Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

Shiva Amiri, CEO, Biosymetrics at The AI Conference 2017

684 vues

Publié le

Startup Showcase Presentation on Biosymetrics

Publié dans : Technologie
  • Soyez le premier à commenter

Shiva Amiri, CEO, Biosymetrics at The AI Conference 2017

  1. 1. The Future of Medical Data Science Shiva Amiri, PhD AI Conference, San Francisco 2 June 2017
  2. 2. Promise and Pitfalls of Precision Medicine  Holistic understanding of the individual’s condition for:  Prevention  Improved Diagnostics  Better drugs  Better care  Challenges  Data Variety/Heterogeneity  Lack of Standards  Lack of Scalability
  3. 3. The Market Opportunity  IDC Reports Big Data Analytics market at $130B in 2016  Machine learning in medicine market projected to reach $6B by 2021 according to Frost and Sullivan  According to one estimate, the value of the healthcare IoT will top $163 billion by 2020, with compound annual growth of 38.1% between 2015 and 2020  Streaming data, real-time analytics and machine learning will remain a significant challenge for multiple sectors
  4. 4. Competitive Advantage  Integrated analytics/ML solution – incorporating large repositories of images, genomics data, compounds, together  Custom pre-processing for multiple types of raw biomedical data – unique ability to carry out targeted preprocessing on multiple complex biomedical data types  Model optimization based on proprietary parameter iteration method  No limitations on data size - Outperforms Revolution R, Rapid Miner, Amazon ML, Microsoft Azure, H2O ... in benchmarking tests
  5. 5. Our Solution: The Augusta Platform Focused on pre-processing, feature optimization for multiple data types in biomedicine
  6. 6. Integrating Datasets: Example 1  Features extracted from medical images can be compared using the results of genomic analysis (shown below for Autism Spectrum Disorder) Higher in Var- Group Higher in Var+ Group
  7. 7. Integrating Datasets – Example 2  Combining MRI with genomic features allowed better prediction performance than with either alone  Adding metabolic features increased prediction performance (shown using data from ADNI – Alzheimer’s Disease)
  8. 8. Detailed Documentation For AugustaTM  Documentation available for all modules, including 11 code walkthroughs
  9. 9. Thank You Shiva Amiri, PhD, CEO shiva@biosymetrics.com Babak Afshin-Pour, PhD, VP Technology babak@biosymetrics.com Gabe Musso, PhD, VP Life Sciences gabe@biosymetrics.com Anatoly Likhatchev, VP FinTech tolik@biosymetrics.com www.biosymetrics.com