoplamiento magnético
Acoplamiento magnéticoAcoplamiento magnético
Acoplamiento magnético
 
CORRIENTE ALTERNA 5.pdf
CORRIENTE ALTERNA 5.pdfCORRIENTE ALTERNA 5.pdf
CORRIENTE ALTERNA 5.pdf
 

Dernier

Teoria_de_la_naturaleza-Goethe_Wolfgang__Johann.pdf
Teoria_de_la_naturaleza-Goethe_Wolfgang__Johann.pdfTeoria_de_la_naturaleza-Goethe_Wolfgang__Johann.pdf
Teoria_de_la_naturaleza-Goethe_Wolfgang__Johann.pdfLuis Cruz
 
PLANEACIÓN PEDAGOGICA NOVIEMBRE NIÑOS DE 2 AÑOS
PLANEACIÓN PEDAGOGICA NOVIEMBRE NIÑOS DE 2 AÑOSPLANEACIÓN PEDAGOGICA NOVIEMBRE NIÑOS DE 2 AÑOS
PLANEACIÓN PEDAGOGICA NOVIEMBRE NIÑOS DE 2 AÑOSZulmaCacers
 
Introducción al Desarrollo Sustentable, conceptos básicos
Introducción al Desarrollo Sustentable, conceptos básicosIntroducción al Desarrollo Sustentable, conceptos básicos
Introducción al Desarrollo Sustentable, conceptos básicosjarniel1
 
Historieta-ecología/ayudemonos a vivir..
Historieta-ecología/ayudemonos a vivir..Historieta-ecología/ayudemonos a vivir..
Historieta-ecología/ayudemonos a vivir..torrescinthya46
 
Tema 9. La Familia en Roma en la epoca republicana
Tema 9. La Familia en Roma en la epoca republicanaTema 9. La Familia en Roma en la epoca republicana
Tema 9. La Familia en Roma en la epoca republicanaGizelSilesRoca
 
Problemas medioambientales para reflexionar.pptx
Problemas medioambientales para reflexionar.pptxProblemas medioambientales para reflexionar.pptx
Problemas medioambientales para reflexionar.pptxalejandragoded
 
Identificación y clasificación del suelo
Identificación y clasificación del sueloIdentificación y clasificación del suelo
Identificación y clasificación del sueloEugenia919105
 
Economía de los recursos naturales y del medio ambiente
Economía de los recursos naturales y del medio ambienteEconomía de los recursos naturales y del medio ambiente
Economía de los recursos naturales y del medio ambientekemyespinoza07
 
PLASTICOS - POLIETIlENO DE ALTA DENSIDAD
PLASTICOS - POLIETIlENO DE ALTA DENSIDADPLASTICOS - POLIETIlENO DE ALTA DENSIDAD
PLASTICOS - POLIETIlENO DE ALTA DENSIDADJorgeEBernalD
 
Programacion Anual DPCC 1º Masinteresantes.doc
Programacion Anual DPCC 1º Masinteresantes.docProgramacion Anual DPCC 1º Masinteresantes.doc
Programacion Anual DPCC 1º Masinteresantes.doctonylimazegarra1
 
SESIÓN DE APRENDIZAJE N° 3 - CCSS 4.docx
SESIÓN DE APRENDIZAJE N° 3 - CCSS 4.docxSESIÓN DE APRENDIZAJE N° 3 - CCSS 4.docx
SESIÓN DE APRENDIZAJE N° 3 - CCSS 4.docxpedrofriasdiaz
 
Taller DE FORTALECIMEINTO DE LA CULTURA AMBIENTAL
Taller DE FORTALECIMEINTO DE LA CULTURA AMBIENTALTaller DE FORTALECIMEINTO DE LA CULTURA AMBIENTAL
Taller DE FORTALECIMEINTO DE LA CULTURA AMBIENTALhansell8
 
Adjudicación, definición Derecho Agrario
Adjudicación, definición Derecho AgrarioAdjudicación, definición Derecho Agrario
Adjudicación, definición Derecho AgrarioIsaacGGuarachi
 
Adex-Guia-De-Lombricultura. Como criar lombriz
Adex-Guia-De-Lombricultura. Como criar lombrizAdex-Guia-De-Lombricultura. Como criar lombriz
Adex-Guia-De-Lombricultura. Como criar lombrizdanius2009
 
LAS 3´R Reduce - Reutiliza - Recicla.pptx
LAS 3´R Reduce - Reutiliza - Recicla.pptxLAS 3´R Reduce - Reutiliza - Recicla.pptx
LAS 3´R Reduce - Reutiliza - Recicla.pptxstefanycerecedocruz
 
BV_UNIDAD I_ FLOR e inflorecencia botanica
BV_UNIDAD I_ FLOR e inflorecencia botanicaBV_UNIDAD I_ FLOR e inflorecencia botanica
BV_UNIDAD I_ FLOR e inflorecencia botanicaHeydiVelazquez
 
Tesis: Cambio Climatico Capitulo 1, Planteamiento del problemaCC
Tesis: Cambio Climatico Capitulo 1, Planteamiento del problemaCCTesis: Cambio Climatico Capitulo 1, Planteamiento del problemaCC
Tesis: Cambio Climatico Capitulo 1, Planteamiento del problemaCCRutPerez7
 
INFOGRAFIA-GA1-240201524-AA3-EV01 SENA-ATL
INFOGRAFIA-GA1-240201524-AA3-EV01 SENA-ATLINFOGRAFIA-GA1-240201524-AA3-EV01 SENA-ATL
INFOGRAFIA-GA1-240201524-AA3-EV01 SENA-ATLLuisDavidVegaOrozco1
 
5.-Sigersol No Municipal_MANIFIESTOS.pdf
5.-Sigersol No Municipal_MANIFIESTOS.pdf5.-Sigersol No Municipal_MANIFIESTOS.pdf
5.-Sigersol No Municipal_MANIFIESTOS.pdfCorona51
 

Dernier (20)

Teoria_de_la_naturaleza-Goethe_Wolfgang__Johann.pdf
Teoria_de_la_naturaleza-Goethe_Wolfgang__Johann.pdfTeoria_de_la_naturaleza-Goethe_Wolfgang__Johann.pdf
Teoria_de_la_naturaleza-Goethe_Wolfgang__Johann.pdf
 
PLANEACIÓN PEDAGOGICA NOVIEMBRE NIÑOS DE 2 AÑOS
PLANEACIÓN PEDAGOGICA NOVIEMBRE NIÑOS DE 2 AÑOSPLANEACIÓN PEDAGOGICA NOVIEMBRE NIÑOS DE 2 AÑOS
PLANEACIÓN PEDAGOGICA NOVIEMBRE NIÑOS DE 2 AÑOS
 
Introducción al Desarrollo Sustentable, conceptos básicos
Introducción al Desarrollo Sustentable, conceptos básicosIntroducción al Desarrollo Sustentable, conceptos básicos
Introducción al Desarrollo Sustentable, conceptos básicos
 
Historieta-ecología/ayudemonos a vivir..
Historieta-ecología/ayudemonos a vivir..Historieta-ecología/ayudemonos a vivir..
Historieta-ecología/ayudemonos a vivir..
 
Tema 9. La Familia en Roma en la epoca republicana
Tema 9. La Familia en Roma en la epoca republicanaTema 9. La Familia en Roma en la epoca republicana
Tema 9. La Familia en Roma en la epoca republicana
 
Problemas medioambientales para reflexionar.pptx
Problemas medioambientales para reflexionar.pptxProblemas medioambientales para reflexionar.pptx
Problemas medioambientales para reflexionar.pptx
 
bioseguridad alimentaria .
bioseguridad alimentaria                        .bioseguridad alimentaria                        .
bioseguridad alimentaria .
 
Identificación y clasificación del suelo
Identificación y clasificación del sueloIdentificación y clasificación del suelo
Identificación y clasificación del suelo
 
Economía de los recursos naturales y del medio ambiente
Economía de los recursos naturales y del medio ambienteEconomía de los recursos naturales y del medio ambiente
Economía de los recursos naturales y del medio ambiente
 
PLASTICOS - POLIETIlENO DE ALTA DENSIDAD
PLASTICOS - POLIETIlENO DE ALTA DENSIDADPLASTICOS - POLIETIlENO DE ALTA DENSIDAD
PLASTICOS - POLIETIlENO DE ALTA DENSIDAD
 
Programacion Anual DPCC 1º Masinteresantes.doc
Programacion Anual DPCC 1º Masinteresantes.docProgramacion Anual DPCC 1º Masinteresantes.doc
Programacion Anual DPCC 1º Masinteresantes.doc
 
SESIÓN DE APRENDIZAJE N° 3 - CCSS 4.docx
SESIÓN DE APRENDIZAJE N° 3 - CCSS 4.docxSESIÓN DE APRENDIZAJE N° 3 - CCSS 4.docx
SESIÓN DE APRENDIZAJE N° 3 - CCSS 4.docx
 
Taller DE FORTALECIMEINTO DE LA CULTURA AMBIENTAL
Taller DE FORTALECIMEINTO DE LA CULTURA AMBIENTALTaller DE FORTALECIMEINTO DE LA CULTURA AMBIENTAL
Taller DE FORTALECIMEINTO DE LA CULTURA AMBIENTAL
 
Adjudicación, definición Derecho Agrario
Adjudicación, definición Derecho AgrarioAdjudicación, definición Derecho Agrario
Adjudicación, definición Derecho Agrario
 
Adex-Guia-De-Lombricultura. Como criar lombriz
Adex-Guia-De-Lombricultura. Como criar lombrizAdex-Guia-De-Lombricultura. Como criar lombriz
Adex-Guia-De-Lombricultura. Como criar lombriz
 
LAS 3´R Reduce - Reutiliza - Recicla.pptx
LAS 3´R Reduce - Reutiliza - Recicla.pptxLAS 3´R Reduce - Reutiliza - Recicla.pptx
LAS 3´R Reduce - Reutiliza - Recicla.pptx
 
BV_UNIDAD I_ FLOR e inflorecencia botanica
BV_UNIDAD I_ FLOR e inflorecencia botanicaBV_UNIDAD I_ FLOR e inflorecencia botanica
BV_UNIDAD I_ FLOR e inflorecencia botanica
 
Tesis: Cambio Climatico Capitulo 1, Planteamiento del problemaCC
Tesis: Cambio Climatico Capitulo 1, Planteamiento del problemaCCTesis: Cambio Climatico Capitulo 1, Planteamiento del problemaCC
Tesis: Cambio Climatico Capitulo 1, Planteamiento del problemaCC
 
INFOGRAFIA-GA1-240201524-AA3-EV01 SENA-ATL
INFOGRAFIA-GA1-240201524-AA3-EV01 SENA-ATLINFOGRAFIA-GA1-240201524-AA3-EV01 SENA-ATL
INFOGRAFIA-GA1-240201524-AA3-EV01 SENA-ATL
 
5.-Sigersol No Municipal_MANIFIESTOS.pdf
5.-Sigersol No Municipal_MANIFIESTOS.pdf5.-Sigersol No Municipal_MANIFIESTOS.pdf
5.-Sigersol No Municipal_MANIFIESTOS.pdf
 

14.pdf

  • 1. Bases Físicas del Medio Ambiente Inducción Magnética y Corriente de Circuitos de Corriente Alterna
  • 2. Programa • XIV. INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS DE CORRIENTE ALTERNA (2h) • Ley de inducción de Faraday. Ley de Lenz. Aplicaciones de la ley de Faraday. Corrientes de Foucault. Inducción mutua. Autoinducción. Circuito LR. Energía magnética. Circuitos LC y LRC: oscilaciones eléctricas. Generadores de corriente alterna. Corriente alterna en una resistencia. Corriente alterna en un condensador. Corriente alterna en una bobina. Circuito LRC en serie con un generador. Potencia. Resonancia.
  • 3. Programa • XIV. INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS DE CORRIENTE ALTERNA (2h) • Ley de inducción de Faraday. Ley de Lenz. Aplicaciones de la ley de Faraday. Corrientes de Foucault. Inducción mutua. Autoinducción. Circuito LR. Energía magnética. Circuitos LC y LRC: oscilaciones eléctricas. Generadores de corriente alterna. Corriente alterna en una resistencia. Corriente alterna en un condensador. Corriente alterna en una bobina. Circuito LRC en serie con un generador. Potencia. Resonancia.
  • 4. Inducción Magnética • Electricidad y magnetismo hasta el momento: – debido a una carga estacionaria – debido a una carga en movimiento (o una corriente) • Para un lazo sin corriente – Existe o no un campo magnético constante … no importa • Como no tiene ningún momento magnético • No experimenta ninguna fuerza • Ahora: ¿si varía en tiempo? – Produce una “Fuerza” Electromotriz – (Experimentos en 1831) • Importancia – Corriente sin batería – “Corriente inducida” B r B r E r
  • 5. Michael Faraday (1791 – 1867) El experimento de Faraday • Al cerrar el interruptor – Un campo se forma en el hierro – Fuerza electromotriz momentáneo • En el instante que se cierra el interruptor • Luego, en el instante que se abre – En estos instantes, cambia en el hierro • Conclusión de Faraday – Corriente inducida (lazo secundario) debido a – Campo magnético variando B r B r B r Ley de inducción de Faraday dt d B Φ − = ε
  • 6. Ley de inducción de Faraday • Empíricamente: relación entre – Cambio de flujo magnético ( ) en hierro – Número (N) de espiras de igual superficie – Fuerza electromotriz • Más generalmente, para un lazo tenemos: dt d N B Φ − = ε dt d B Φ − = ε ∫ = Φ A d B B r r
  • 7. Ley de inducción de Faraday: Un caso sencillo • Lazo en un campo magnético constante • Una fuerza electromagnética se puede generar si: – Cambia la magnitud de con tiempo – Cambia la superficie A con tiempo – Cambia el ángulo θ entre y el vector normal a la superficie – Combinación de los anteriores dt d B Φ − = ε B r ( ) θ ε cos BA dt d − = B r A
  • 8. Ley Faraday: Aplicaciones Interruptor por fallas a tierra • La corriente (220V, 50Hz) de la red – Corrientes (alternas) opuestas en 1 y 2 • 1 Hasta el electrodoméstico (del enchufe en la pared) • 2 Volviendo del electrodoméstico – Flujo magnético (ΦB) en la bobina detectora = 0 • Si pasa algo con el electrodoméstico Bobina Detectora corta- circuitos Corriente de la red anillo de hierro – Cambia la corriente I2 – Varía ΦB en el anillo – Causa (según Faraday,) una ε en la bobina detectora • Detecta anormalidad – Corta el circuito – Protege al usuario
  • 9. • Cuerda de guitarra eléctrica – Fabricada de un metal magnetizable – El imán permanente magnetiza una porción de la cuerda • Al vibrar la cuerda con cierta frecuencia – Flujo magnético (ΦB) variable debido al segmento magnetizado – (Faraday) : fuerza electromotriz (ε) en la bobina de toma • La ε alimenta a un amplificador Ley Faraday: Aplicaciones Bobina de toma (guitarra eléctrica)
  • 10. Dirección de la Corriente • La ley de Faraday indica signos opuestos para – El cambio en el flujo magnético (ΦB) – La ε inducida • Físicamente, esto implica que – La corriente inducida es en la dirección que creé un campo magnético que oponga el cambio de flujo magnético (ΦB) Ley de Lenz
  • 11. Fuerza Electromotriz Inducida y el Campo Eléctrico • El cambio en el flujo magnético (ΦB) induce – Tanto una ε como una corriente en un lazo – De la electrodinámica (Tema 12) sabemos que • Una corriente eléctrica en un conductor se asocia con • Un campo eléctrico en el conductor • Conclusión: el cambio en ΦB induce un • El campo eléctrico inducido no es conservativo – Diferente al campo creado por cargas estacionarias – Al fluctuar ΦB, en la dirección tangencial E r dt d B Φ − = ε E r
  • 12. El Campo Eléctrico inducido no es conservativo • Examinamos el trabajo hecho por para que una carga de prueba q da la vuelta una vez – De la definición de potencial eléctrico – Paralelamente • Igualando: • (Faraday) • integrado por el camino cerrado: ε q W = ( ) r qE π 2 = E r d F W ∆ = ( ) r qE q π ε 2 = r E π ε 2 = dt d r B Φ − = π 2 1 dt dB r 2 − = ΦB=BA =Bπr2 E r dt d s d E B Φ − = ⋅ ∫ r r El campo eléctrico inducido por un campo magnético fluctuando: No es conservativo. No es electrostático.
  • 13. Corriente de Foucault • Placa metálica colgando de un pivote, balanceándose entre polos de imán • Velocidad a la derecha; dos puntos – A: aumentando conforme entre en el campo – B: reduciéndose conforme sale del campo – Lenz: corrientes circulatorios que oponen el • El efecto neto de los frena • Finalmente, deja de balacearse • Conversión – Energía cinética – Energía interna • Aplicaciones – Frenos de metros B r B r B F r Pivote B r B F r B F r A B B r ∆
  • 14. Programa • XIV. INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS DE CORRIENTE ALTERNA (2h) • Ley de inducción de Faraday. Ley de Lenz. Aplicaciones de la ley de Faraday. Corrientes de Foucault. Inducción mutua. Autoinducción. Circuito LR. Energía magnética. Circuitos LC y LRC: oscilaciones eléctricas. Generadores de corriente alterna. Corriente alterna en una resistencia. Corriente alterna en un condensador. Corriente alterna en una bobina. Circuito LRC en serie con un generador. Potencia. Resonancia.
  • 15. Autoinducción • Consideramos un circuito con: – Interruptor (S) – Resistencia (R) – Fuerza Electromotriz (ε) • El cerrar el interruptor, – La corriente pasa de cero al máximo ε /R – Pero no salta inmediatamente; ¿porqué? • Como empiece a subir la corriente I • Aumenta el flujo magnético (ΦB=IA) por el lazo – Faraday: induce otra fuerza electromotriz (εL) – Lenz: en el sentido opuesto Fuerza Electromotríz Autoinducida
  • 16. Inductancia • La corriente en una bobina quiere mantenerse constante – (a) Corriente y campo magnético – (b) Aumento de corriente • Fuerza electromotriz (ε) • Reduce la corriente – (c) Disminución de corriente • Fuerza electromotriz (ε) • Aumenta la corriente • Faraday: εL εL Ley de Lenz dt d B L Φ − = ε ( ) dt BA d − = I n B 0 µ = en un solenoide (Lección 13) ( ) ( ) dt A nI d o µ − = I subiendo I cayendo dt dI L L − = ε nA L o µ =
  • 17. Inductancia Unidades y Significación • Para la bobina • Inductancia: • Analogía: – Recordar que R = ∆V / I representa una medida de la oposición a la corriente – Pues L = ∆V / (∆I/ ∆t) representa una medida de la oposición al cambio en la corriente dt dI L L ε − = dt dI L L − = ε La unidad de inductancia es el Henry (H): 1H = 1 V / (1 A / 1 s) 1H = 1 V s / A Joseph Henry (1797 – 1878)
  • 18. Circuitos de Corriente Alterna • Circuitos: combinaciones de elementos – Pilas, resistencias, y condensadores – Alambres con resistencia despreciable • Dos tipos de corriente, según alimentación – Corriente Continua (CC): alimentación constante • Ejm: la batería de un coche da 12V (cuando conectada) – Corriente Alterna (CA): forma sinusoidal • Los 220V (50Hz) de un enchufe de la pared I dt dI
  • 19. Inducción Mutua • Consideramos el circuito siguiente – La resistencia opone la corriente (pero hay corriente) – La inductancia opone el cambio de corriente (pero hay) – Entonces, hay un flujo magnético fluctuando, ΦB(t) • Si se acerca otro circuito (sin corriente) • Ahora, Φ21 es el flujo magnético en cada espira de L2 inducido por la corriente en L1 • La inductancia mutua, M21 es el flujo magnético en cada espira de L2 inducido por la corriente I1 ~ R1 L1 I1 Φ R2 L2 CA 1 12 2 12 I N M Φ ≡
  • 20. Inducción Mutua • Hemos definido la inductancia mutua • Fuerza electromotriz inducida en el 2º circuito – Faraday: • Se puede demostrar (simetría) que • M tiene unidades de Henry (H) ~ R1 L1 I1 Φ R2 L2 CA 1 12 2 12 I N M Φ ≡ dt d N 12 2 2 Φ − = ε dt dI M 1 12 − = ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = 2 1 12 2 N I M dt d N 21 12 M M = M = dt dI M 1 2 − = ε dt dI M 2 1 − = ε Inducción mutua: la fuerza electromotriz inducida en una bobina es proporcional al cambio de corriente en la otra
  • 21. Programa • XIV. INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS DE CORRIENTE ALTERNA (2h) • Ley de inducción de Faraday. Ley de Lenz. Aplicaciones de la ley de Faraday. Corrientes de Foucault. Inducción mutua. Autoinducción. Circuito LR. Energía magnética. Circuitos LC y LRC: oscilaciones eléctricas. Generadores de corriente alterna. Corriente alterna en una resistencia. Corriente alterna en un condensador. Corriente alterna en una bobina. Circuito LRC en serie con un generador. Potencia. Resonancia.
  • 22. Circuitos LR • Una bobina en un circuito – Auto inductancia importante – Resiste cambios de corriente – Elemento llamado un “inductor” (L) • Cerrar interruptor (t=0); I(t) sube (¿cómo?) • Sabiendo que • Aplicamos la 2ª de Kirchhoff (mallas) dt dI L VL = dI dx − = I R x − = ε 0 = − − dt dI L IR ε R L = τ 0 = + dt dx R L x ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ − = − τ ε t e R I 1 L Rt e x x − = 0 dt L R x dx − = Sea Inductores
  • 23. Circuitos LR • Un inductor resiste un cambio de corriente, incluso negativo – Interruptor inicialmente en la posición a (equilibrio) – En t=0, cambia a posición b • Circuito sin batería • Aún hay corriente (2ª Ley de Kirchhoff) – La ecuación del circuito – Tiene solución Inductores R I ε = ) 0 ( I 0 = − − dt dI L IR τ ε t e R I − = El inductor almacena energía en su campo magnético
  • 24. • Para el circuito recién conectado • Multiplicando cada término por I: 0 = − − dt dI L IR ε Energía magnética en un inductor dt dI LI R I I + = 2 ε Potencia entregada de la batería Potencia “perdida” (calor) en la resistencia Potencia almacenada en el campo magnético del inductor dt dI I L dt dU = ∫ ∫ 2 2 1 LI U = Energía que se almacena en un inductor
  • 25. • Examinamos la energía – En t=0, en el del condensador – Crece una corriente (I), para descargar C – Al crecer, almacena energía en L • La energía total almacenada es constante • Condensador inicialmente cargado con Qmax, y se cierra interruptor: C Q U 2 max 2 = El Circuito LC E r 2 2 1 LI U = I ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + = 2 2 2 1 2 I L C Q dt d dt dU L C U U U + = C Q 2 max 2 = 2 2 1 LI + 0 = dt dI LI dt dQ C Q + = 0 2 2 = + dt Q d L C Q
  • 26. • La solución es clásica • Desfase entre – Corriente – Carga del condensador • Circuito determinado por una ecuación diferencial de orden 2: El Circuito LC I 0 2 2 = + dt Q d L C Q ( ) ϕ ω + = t Q Q cos max LC 1 = ω
  • 27. El Circuito RLC • Aún así, la solución es parecida: • Más realista: el circuito también tiene resistencia – “Pierde” energía en la R (calor) – No sigue oscilando indefinidamente I ⎟ ⎟ ⎠ ⎞ ⎜ ⎜ ⎝ ⎛ + = 2 2 2 1 2 I L C Q dt d dt dU L C U U U + = C Q 2 max 2 = 2 2 1 LI + R I 2 − = dt dI LI dt dQ C Q + = 0 2 2 = + + dt Q d L IR C Q 0 2 2 = + + dt Q d L dt dQ R C Q
  • 28. El Circuito RLC • Otra solución clásica: I t e Q Q d L Rt ω cos 2 max − = 0 2 2 = + + dt Q d L dt dQ R C Q 2 1 2 2 1 ⎥ ⎥ ⎦ ⎤ ⎢ ⎢ ⎣ ⎡ ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = L R LC d ω damped=amortiguada Críticamente amortiguada (Lección 5): C L Rc 4 =
  • 29. Programa • XIV. INDUCCIÓN ELECTROMAGNÉTICA Y CIRCUITOS DE CORRIENTE ALTERNA (2h) • Ley de inducción de Faraday. Ley de Lenz. Aplicaciones de la ley de Faraday. Corrientes de Foucault. Inducción mutua. Autoinducción. Circuito LR. Energía magnética. Circuitos LC y LRC: oscilaciones eléctricas. Generadores de corriente alterna. Corriente alterna en una resistencia. Corriente alterna en un condensador. Corriente alterna en una bobina. Circuito LRC en serie con un generador. Potencia. Resonancia.
  • 30. Generadores de Corriente Alterna Corriente alterna en una resistencia • Fuente de alimentación que suministra un voltaje alterna • Leyes se aplican igualmente – Kirchhoff: – Ohm: t V v ω sin max = ~ R + - + - v R v 0 = − R v v R v i R = R V I max max = t R V ω sin max = t I ω sin max = La corriente y el voltaje están en fase
  • 31. Potencia de Corriente Alterna • A largo plazo, <iR> = 0, (cambios de sentido) • Papel energético de R – Conversión de energía : eléctrica a interna – No depende del sentido de la corriente • A largo plazo, para la potencia promedia de R – La corriente efectiva; corriente rms – Analógicamente IV = Ρ R I 2 = Ρ 2 max I Irms = R Irms med 2 = Ρ max 707 . 0 I = 2 max V Vrms = max 707 . 0 V =
  • 32. Corriente Alterna en un Condensador • Leyes se aplican igualmente – Kirchhoff: – Def. de Capacidad: t V v ω sin max = 0 = − C v v c Cv q = t CV q ω sin max = ( ) dt d t CV iC ω ω cos max = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = 2 sin max π ω ω t CV iC Identidad trigonométrica La corriente adelanta al voltaje en 90° en un condensador max I C X Vmax = = C v “Reactancia capacitativa” Unidades = ¡ ohmios ! C X C ω 1 =
  • 33. Corriente Alterna en un Inductor • Leyes se aplican igualmente – Kirchhoff: t V v ω sin max = 0 = − L v v 0 = − dt di L v t L V di ω sin max = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = 2 sin max π ω ω t L V iL ID Trig. La corriente en un inductor está siempre retrasada 90º del voltaje max I L X Vmax = = L v Reactancia inductiva Unidades = ¡ ohmios! t V dt di L ω sin max = ∫ ∫ ( )dt t L V iL ∫ = ω sin max t L V ω ω cos max − = L X L ω =
  • 34. Corriente Alterna en Condensadores e Inductores • Para un condensador – Muy alta frec. wC Æ ∞, XC Æ 0 • Actúa como un corto circuito – Muy baja frec. (corriente directa) • wC Æ 0, XC Æ ∞ (un circuito abierto) C X C ω 1 = • Para un inductor – Muy alta frec. wL Æ ∞, XL Æ ∞ – Muy baja frec. wL Æ 0, XL Æ 0 L X L ω = L X V I max max = C X V I max max = REACTANCIAS
  • 35. El Circuito RLC • Se aplica un voltaje CA • Corre una sola corriente – Por R, i estaría en fase con v (φ = 0º) – Por C, i estaría adelantada (φ = 90º) – Por L, i estaría retrasada (φ = -90º) • ¿Qué efecto domina? Método: • Suponer y examinar los v: t V v ω sin max = ( ) ϕ ω + = t I i sin max t R I vR ω sin max = t VR ω sin = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ + = 2 sin max π ωt X I v L L t VL ω cos = ⎟ ⎠ ⎞ ⎜ ⎝ ⎛ − = 2 sin max π ωt X I v C C t VC ω cos − = Magnitudes relativos
  • 36. El Circuito RLC • Tenemos tres tensiones • Tensiones en dos componentes independientes: – En fase con la fuente (v): efecto de R – 90º de desfase: combinación de efectos de L y C – Tratamiento vectorial t V v ω sin max = t V v R R ω sin = t V v L L ω cos = t V v C C ω cos − = Imax VL VR VC ω ω=0 ω =π/2 ω =-π/2 VL-VC VR φ Vmax
  • 37. El Circuito RLC • Suma vectorial: • Impedancia: t V v ω sin max = ( )2 2 max C L R V V V V − + = VL VR Imax VC ω ω=0 ω =π/2 ω =-π/2 VL-VC VR φ Vmax ( ) ( )2 max max 2 max max C L X I X I R I V − + = ( )2 2 max max C L X X R I V − + = ( )2 2 C L X X R Z − + ≡ Unidades = ¡ ohmios ! ( )2 2 max max C L X X R V I − + = R X X C L − = −1 tan ϕ
  • 38. Potencia en el Circuito RLC • Potencia eléctrica instantánea: – Una función complicada del tiempo – No es muy interesante resolver • Su promedio sí iv = Ρ t V v ω sin max = ( ) t V t I ω ϕ ω sin sin max max − = ( ) φ ω φ ω ϕ ω sin cos cos sin sin t t t − = − ID Trig. φ cos 2 1 max max V I = Ρ “factor de potencia” φ cos rms rms V I = Ρ más Trig. Promedio (integrar) Para la resistencia (en fase): ϕ cos max V VR = ( )( ) φ cos 2 2 2 1 rms rms V I = Ρ R Imax = rms rms V I = Ρ La “perdida” de potencia en un circuito LRC se debe puramente a la(s) resistencia(s) en el circuito
  • 39. Resonancia en el Circuito RLC • Un circuito RLC está en resonancia cuando tenga una frecuencia que maximiza la corriente Irms • En general tenemos Z V I rms rms = ( )2 2 C L rms X X R V − + = – Tanto XL como XC dependen de la frecuencia ω – Resonancia cuando XL iguale XC (y así φ=0) • Frecuencia de resonancia LC 1 0 = ω La frecuencia de la fuente de alimentación iguala la frecuencia natural del circuito
  • 40. Conceptos/Ecuaciones a Dominar • Ley de inducción de Faraday • Ley de Lenz: Corriente inducida en la dirección que creé un campo magnético que oponga el cambio de flujo magnético (ΦB) • Campos ; conservativo (carga estática) y no (Faraday) Corriente de Foucault • Autoinducción e inducción mutua • Inductores • Circuitos LR, LC, RLC • Circuitos CA (Irms, Potencia, resonancia) dt d B Φ − = ε E r dt dI L L − = ε dt dI M 2 1 − = ε dt dI L VL = nA L o µ =