SlideShare a Scribd company logo
1 of 19
Gamma & Beta Functions
I. Gamma Function
Definition
Γ(n) = 0∫∞
x n-1
e -x
dx ; n > 0
& Γ(n) = Γ(n+1) / n ; n Є R - Z≤0
Results:
(1) Γ(n+1) = n Γ(n) ; n > 0 , where Γ(1) = 1
(2) Γ(n+1) = n! ; n Є N ( convention: 0! = 1)
(3) Γ(n) Γ(1- n) = π /sin(nπ) ; 0 < n < 1
In Particular;
Γ(1/2) = √π
1
Examples:
Example(1)
Evaluate 0∫∞
x 4
e -x
dx
Solution
0∫∞
x 4
e -x
dx = 0∫∞
x 5-1
e -x
dx = Γ(5)
Γ(5) = Γ(4+1) = 4! = 4(3)(2)(1) = 24
Exercise
Evaluate 0∫∞
x 5
e -x
dx
Example(2)
Evaluate 0∫∞
x 1/2
e -x
dx
0∫∞
x 1/2
e -x
dx = 0∫∞
x 3/2-1
e -x
dx = Γ(3/2)
3/2 = ½ + 1
Γ(3/2) = Γ(½+ 1) = ½ Γ(½ ) = ½ √π
Exercise
Evaluate 0∫∞
x 3/2
e -x
dx
2
Example(3)
Evaluate 0∫∞
x 3/2
e -x
dx
0∫∞
x 3/2
e -x
dx = 0∫∞
x 5/2-1
e -x
dx = Γ(5/2)
5/2 = 3/2 + 1
Γ(5/2) = Γ(3/2+ 1) = 3/2 Γ(3/2 ) = 3/2 . ½ Γ(½ ) = 3/2 . ½ . √π = ¾ √π
Exercise
Evaluate 0∫∞
x 5/2
e -x
dx
Example(4)
Find Γ(-½)
(-½) + 1 = ½
Γ(-1/2) = Γ(-½ + 1) / (-½) = - 2 Γ(1/2 ) = - 2 √π
3
Example(5)
Find Γ(-3/2)
(-3/2) + 1 = - ½
Γ(-3/2) = Γ(-3/2 + 1) / (-3/2) = Γ(-1/2 ) / (-2/3) = ( - 2 √π ) / (-2/3) = 4 √π /3
Exercise
Evaluate Γ(-5/2)
4
II. Beta Function
Definition
B(m,n) = 0∫1
x m-1
(1 – x ) n-1
dx ; m > 0 & n > 0
Results:
(1) B(m,n) = Γ(m) Γ(n) / Γ(m+ n)
(2) B(m,n) = B(n,m)
(3) 0∫π/2
sin 2m-1
x . cos 2n-1
x dx = Γ(m) Γ(n) / 2 Γ(m+ n) ; m>0 & n>0
(4) 0∫∞
x q-1
/ (1+x) . dx = Γq) Γ(1-q) = Π / sin(qπ) ; 0<q<1
5
Examples:
Example(1)
Evaluate 0∫1
x4
(1 – x ) 3
dx
Solution
0∫1
x 4
(1 – x ) 3
dx = x 5-1
(1 – x ) 4-1
dx
= B(5,4) = Γ(5) Γ(4) / Γ(9) = 4! . 3! / 8! = 3!/(8.7.6.5) = 1/ (8.7.5) = 1/280
Exercise
Evaluate 0∫1
x2
(1 – x ) 6
dx
Example(2)
Evaluate I = 0∫1
[ 1 / 3
√[x2
(1 – x )] ] dx
Solution
I = 0∫1
x -2/3
(1 – x ) -1/3
dx = 0∫1
x 1/3 - 1
(1 – x ) 2/3 - 1
dx
= B(1/3,2/3) = Γ(1/3) Γ(2/3) / Γ(1)
Γ(1/3) Γ(2/3) = Γ(1/3) Γ(1- 1/3) = π /sin(π/3) = π / ( √3/2) = 2π / √3
6
Exercise
Evaluate I = 0∫1
[ 1 / 4
√[x3
(1 – x )] ] dx
Example(3)
Evaluate I = 0∫1
√x . (1 – x ) dx
Solution
I = 0∫1
x 1/2
(1 – x ) dx = 0∫1
x 3/2 - 1
(1 – x ) 2 - 1
dx
= B(3/2 , 2) = Γ(3/2) Γ(2) / Γ(7/2)
Γ(3/2) = ½ √π
Γ(5/2) = Γ(3/2+ 1) = (3/2) Γ(3/2 ) = (3/2) . ½ √π = 3√π / 4
Γ(7/2) = Γ(5/2+ 1) = (5/2) Γ(5/2 ) = (5/2) . (3√π / 4) = 15 √π / 8
Thus,
I = (½ √π ) . 1! / (15 √π / 8) = 4/15
Exercise
Evaluate I = 0∫1
√x5
. (1 – x ) dx
7
II. Using Gamma Function to Evaluate Integrals
Example(1)
Evaluate: I = 0∫∞
x 6
e -2x
dx
Solution:
Letting y = 2x, we get
I = (1/128) 0∫∞
y 6
e -y
dy = (1/128) Γ(7) = (1/128) 6! = 45/8
Example(2)
Evaluate: I = 0∫∞
√x e –x^3
dx
Solution:
Letting y = x3
, we get
I = (1/3) 0∫∞
y -1/2
e -y
dy = (1/3) Γ(1/2) = √π / 3
8
Example(3)
Evaluate: I = 0∫∞
xm
e – k x^n
dx
Solution:
Letting y = k xn
, we get
I = [ 1 / ( n . k (m+1)/n
) ] 0∫∞
y [(m+1)/n – 1]
e -y
dy = [ 1 / ( n . k (m+1)/n
) ] Γ[(m+1)/n ]
9
II. Using Beta Function to Evaluate Integrals
Formulas
(1) 0∫1
x m-1
(1 – x ) n-1
dx = B(m,n) = Γ(m) Γ(n) / 2 Γ(m+ n) ; m > 0 & n > 0
(3) 0∫π/2
sin 2m-1
x . cos 2n-1
x dx = (1/2) B(m,n) ; m>0 & n>0
(4) 0∫∞
x q-1
/ (1+x) . dx = Γ(q) Γ(1-q) = Π / sin(qπ) ; 0 < q < 1
Using Formula (1)
Example(1)
Evaluate: I = 0∫2
x2
/ √(2 – x ) . dx
Solution:
Letting x = 2y, we get
I = (8/√2) 0∫1
y 2
(1 – y ) -1/2
dy = (8/√2) . B(3 , 1/2 ) = 64√2 /15
10
Example(2)
Evaluate: I = 0∫a
x4
√ (a2
– x2
) . dx
Solution:
Letting x2
= a2
y , we get
I = (a6
/ 2) 0∫1
y 3/2
(1 – y )1/2
dy = (a6
/ 2) . B(5/2 , 3/2 ) = a6
/3 2
Exercise
Evaluate: I = 0∫2
x √ (8 – x3
) . dx
Hint
Lett x3
= 8y
Answer
I = (8/3) 0∫1
y-1/3
(1 – y ) 1/3
. dy = (8/3) B(2/3 , 4/3 ) = 16 π / ( 9 √3 )
11
Using Formula (3)
Example(3)
Evaluate: I = 0∫∞
dx / ( 1+x4
)
Solution:
Letting x4
= y , we get
I = (1 / 4) 0∫∞
y -3/4
dy / (1 + y ) = (1 / 4) . Γ (1/4) . Γ (1 - 1/4 )
= (1/4) . [ π / sin ( ¼ . π ) ] = π √2 / 4
Using Formula (2)
Example(4)
a. Evaluate: I = 0∫π/2
sin 3
. cos 2
x dx
b. Evaluate: I = 0∫π/2
sin 4
. cos 5
x dx
Solution:
12
a. Notice that: 2m - 1 = 3 → m = 2 & 2n - 1 = 2 → m = 3/ 2
I = (1 / 2) B( 2 , 3/2 ) = 8/15
b. I = (1 / 2) B( 5/2 , 3 ) = 8 /315
Example(5)
a. Evaluate: I = 0∫π/2
sin6
dx
b. Evaluate: I = 0∫π/2
cos6
x dx
Solution:
a. Notice that: 2m - 1 = 6 → m = 7/2 & 2n - 1 = 0 → m = 1/ 2
I = (1 / 2) B( 7/2 , 1/2 ) = 5π /32
b. I = (1 / 2) B( 1/2 , 7/2 ) = 5π /32
Example(6)
a. Evaluate: I = 0∫π
cos4
x dx
b. Evaluate: I = 0∫2π
sin8
dx
Solution:
a. I = 0∫π
cos4
x = 2 0∫π/2
cos4
x = 2 (1/2) B (1/2 , 5/2 ) = 3π / 8
b. I = I = 0∫π
sin8
x = 4 0∫π/2
sin8
x = 4 (1/2) B (9/2 , 1/2 ) = 35π / 64
13
Details
I.
Example(1)
Evaluate: I = 0∫∞
x 6
e -2x
dx
x = y/2
x 6
= y 6
/64
dx = (1/2)dy
x 6
e -2x
dx = y 6
/64 e –y
. (1/2)dy
Example(2)
I = 0∫∞
√x e –x^3
dx x=y1/3
√x= y1/6
dx=(1/3)y-2/3
dy
√x e –x^3
dx = y1/6
e –y
. (1/3)y-2/3
dy
Example(3)
Evaluate: I = 0∫∞
xm
e – k x^n
dx
y = k xn
x = y1/n
/ k1/n
xm
= ym/n
/ km/n
dx = (1/n) y(1/n-1)
/ k1/n
dy
xm
e – k x^n
dx = ( ym/n
/ km/n
) . e – y
. (1/n) y(1/n-1)
/ k1/n
dy
m/n + 1/n – 1 = (m+1)/n - 1
-m/n – 1/n = - (m+1)/n
I = [ 1 / ( n . k (m+1)/n
) ] 0∫∞
y [(m+1)/n – 1]
e -y
dy
14
II.
Example(1)
Example(1)
I = 0∫2
x2
/ √(2 – x ) . dx
x = 2y
dx=2dy
x2
= 4 y2
√(2 – x ) = √(2 – 2y ) =√2 √(1 – y )
x2
/ √(2 – x ) . dx = 4 y2
/ √2 √(1 – y ) 2dy
y=0 when x=0
y=1 when x=2
Example(2)
Evaluate: I = 0∫a
x4
√ (a2
– x2
) . dx
x2
= a2
y , we get
x4
= a4
y2
x= a y1/2
15
dx= (1/2)a y-1/2
dy
√ (a2
– x2
) = √ (a2
– a2
y ) = a (1 – y )1/2
x4
√ (a2
– x2
) . dx = a4
y2
a (1 – y )1/2
(1/2)a y-1/2
dy
y=0 when x=0
y=1 when x=a
Example(3)
I = 0∫∞
dx / ( 1+x4
)
x4
= y
x=y1/4
dy= (1/4) y-3/4
dy
dx / ( 1+x4
) = (1 / 4) y -3/4
dy / (1 + y )
16
Proofs of formulas (2) & (3)
Formula (2)
We have,
B(m,n) = 0∫1
x m-1
(1 – x ) n-1
dx
Let x = sin2
y
Then dy = 2 sinx cox dx
&
x m-1
(1 – x ) n-1
dx = (sin2
y)m-1
( cos2
y )n-1
( dy / 2 sinx cox )
= 2 sin 2m-1
y . cos 2n-1
y dy
When x=0 , we have y = 0
When x=1, we hae y = π/2
Thus,
I = 2 0∫π/2
sin 2m-1
y . cos 2n-1
y dy
I = 0∫π/2
sin 2m-1
y . cos 2n-1
y dy = B(m,n) / 2
17
Formula (3)
We have,
I = 0∫∞
x q-1
/ (1+x) dx
Let
y = x / (1+x)
Hence, x = y / 1-y
, 1 + x = 1 + (y / 1-y) = 1/(1-y)
& dx = - [ (1- y) – y(-1)] / (1-y)2
. dy= 1 / (1-y)2
. dy
whn x = 0 , we have y = 0
when x→∞ , we have y = lim x→∞ x / (1+x) = 1
Thus,
I = 0∫∞
[ x q-1
/ (1+x) ] dx = 0∫∞
[ ( y / 1-y ) q-1
/ (1/(1-y)) ] . 1 / (1-y)2
. dy
= 0∫1
[ y q-1
/ (1-y) -q
] dy
= B(q , 1-q) = Γ(q) Γ(1-q)
18
Proving that Γ(1/2 ) = √π
Γ(1/2) = 0∫∞
x 1/2-1
e -x
dx = 0∫∞
x -1/2
e -x
dx
Let y = x ½
x = y2
dx = 2y dy
Γ(1/2) = 0∫∞
y -1
e –y^2
2y dy
= 2 0∫∞
e –y^2
dy
=2 (√π / 2 ) = √π
19

More Related Content

What's hot

Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex VariablesSolo Hermelin
 
Complex function
Complex functionComplex function
Complex functionShrey Patel
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shahC.G.P.I.T
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl VishalVishwakarma59
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationRai University
 
Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functionsSelvaraj John
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation Abdul Hannan
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolationHarshad Koshti
 
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and SystemsDSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and SystemsAmr E. Mohamed
 
Simpson’s one third and weddle's rule
Simpson’s one third and weddle's ruleSimpson’s one third and weddle's rule
Simpson’s one third and weddle's rulezahid6
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transformsHimel Himo
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiationJaydevVadachhak
 
Numerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPTNumerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPTPanchal Anand
 

What's hot (20)

Mathematics and History of Complex Variables
Mathematics and History of Complex VariablesMathematics and History of Complex Variables
Mathematics and History of Complex Variables
 
Legendre functions
Legendre functionsLegendre functions
Legendre functions
 
The gamma function
The gamma functionThe gamma function
The gamma function
 
Complex function
Complex functionComplex function
Complex function
 
Gamma function
Gamma functionGamma function
Gamma function
 
Gamma and betta function harsh shah
Gamma and betta function  harsh shahGamma and betta function  harsh shah
Gamma and betta function harsh shah
 
Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl Gradient , Directional Derivative , Divergence , Curl
Gradient , Directional Derivative , Divergence , Curl
 
B.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integrationB.tech ii unit-3 material multiple integration
B.tech ii unit-3 material multiple integration
 
Gamma & Beta functions
Gamma & Beta functionsGamma & Beta functions
Gamma & Beta functions
 
Higher Differential Equation
Higher Differential Equation Higher Differential Equation
Higher Differential Equation
 
Newton's forward & backward interpolation
Newton's forward & backward interpolationNewton's forward & backward interpolation
Newton's forward & backward interpolation
 
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and SystemsDSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
DSP_FOEHU - MATLAB 01 - Discrete Time Signals and Systems
 
Inverse laplace transforms
Inverse laplace transformsInverse laplace transforms
Inverse laplace transforms
 
Power series
Power series Power series
Power series
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Simpson’s one third and weddle's rule
Simpson’s one third and weddle's ruleSimpson’s one third and weddle's rule
Simpson’s one third and weddle's rule
 
Presentation on laplace transforms
Presentation on laplace transformsPresentation on laplace transforms
Presentation on laplace transforms
 
Succesive differntiation
Succesive differntiationSuccesive differntiation
Succesive differntiation
 
Numerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPTNumerical solution of ordinary differential equations GTU CVNM PPT
Numerical solution of ordinary differential equations GTU CVNM PPT
 
taylors theorem
taylors theoremtaylors theorem
taylors theorem
 

Similar to Gamma beta functions-1

1586746631GAMMA BETA FUNCTIONS.pdf
1586746631GAMMA BETA FUNCTIONS.pdf1586746631GAMMA BETA FUNCTIONS.pdf
1586746631GAMMA BETA FUNCTIONS.pdfFighting2
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Hareem Aslam
 
RS Agarwal Quantitative Aptitude - 9 chap
RS Agarwal Quantitative Aptitude - 9 chapRS Agarwal Quantitative Aptitude - 9 chap
RS Agarwal Quantitative Aptitude - 9 chapVinoth Kumar.K
 
2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdfRajuSingh806014
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15silvio_sas
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationHareem Aslam
 
Diifferential equation akshay
Diifferential equation akshayDiifferential equation akshay
Diifferential equation akshayakshay1234kumar
 
5.1 sequences and summation notation t
5.1 sequences and summation notation t5.1 sequences and summation notation t
5.1 sequences and summation notation tmath260
 
333 bai tich phan
333 bai tich phan333 bai tich phan
333 bai tich phanndphuc910
 
2e. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.5)
2e. Pedagogy of Mathematics -  Part II (Numbers and Sequence - Ex 2.5)2e. Pedagogy of Mathematics -  Part II (Numbers and Sequence - Ex 2.5)
2e. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.5)Dr. I. Uma Maheswari Maheswari
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdfRajuSingh806014
 
19 trig substitutions-x
19 trig substitutions-x19 trig substitutions-x
19 trig substitutions-xmath266
 
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4lecturer
 

Similar to Gamma beta functions-1 (20)

1586746631GAMMA BETA FUNCTIONS.pdf
1586746631GAMMA BETA FUNCTIONS.pdf1586746631GAMMA BETA FUNCTIONS.pdf
1586746631GAMMA BETA FUNCTIONS.pdf
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
 
9 chap
9 chap9 chap
9 chap
 
RS Agarwal Quantitative Aptitude - 9 chap
RS Agarwal Quantitative Aptitude - 9 chapRS Agarwal Quantitative Aptitude - 9 chap
RS Agarwal Quantitative Aptitude - 9 chap
 
2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf2. Definite Int. Theory Module-5.pdf
2. Definite Int. Theory Module-5.pdf
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15
 
9. surds & indices
9. surds & indices9. surds & indices
9. surds & indices
 
Solution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 IntegrationSolution Manual : Chapter - 05 Integration
Solution Manual : Chapter - 05 Integration
 
Linear Differential Equations1
Linear Differential Equations1Linear Differential Equations1
Linear Differential Equations1
 
Diifferential equation akshay
Diifferential equation akshayDiifferential equation akshay
Diifferential equation akshay
 
5.1 sequences and summation notation t
5.1 sequences and summation notation t5.1 sequences and summation notation t
5.1 sequences and summation notation t
 
Hw5sols
Hw5solsHw5sols
Hw5sols
 
333 bai tich phan
333 bai tich phan333 bai tich phan
333 bai tich phan
 
2e. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.5)
2e. Pedagogy of Mathematics -  Part II (Numbers and Sequence - Ex 2.5)2e. Pedagogy of Mathematics -  Part II (Numbers and Sequence - Ex 2.5)
2e. Pedagogy of Mathematics - Part II (Numbers and Sequence - Ex 2.5)
 
01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf01. Differentiation-Theory & solved example Module-3.pdf
01. Differentiation-Theory & solved example Module-3.pdf
 
19 trig substitutions-x
19 trig substitutions-x19 trig substitutions-x
19 trig substitutions-x
 
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
Pt 2 turunan fungsi eksponen, logaritma, implisit dan cyclometri-d4
 
4. simplifications
4. simplifications4. simplifications
4. simplifications
 
Tugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integralTugas 5.3 kalkulus integral
Tugas 5.3 kalkulus integral
 
Recurrences
RecurrencesRecurrences
Recurrences
 

Recently uploaded

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Sapana Sha
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxVishalSingh1417
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...fonyou31
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfchloefrazer622
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room servicediscovermytutordmt
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajanpragatimahajan3
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 

Recently uploaded (20)

Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111Call Girls in Dwarka Mor Delhi Contact Us 9654467111
Call Girls in Dwarka Mor Delhi Contact Us 9654467111
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
Unit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptxUnit-IV- Pharma. Marketing Channels.pptx
Unit-IV- Pharma. Marketing Channels.pptx
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
Ecosystem Interactions Class Discussion Presentation in Blue Green Lined Styl...
 
Disha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdfDisha NEET Physics Guide for classes 11 and 12.pdf
Disha NEET Physics Guide for classes 11 and 12.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
9548086042 for call girls in Indira Nagar with room service
9548086042  for call girls in Indira Nagar  with room service9548086042  for call girls in Indira Nagar  with room service
9548086042 for call girls in Indira Nagar with room service
 
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
social pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajansocial pharmacy d-pharm 1st year by Pragati K. Mahajan
social pharmacy d-pharm 1st year by Pragati K. Mahajan
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 

Gamma beta functions-1

  • 1. Gamma & Beta Functions I. Gamma Function Definition Γ(n) = 0∫∞ x n-1 e -x dx ; n > 0 & Γ(n) = Γ(n+1) / n ; n Є R - Z≤0 Results: (1) Γ(n+1) = n Γ(n) ; n > 0 , where Γ(1) = 1 (2) Γ(n+1) = n! ; n Є N ( convention: 0! = 1) (3) Γ(n) Γ(1- n) = π /sin(nπ) ; 0 < n < 1 In Particular; Γ(1/2) = √π 1
  • 2. Examples: Example(1) Evaluate 0∫∞ x 4 e -x dx Solution 0∫∞ x 4 e -x dx = 0∫∞ x 5-1 e -x dx = Γ(5) Γ(5) = Γ(4+1) = 4! = 4(3)(2)(1) = 24 Exercise Evaluate 0∫∞ x 5 e -x dx Example(2) Evaluate 0∫∞ x 1/2 e -x dx 0∫∞ x 1/2 e -x dx = 0∫∞ x 3/2-1 e -x dx = Γ(3/2) 3/2 = ½ + 1 Γ(3/2) = Γ(½+ 1) = ½ Γ(½ ) = ½ √π Exercise Evaluate 0∫∞ x 3/2 e -x dx 2
  • 3. Example(3) Evaluate 0∫∞ x 3/2 e -x dx 0∫∞ x 3/2 e -x dx = 0∫∞ x 5/2-1 e -x dx = Γ(5/2) 5/2 = 3/2 + 1 Γ(5/2) = Γ(3/2+ 1) = 3/2 Γ(3/2 ) = 3/2 . ½ Γ(½ ) = 3/2 . ½ . √π = ¾ √π Exercise Evaluate 0∫∞ x 5/2 e -x dx Example(4) Find Γ(-½) (-½) + 1 = ½ Γ(-1/2) = Γ(-½ + 1) / (-½) = - 2 Γ(1/2 ) = - 2 √π 3
  • 4. Example(5) Find Γ(-3/2) (-3/2) + 1 = - ½ Γ(-3/2) = Γ(-3/2 + 1) / (-3/2) = Γ(-1/2 ) / (-2/3) = ( - 2 √π ) / (-2/3) = 4 √π /3 Exercise Evaluate Γ(-5/2) 4
  • 5. II. Beta Function Definition B(m,n) = 0∫1 x m-1 (1 – x ) n-1 dx ; m > 0 & n > 0 Results: (1) B(m,n) = Γ(m) Γ(n) / Γ(m+ n) (2) B(m,n) = B(n,m) (3) 0∫π/2 sin 2m-1 x . cos 2n-1 x dx = Γ(m) Γ(n) / 2 Γ(m+ n) ; m>0 & n>0 (4) 0∫∞ x q-1 / (1+x) . dx = Γq) Γ(1-q) = Π / sin(qπ) ; 0<q<1 5
  • 6. Examples: Example(1) Evaluate 0∫1 x4 (1 – x ) 3 dx Solution 0∫1 x 4 (1 – x ) 3 dx = x 5-1 (1 – x ) 4-1 dx = B(5,4) = Γ(5) Γ(4) / Γ(9) = 4! . 3! / 8! = 3!/(8.7.6.5) = 1/ (8.7.5) = 1/280 Exercise Evaluate 0∫1 x2 (1 – x ) 6 dx Example(2) Evaluate I = 0∫1 [ 1 / 3 √[x2 (1 – x )] ] dx Solution I = 0∫1 x -2/3 (1 – x ) -1/3 dx = 0∫1 x 1/3 - 1 (1 – x ) 2/3 - 1 dx = B(1/3,2/3) = Γ(1/3) Γ(2/3) / Γ(1) Γ(1/3) Γ(2/3) = Γ(1/3) Γ(1- 1/3) = π /sin(π/3) = π / ( √3/2) = 2π / √3 6
  • 7. Exercise Evaluate I = 0∫1 [ 1 / 4 √[x3 (1 – x )] ] dx Example(3) Evaluate I = 0∫1 √x . (1 – x ) dx Solution I = 0∫1 x 1/2 (1 – x ) dx = 0∫1 x 3/2 - 1 (1 – x ) 2 - 1 dx = B(3/2 , 2) = Γ(3/2) Γ(2) / Γ(7/2) Γ(3/2) = ½ √π Γ(5/2) = Γ(3/2+ 1) = (3/2) Γ(3/2 ) = (3/2) . ½ √π = 3√π / 4 Γ(7/2) = Γ(5/2+ 1) = (5/2) Γ(5/2 ) = (5/2) . (3√π / 4) = 15 √π / 8 Thus, I = (½ √π ) . 1! / (15 √π / 8) = 4/15 Exercise Evaluate I = 0∫1 √x5 . (1 – x ) dx 7
  • 8. II. Using Gamma Function to Evaluate Integrals Example(1) Evaluate: I = 0∫∞ x 6 e -2x dx Solution: Letting y = 2x, we get I = (1/128) 0∫∞ y 6 e -y dy = (1/128) Γ(7) = (1/128) 6! = 45/8 Example(2) Evaluate: I = 0∫∞ √x e –x^3 dx Solution: Letting y = x3 , we get I = (1/3) 0∫∞ y -1/2 e -y dy = (1/3) Γ(1/2) = √π / 3 8
  • 9. Example(3) Evaluate: I = 0∫∞ xm e – k x^n dx Solution: Letting y = k xn , we get I = [ 1 / ( n . k (m+1)/n ) ] 0∫∞ y [(m+1)/n – 1] e -y dy = [ 1 / ( n . k (m+1)/n ) ] Γ[(m+1)/n ] 9
  • 10. II. Using Beta Function to Evaluate Integrals Formulas (1) 0∫1 x m-1 (1 – x ) n-1 dx = B(m,n) = Γ(m) Γ(n) / 2 Γ(m+ n) ; m > 0 & n > 0 (3) 0∫π/2 sin 2m-1 x . cos 2n-1 x dx = (1/2) B(m,n) ; m>0 & n>0 (4) 0∫∞ x q-1 / (1+x) . dx = Γ(q) Γ(1-q) = Π / sin(qπ) ; 0 < q < 1 Using Formula (1) Example(1) Evaluate: I = 0∫2 x2 / √(2 – x ) . dx Solution: Letting x = 2y, we get I = (8/√2) 0∫1 y 2 (1 – y ) -1/2 dy = (8/√2) . B(3 , 1/2 ) = 64√2 /15 10
  • 11. Example(2) Evaluate: I = 0∫a x4 √ (a2 – x2 ) . dx Solution: Letting x2 = a2 y , we get I = (a6 / 2) 0∫1 y 3/2 (1 – y )1/2 dy = (a6 / 2) . B(5/2 , 3/2 ) = a6 /3 2 Exercise Evaluate: I = 0∫2 x √ (8 – x3 ) . dx Hint Lett x3 = 8y Answer I = (8/3) 0∫1 y-1/3 (1 – y ) 1/3 . dy = (8/3) B(2/3 , 4/3 ) = 16 π / ( 9 √3 ) 11
  • 12. Using Formula (3) Example(3) Evaluate: I = 0∫∞ dx / ( 1+x4 ) Solution: Letting x4 = y , we get I = (1 / 4) 0∫∞ y -3/4 dy / (1 + y ) = (1 / 4) . Γ (1/4) . Γ (1 - 1/4 ) = (1/4) . [ π / sin ( ¼ . π ) ] = π √2 / 4 Using Formula (2) Example(4) a. Evaluate: I = 0∫π/2 sin 3 . cos 2 x dx b. Evaluate: I = 0∫π/2 sin 4 . cos 5 x dx Solution: 12
  • 13. a. Notice that: 2m - 1 = 3 → m = 2 & 2n - 1 = 2 → m = 3/ 2 I = (1 / 2) B( 2 , 3/2 ) = 8/15 b. I = (1 / 2) B( 5/2 , 3 ) = 8 /315 Example(5) a. Evaluate: I = 0∫π/2 sin6 dx b. Evaluate: I = 0∫π/2 cos6 x dx Solution: a. Notice that: 2m - 1 = 6 → m = 7/2 & 2n - 1 = 0 → m = 1/ 2 I = (1 / 2) B( 7/2 , 1/2 ) = 5π /32 b. I = (1 / 2) B( 1/2 , 7/2 ) = 5π /32 Example(6) a. Evaluate: I = 0∫π cos4 x dx b. Evaluate: I = 0∫2π sin8 dx Solution: a. I = 0∫π cos4 x = 2 0∫π/2 cos4 x = 2 (1/2) B (1/2 , 5/2 ) = 3π / 8 b. I = I = 0∫π sin8 x = 4 0∫π/2 sin8 x = 4 (1/2) B (9/2 , 1/2 ) = 35π / 64 13
  • 14. Details I. Example(1) Evaluate: I = 0∫∞ x 6 e -2x dx x = y/2 x 6 = y 6 /64 dx = (1/2)dy x 6 e -2x dx = y 6 /64 e –y . (1/2)dy Example(2) I = 0∫∞ √x e –x^3 dx x=y1/3 √x= y1/6 dx=(1/3)y-2/3 dy √x e –x^3 dx = y1/6 e –y . (1/3)y-2/3 dy Example(3) Evaluate: I = 0∫∞ xm e – k x^n dx y = k xn x = y1/n / k1/n xm = ym/n / km/n dx = (1/n) y(1/n-1) / k1/n dy xm e – k x^n dx = ( ym/n / km/n ) . e – y . (1/n) y(1/n-1) / k1/n dy m/n + 1/n – 1 = (m+1)/n - 1 -m/n – 1/n = - (m+1)/n I = [ 1 / ( n . k (m+1)/n ) ] 0∫∞ y [(m+1)/n – 1] e -y dy 14
  • 15. II. Example(1) Example(1) I = 0∫2 x2 / √(2 – x ) . dx x = 2y dx=2dy x2 = 4 y2 √(2 – x ) = √(2 – 2y ) =√2 √(1 – y ) x2 / √(2 – x ) . dx = 4 y2 / √2 √(1 – y ) 2dy y=0 when x=0 y=1 when x=2 Example(2) Evaluate: I = 0∫a x4 √ (a2 – x2 ) . dx x2 = a2 y , we get x4 = a4 y2 x= a y1/2 15
  • 16. dx= (1/2)a y-1/2 dy √ (a2 – x2 ) = √ (a2 – a2 y ) = a (1 – y )1/2 x4 √ (a2 – x2 ) . dx = a4 y2 a (1 – y )1/2 (1/2)a y-1/2 dy y=0 when x=0 y=1 when x=a Example(3) I = 0∫∞ dx / ( 1+x4 ) x4 = y x=y1/4 dy= (1/4) y-3/4 dy dx / ( 1+x4 ) = (1 / 4) y -3/4 dy / (1 + y ) 16
  • 17. Proofs of formulas (2) & (3) Formula (2) We have, B(m,n) = 0∫1 x m-1 (1 – x ) n-1 dx Let x = sin2 y Then dy = 2 sinx cox dx & x m-1 (1 – x ) n-1 dx = (sin2 y)m-1 ( cos2 y )n-1 ( dy / 2 sinx cox ) = 2 sin 2m-1 y . cos 2n-1 y dy When x=0 , we have y = 0 When x=1, we hae y = π/2 Thus, I = 2 0∫π/2 sin 2m-1 y . cos 2n-1 y dy I = 0∫π/2 sin 2m-1 y . cos 2n-1 y dy = B(m,n) / 2 17
  • 18. Formula (3) We have, I = 0∫∞ x q-1 / (1+x) dx Let y = x / (1+x) Hence, x = y / 1-y , 1 + x = 1 + (y / 1-y) = 1/(1-y) & dx = - [ (1- y) – y(-1)] / (1-y)2 . dy= 1 / (1-y)2 . dy whn x = 0 , we have y = 0 when x→∞ , we have y = lim x→∞ x / (1+x) = 1 Thus, I = 0∫∞ [ x q-1 / (1+x) ] dx = 0∫∞ [ ( y / 1-y ) q-1 / (1/(1-y)) ] . 1 / (1-y)2 . dy = 0∫1 [ y q-1 / (1-y) -q ] dy = B(q , 1-q) = Γ(q) Γ(1-q) 18
  • 19. Proving that Γ(1/2 ) = √π Γ(1/2) = 0∫∞ x 1/2-1 e -x dx = 0∫∞ x -1/2 e -x dx Let y = x ½ x = y2 dx = 2y dy Γ(1/2) = 0∫∞ y -1 e –y^2 2y dy = 2 0∫∞ e –y^2 dy =2 (√π / 2 ) = √π 19