SlideShare a Scribd company logo
1 of 10
Design of Shaft
Stresses in Shafts
Stresses in Shafts
The following stresses are induced in the shafts :
1.Shear stresses due to the transmission of torque (i.e. due to torsional
load).
2.Bending stresses (tensile or compressive) due to the forces acting
upon machine elements like gears, pulleys etc. as well as due to the
weight of the shaft itself.
3. Stresses due to combined torsional and bending loads.
Maximum Permissible Working Stresses for Transmission Shafts
According to American Society of Mechanical Engineers (ASME) code for the design of
transmission shafts, the maximum permissible working stresses in tension or compression
may be taken as
(a) 112 MPa for shafts without allowance for keyways.
(b) 84 MPa for shafts with allowance for keyways.
For shafts purchased under definite physical specifications, the permissible tensile stress (σt)
may be taken as 60 percent of the elastic limit in tension (σel), but not more than 36 per cent of
the ultimate tensile strength (σu). In other words, the permissible tensile stress,
σt = 0.6 σel or 0.36 σu, whichever is less.
The maximum permissible shear stress may be taken as
(a) 56 MPa for shafts without allowance for key ways.
(b) 42 MPa for shafts with allowance for keyways.
For shafts purchased under definite physical specifications, the permissible shear stress (τ)
may be taken as 30 per cent of the elastic limit in tension (σel) but not more than 18 percent of
the ultimate tensile strength (σu). In other words, the permissible shear stress,
τ = 0.3 σel or 0.18 σu, whichever is less.
Design ofShafts
The shafts may be designed on the basis of
1. Strength, 2. Rigidity and 3. stiffness.
In designing shafts on the basis of strength, the following cases may be
considered :
(a) Shafts subjected to twisting moment or torque only,
(b) Shafts subjected to bending moment only,
(c) Shafts subjected to combined twisting and bending moments, and
(d)Shafts subjected to axial loads in addition to combined torsional and
bending loads.
We shall now discuss the above cases, in detail, in the following pages.
Shafts Subjected to Twisting Moment Only
When the shaft is subjected to a twisting moment (or torque) only, then the diameter
of the shaft may be obtained by using the torsion equation. We know that
where
T = Twisting moment (or torque) acting upon the shaft,
J = Polar moment of inertia of the shaft about the axis of rotation,
τ = Torsional shear stress, and
r = Distance from neutral axis to the outer most fibre
= d / 2; where d is the diameter of the shaft.
We know that for round solid shaft, polar moment of inertia,
The equation (i) may now be written as
From this equation, we may determine the diameter of round solid shaft ( d ).
We also know that for hollow shaft, polar moment of inertia,
where do and di = Outside and inside diameter of the shaft, and r = do / 2.
Substituting these values in equation (i), we have...(iii) Let k = Ratio of
inside diameter and outside diameter of the shaft = di / do
Now the equation (iii) may be written as
From the equations (iii) or (iv), the outside and inside diameter of a hollow
shaft may be determined.
1. The hollow shafts are usually used in marine work. These shafts are
stronger per kg of material and they may be forged on a mandrel, thus
making the material more homogeneous thanwould be possible for a solid
shaft.
When a hollow shaft is to be made equal in strength to a solid shaft, the
twisting moment of both the shafts must be same. In other words, for the
same material of both the shafts,
2. The twisting moment (T) may be obtained by using the
following relation :
We know that the power transmitted (in watts) by the shaft,
where
T = Twisting moment in N-
m, and N = Speed of the
shaft in r.p.m.
3. In case of belt drives, the twisting moment ( T ) is given by
T = (T1 – T2 ) R
where
T1 and T2 = Tensions in the tight side and slack side of the belt respectively,
and R = Radius of the pulley.
Example 1
A line shaft rotating at 200 r.p.m. is to transmit 20 kW. The shaft may be assumed to
be made of mild steel with an allowable shear stress of 42 MPa. Determine the
diameter of the shaft, neglecting the bending moment on the shaft.
Solution.
Given : N = 200 r.p.m. ; P = 20 kW = 20 × 103 W; τ = 42 MPa = 42 N/mm2
Let d = Diameter of the shaft.
We know that torque transmitted by the shaft,
We also know that torque transmitted by the shaft ( T ),
Example 2.
A solid shaft is transmitting 1 MW at 240 r.p.m. Determine the diameter of the shaft
if the maximum torque transmitted exceeds the mean torque by 20%. Take the maximum
allowable shear stress as 60 MPa.
Solution.
Given : P = 1 MW = 1 × 106 W ; N = 240 r.p.m. ; Tmax = 1.2 Tmean ;
τ = 60 MPa = 60 N/mm2
Let d = Diameter of the shaft.
We know that mean torque transmitted by the shaft,
Maximum torque transmitted,
Tmax = 1.2 Tmean = 1.2 × 39 784 × 10 3= 47 741 × 103 N-mm
We know that maximum torque transmitted (Tmax),

More Related Content

What's hot

Design of transmission elements
Design of transmission elementsDesign of transmission elements
Design of transmission elements
shone john
 

What's hot (20)

Unit 4 Design of Power Screw and Screw Jack
Unit 4 Design of Power Screw and Screw JackUnit 4 Design of Power Screw and Screw Jack
Unit 4 Design of Power Screw and Screw Jack
 
V belt drives
V belt drivesV belt drives
V belt drives
 
Shaft subjected to bending moment only
Shaft subjected to bending moment onlyShaft subjected to bending moment only
Shaft subjected to bending moment only
 
Design of block brakes
Design of block brakesDesign of block brakes
Design of block brakes
 
Chain drives
Chain drivesChain drives
Chain drives
 
Belts and Rope Drives
Belts and Rope DrivesBelts and Rope Drives
Belts and Rope Drives
 
Theory of machines solution of exercise
Theory of machines solution of exerciseTheory of machines solution of exercise
Theory of machines solution of exercise
 
6 shaft shafts subjected to fluctuating loads
6 shaft   shafts subjected to fluctuating loads6 shaft   shafts subjected to fluctuating loads
6 shaft shafts subjected to fluctuating loads
 
Gear train
Gear trainGear train
Gear train
 
Unit 2 Design Of Shafts Keys and Couplings
Unit 2 Design Of Shafts Keys and CouplingsUnit 2 Design Of Shafts Keys and Couplings
Unit 2 Design Of Shafts Keys and Couplings
 
DESIGN OF SHAFT
DESIGN OF SHAFTDESIGN OF SHAFT
DESIGN OF SHAFT
 
Design procedure for Cast iron pulley, Flat belt drive, V belt drive, Chain d...
Design procedure for Cast iron pulley, Flat belt drive, V belt drive, Chain d...Design procedure for Cast iron pulley, Flat belt drive, V belt drive, Chain d...
Design procedure for Cast iron pulley, Flat belt drive, V belt drive, Chain d...
 
Design of transmission elements
Design of transmission elementsDesign of transmission elements
Design of transmission elements
 
Springs - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IISprings - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-II
 
5. wire rope and sample problem
5. wire rope and sample problem5. wire rope and sample problem
5. wire rope and sample problem
 
Clutches
ClutchesClutches
Clutches
 
Design of machine elements - V belt, Flat belt, Flexible power transmitting e...
Design of machine elements - V belt, Flat belt, Flexible power transmitting e...Design of machine elements - V belt, Flat belt, Flexible power transmitting e...
Design of machine elements - V belt, Flat belt, Flexible power transmitting e...
 
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTESME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
ME6503 - DESIGN OF MACHINE ELEMENTS UNIT - V NOTES
 
Bevel gears
Bevel gearsBevel gears
Bevel gears
 
Clutches
ClutchesClutches
Clutches
 

Similar to 3 shaft stress in shafts

DESIGN OF SOLID TRANSMISSION SHAFT
DESIGN OF SOLID TRANSMISSION SHAFTDESIGN OF SOLID TRANSMISSION SHAFT
DESIGN OF SOLID TRANSMISSION SHAFT
Animesh Bhattacharya
 
unit2designofshaft-170719110901 (1) (1).pptx
unit2designofshaft-170719110901 (1) (1).pptxunit2designofshaft-170719110901 (1) (1).pptx
unit2designofshaft-170719110901 (1) (1).pptx
HarikumarA4
 
Design of machine elements -unit2.pptx
Design of machine elements -unit2.pptxDesign of machine elements -unit2.pptx
Design of machine elements -unit2.pptx
gopinathcreddy
 

Similar to 3 shaft stress in shafts (20)

Poros
PorosPoros
Poros
 
Design of machine element II.pptx
Design of machine element II.pptxDesign of machine element II.pptx
Design of machine element II.pptx
 
DESIGN OF SOLID TRANSMISSION SHAFT
DESIGN OF SOLID TRANSMISSION SHAFTDESIGN OF SOLID TRANSMISSION SHAFT
DESIGN OF SOLID TRANSMISSION SHAFT
 
Lecture note on Shaft design of machine element.pptx
Lecture note on Shaft design of machine element.pptxLecture note on Shaft design of machine element.pptx
Lecture note on Shaft design of machine element.pptx
 
Shafts
ShaftsShafts
Shafts
 
unit2designofshaft-170719110901 (1) (1).pptx
unit2designofshaft-170719110901 (1) (1).pptxunit2designofshaft-170719110901 (1) (1).pptx
unit2designofshaft-170719110901 (1) (1).pptx
 
Torsion-mmmmm-84739392727363638393999909
Torsion-mmmmm-84739392727363638393999909Torsion-mmmmm-84739392727363638393999909
Torsion-mmmmm-84739392727363638393999909
 
TORSION (MECHANICS OF SOLIDS)
TORSION (MECHANICS OF SOLIDS)TORSION (MECHANICS OF SOLIDS)
TORSION (MECHANICS OF SOLIDS)
 
X10703 (me8593)
X10703 (me8593)X10703 (me8593)
X10703 (me8593)
 
99999599.pptx
99999599.pptx99999599.pptx
99999599.pptx
 
Mm210(5a)
Mm210(5a)Mm210(5a)
Mm210(5a)
 
Unit 2 Shafts and Coupling.pptx
Unit 2 Shafts and Coupling.pptxUnit 2 Shafts and Coupling.pptx
Unit 2 Shafts and Coupling.pptx
 
Design of machine elements -unit2.pptx
Design of machine elements -unit2.pptxDesign of machine elements -unit2.pptx
Design of machine elements -unit2.pptx
 
Unit 8: Torsion of circular shafts and elastic stability of columns
Unit 8: Torsion of circular shafts and elastic stability of columnsUnit 8: Torsion of circular shafts and elastic stability of columns
Unit 8: Torsion of circular shafts and elastic stability of columns
 
Torsion of circular shafts
Torsion of circular shaftsTorsion of circular shafts
Torsion of circular shafts
 
Simple torsion equation
Simple torsion equationSimple torsion equation
Simple torsion equation
 
TORSION,BENDING SHEAR ..pdf
TORSION,BENDING SHEAR  ..pdfTORSION,BENDING SHEAR  ..pdf
TORSION,BENDING SHEAR ..pdf
 
3_torsion [Read-Only] [Compatibility Mode].pdf
3_torsion [Read-Only] [Compatibility Mode].pdf3_torsion [Read-Only] [Compatibility Mode].pdf
3_torsion [Read-Only] [Compatibility Mode].pdf
 
torsion
torsiontorsion
torsion
 
3 torsion
3 torsion3 torsion
3 torsion
 

More from Dr.R. SELVAM

More from Dr.R. SELVAM (20)

7 breakeven analysis
7 breakeven analysis7 breakeven analysis
7 breakeven analysis
 
6 fixed assets, current assets, depreciation methods
6 fixed assets, current assets, depreciation methods6 fixed assets, current assets, depreciation methods
6 fixed assets, current assets, depreciation methods
 
5 preparation and interpretation of balance sheets
5 preparation and interpretation of balance sheets5 preparation and interpretation of balance sheets
5 preparation and interpretation of balance sheets
 
4 acounting principle
4 acounting principle4 acounting principle
4 acounting principle
 
3 capital structure
3 capital structure3 capital structure
3 capital structure
 
1 sources of finance
1 sources of finance1 sources of finance
1 sources of finance
 
2 term loan
2 term loan2 term loan
2 term loan
 
4 b. capital budgeting and cost analysis performance evaluation
4 b. capital budgeting and cost analysis   performance evaluation4 b. capital budgeting and cost analysis   performance evaluation
4 b. capital budgeting and cost analysis performance evaluation
 
4 a. capital budgeting and cost analysis
4 a. capital budgeting and cost analysis4 a. capital budgeting and cost analysis
4 a. capital budgeting and cost analysis
 
3 capital budgeting
3 capital budgeting3 capital budgeting
3 capital budgeting
 
2 working capital
2 working capital2 working capital
2 working capital
 
1 current assement management
1 current assement management1 current assement management
1 current assement management
 
2 b. project termination
2 b. project termination2 b. project termination
2 b. project termination
 
2 a. project auditing
2 a. project auditing2 a. project auditing
2 a. project auditing
 
1 b, evaluation of project
1 b, evaluation of project1 b, evaluation of project
1 b, evaluation of project
 
1 a, monitoring and evaluation of PM
1 a, monitoring and evaluation of PM1 a, monitoring and evaluation of PM
1 a, monitoring and evaluation of PM
 
3 industrial hydraulic circuits shapping, milling, drilling
3 industrial hydraulic circuits   shapping, milling, drilling3 industrial hydraulic circuits   shapping, milling, drilling
3 industrial hydraulic circuits shapping, milling, drilling
 
2 maintenance of hydraulic systems
2 maintenance of hydraulic systems2 maintenance of hydraulic systems
2 maintenance of hydraulic systems
 
1 hydraulic troubleshooting
1 hydraulic troubleshooting1 hydraulic troubleshooting
1 hydraulic troubleshooting
 
3 c. industrial pneumatic circuit logic
3 c. industrial pneumatic circuit   logic3 c. industrial pneumatic circuit   logic
3 c. industrial pneumatic circuit logic
 

Recently uploaded

The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 

Recently uploaded (20)

microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-IIFood Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
Food Chain and Food Web (Ecosystem) EVS, B. Pharmacy 1st Year, Sem-II
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 

3 shaft stress in shafts

  • 2. Stresses in Shafts The following stresses are induced in the shafts : 1.Shear stresses due to the transmission of torque (i.e. due to torsional load). 2.Bending stresses (tensile or compressive) due to the forces acting upon machine elements like gears, pulleys etc. as well as due to the weight of the shaft itself. 3. Stresses due to combined torsional and bending loads.
  • 3. Maximum Permissible Working Stresses for Transmission Shafts According to American Society of Mechanical Engineers (ASME) code for the design of transmission shafts, the maximum permissible working stresses in tension or compression may be taken as (a) 112 MPa for shafts without allowance for keyways. (b) 84 MPa for shafts with allowance for keyways. For shafts purchased under definite physical specifications, the permissible tensile stress (σt) may be taken as 60 percent of the elastic limit in tension (σel), but not more than 36 per cent of the ultimate tensile strength (σu). In other words, the permissible tensile stress, σt = 0.6 σel or 0.36 σu, whichever is less. The maximum permissible shear stress may be taken as (a) 56 MPa for shafts without allowance for key ways. (b) 42 MPa for shafts with allowance for keyways. For shafts purchased under definite physical specifications, the permissible shear stress (τ) may be taken as 30 per cent of the elastic limit in tension (σel) but not more than 18 percent of the ultimate tensile strength (σu). In other words, the permissible shear stress, τ = 0.3 σel or 0.18 σu, whichever is less.
  • 4. Design ofShafts The shafts may be designed on the basis of 1. Strength, 2. Rigidity and 3. stiffness. In designing shafts on the basis of strength, the following cases may be considered : (a) Shafts subjected to twisting moment or torque only, (b) Shafts subjected to bending moment only, (c) Shafts subjected to combined twisting and bending moments, and (d)Shafts subjected to axial loads in addition to combined torsional and bending loads. We shall now discuss the above cases, in detail, in the following pages.
  • 5. Shafts Subjected to Twisting Moment Only When the shaft is subjected to a twisting moment (or torque) only, then the diameter of the shaft may be obtained by using the torsion equation. We know that where T = Twisting moment (or torque) acting upon the shaft, J = Polar moment of inertia of the shaft about the axis of rotation, τ = Torsional shear stress, and r = Distance from neutral axis to the outer most fibre = d / 2; where d is the diameter of the shaft.
  • 6. We know that for round solid shaft, polar moment of inertia, The equation (i) may now be written as From this equation, we may determine the diameter of round solid shaft ( d ). We also know that for hollow shaft, polar moment of inertia, where do and di = Outside and inside diameter of the shaft, and r = do / 2. Substituting these values in equation (i), we have...(iii) Let k = Ratio of inside diameter and outside diameter of the shaft = di / do Now the equation (iii) may be written as
  • 7. From the equations (iii) or (iv), the outside and inside diameter of a hollow shaft may be determined. 1. The hollow shafts are usually used in marine work. These shafts are stronger per kg of material and they may be forged on a mandrel, thus making the material more homogeneous thanwould be possible for a solid shaft. When a hollow shaft is to be made equal in strength to a solid shaft, the twisting moment of both the shafts must be same. In other words, for the same material of both the shafts,
  • 8. 2. The twisting moment (T) may be obtained by using the following relation : We know that the power transmitted (in watts) by the shaft, where T = Twisting moment in N- m, and N = Speed of the shaft in r.p.m. 3. In case of belt drives, the twisting moment ( T ) is given by T = (T1 – T2 ) R where T1 and T2 = Tensions in the tight side and slack side of the belt respectively, and R = Radius of the pulley.
  • 9. Example 1 A line shaft rotating at 200 r.p.m. is to transmit 20 kW. The shaft may be assumed to be made of mild steel with an allowable shear stress of 42 MPa. Determine the diameter of the shaft, neglecting the bending moment on the shaft. Solution. Given : N = 200 r.p.m. ; P = 20 kW = 20 × 103 W; τ = 42 MPa = 42 N/mm2 Let d = Diameter of the shaft. We know that torque transmitted by the shaft, We also know that torque transmitted by the shaft ( T ),
  • 10. Example 2. A solid shaft is transmitting 1 MW at 240 r.p.m. Determine the diameter of the shaft if the maximum torque transmitted exceeds the mean torque by 20%. Take the maximum allowable shear stress as 60 MPa. Solution. Given : P = 1 MW = 1 × 106 W ; N = 240 r.p.m. ; Tmax = 1.2 Tmean ; τ = 60 MPa = 60 N/mm2 Let d = Diameter of the shaft. We know that mean torque transmitted by the shaft, Maximum torque transmitted, Tmax = 1.2 Tmean = 1.2 × 39 784 × 10 3= 47 741 × 103 N-mm We know that maximum torque transmitted (Tmax),