SlideShare une entreprise Scribd logo
1  sur  64
Renewable
Energy Resource
(KOE 074)
Unit-1: Introduction
(L-1)
Syllabus
2
• Various non-conventional energy resources- Introduction,
availability, classification, relative merits and demerits.
Introduction
3
• Energy - Energy can be defined as the ability (or) capacity to
do work.
• Different forms of energy:
- due to chemical reaction
- due to flow of electron
- due to thermal vibration
- due to radiation of light
- due to moving parts
- due to nuclear reaction
(1)Chemical energy
(2) Electrical energy
(3)Heat energy
(4) Light energy
(5)Mechanical
energy
(6)Nuclearenergy
etc.
Introduction
4
• The S
Iunit of Energy is Joule (or)N/m
• Law of conservation of Energy: According to law of
conservation of energy, Energy can neither be created nor
destroyed. But, one form of energy can be converted to
another form.
• Examples:
1. A heater convert electrical energy into heat energy.
2.A battery converts chemical energy into electrical energy.
etc.
Energy Sources
5
• T
he available energy sources can be divided into two
categories.
1. Primary Energy Sources
2. Secondary Energy Sources
Primary Energy Sources
6
• The energy sources which provide a net supply of energy are
defined asPrimary Sources.
• Examples are Coal, Oil, Natural Gas and Nuclear.
Secondary Energy Sources
• T
hese sources produce no net energy.
• Examples include Solar
, Wind, Water (Hydro, Tidal, Wave etc.)
• T
hese sources produce no harm to the environment and
earth.
Energy Sources
7
Energy Sources
Coal 32.5%
92%
(commercial)
Oil 38.3%
Natural Gas 19.0%
Nuclear 0.13%
Hydro 2.0%
Wood 6.6%
8%
(non-commercial)
Dung 1.2%
Waste 0.3%
33%
38%
19%
7
%
2
%
0
%
0
%
1
%
• T
able below gives the %usage of various energy sources
Chart Title
Coal
Oil
Natural Gas
Nuclear
Hydro
Wood
Dung
Waste
8
(source: Book)
Energy Sources
9
• From above table we see that the non-commercial sources
contributes a huge 8%of total energy demand.
• This is 4 times the energy produced by Hydro and 60 times more
than that of Nuclear energy.
• Indeveloping nations the non-commercial sources play a
significant role in energy supply, and this dependence is likely to
grow continuously unless some alternate sources are adopted.
Energy Sources
• Table below gives the %usage of various energy sources (India)
Coal 56.9%
66.3%
Conventional
(Non-Renewable)
Oil 0.2%
Natural Gas 7.2%
Nuclear 2.0%
Hydro 14.2%
33.7%
Non-Conventional
(Renewable)
Solar 6.9%
Wind 10.0%
Bio Mass 2.6%
57%
0
%
7
%
2
%
14%
7
%
10%
3
%
Chart Title
Coal
Oil
Natural Gas
Nuclear
Hydro
Solar
Wind
Bio Mass
10
Conventional Energy Sources
(Non-renewable)
14
1. Coal
12
• Coal is a non-renewable energy source because it takes millions
of yearsto form. That means what isin the ground now isall
there isand we can’t realistically make more.
• Since the advent of industrialization, the Coal has been the most
common source of energy.
• To generate energy from coal, mainly it is burnt in Boilers and
Heat energy is produced, which in turn is used to generate other
forms of energy such as Electricity.
How Coal is formed
13
• The energy in coal comes from energy that was stored in trees
that lived hundredsof millions of yearsago in swamp forests,
even before the dinosaurs!
• When these trees died, they formed layers at the bottom of
the swamps. Water and dirt began to pile up on top of the
dead plant.
• Over thousands of years pressure and heat would build up on
top of the plant remains, undergoing chemical and physical
changes and pushing out the oxygen, turning these remains into
what we call coal.
Types of coal
14
• The geological process of changing something under the effect
of temperature and pressure is called metamorphism.
1. Peat is generally considered a precursor of coal, but it has been
used as a fuel in some areas — most notably in Ireland and
Finland. In its dehydrated form, it can help soak up oil spills.
2. Lignite is the lowest quality and the first to be formed.
3. Sub-Bituminous Coal ismost often used as fuel for steam-
electric power generation.
Types of coal
15
4. Bituminous Coal is a dense sedimentary rock, generally of a
high-quality.
5. Steam coal isa transition type between bituminous and
anthracite.
6. Anthracite isthe highest rank of coal. I
t’s a hard, glossy rock
and highly valued for its properties.
7. Graphite isnot generally considered a type of coal because it
cannot be used for heating. It is most often used in pencils or as
a lubricant (when powdered).
How Coal is formed
16
The Adverse Effects Of Coal
17
• Coal isone of the main contributors to global warming, and
coal mining and its fueling of power stations cause major
environmental damage.
• Coal mining had been very dangerous. The list of coal mine
accidents is long, and even today, accidents are still surprisingly
common.
• Many miners also suffer from Coal-worker’s Pneumoconiosis,
also known as“Black Lung”.
The Adverse Effects Of Coal
18
• Coal pollution alone is responsible for one million deaths
annually across the world;
• According to a US report published in 2004, coal-fired power
plants shorten nearly 24,000 lives each year in the US(2,800
from lung cancer).
• Burning coal releases great quantities of carbon dioxide into
the air and also releases methane — a much more potent
greenhouse gas.
Thermal Power in India
• I
ndia'selectricity sector isdominated by fossil fuels, and in
particular coal, which in 2017-18 produced about three fourths
of all electricity.
• However, the government is pushing for an increased
investment in renewable energy.
• The National Electricity Plan of 2018 prepared by the
Government of I
ndia states that the country does not need
additional non-renewable power plants in the utility sector until
2027.
22
2. Oil
20
• Almost 40%of the total energy needs of the world is fed by Oil.
• The rising prices of Oil has brought a considerable strain to the
world economy.
• With today’s rate of consumption of oil and what we have in
reserve, the oil will last for about 100 years, unless more oil source
isdiscovered.
3. Natural Gas
21
• Natural Gas isan incompletely utilised resource available at the
bottom of earth.
• Its huge quantity is burnt off in the oil production process.
• It is not fully utilised due to non availability of ready market and
due to it’s high transportation cost.
• Gaseousfuels can be classified as:
1. Gases of fixed composition such as Acetylete, Ethylene, Methane etc.
2. Composite industrial gases such as coke oven gas, blast furnace gas etc.
4. Nuclear Energy
22
• Nuclear power isthe use of nuclearreactions that releases
nuclear energy to generate heat, which most commonly is then
used in steam turbines to produce electricity in a Nuclear Power
Plant.
• Nuclear power can be obtained from nuclear fission, nuclear
decay and nuclear fusion reactions.
• At present majority of electricity isproduced by Nuclear fission
of Uranium and Plutonium.
Non-Conventional Energy Sources
(Renewable Energy Sources)
30
NCES(Non-Conventional Energy Sources)
• The NCES are Solar
, Wind, Sea/Ocean, Geothermal, Biomass
etc.
• Many people are continuously trying to find more NCES.
• The other terms used to describe the non-conventional energy
are ‘Alternative’, ‘Appropriate’, ‘Natural’, ‘New’, and
‘Renewable’.
RENEWABLE ENERGY POTENTIAL IN INDIA
Sr. No Energy Sources
Country
Potential
Installed
Capacity
1. Biomass & Waste 60000 MW 4278.87 MW
2. Small hydro 15,000 MW 3496.14 MW
3. Wind 100000 MW 18420.4 MW
4. Solar Energy 200000 MW 1282.58 MW
5 Geothermal 10 GW 4 MW
1. Hydro Energy
26
• The energy form water is generated by allowing the water to fall
under the force of gravity.
• I
t isused almost exclusively for Electricity generation.
• The Potential energy of the water is converted into Mechanical
energy through Hydraulic Turbines, which in turn moves the
Generator which generates Electricity.
• T
he capital cost of Hydro Electric Plant is very high as
compared to other kinds of power plants.
• The operating cost of these plants is low as no fuel isrequired.
2. Solar Energy:
web
• Energy produced through the sunlight is called solar energy.
• Sun’s energy comes to earth in form of Light and Heat. This
energy keeps the temperature of earth’s atmosphere at normal
level, so that living things can survive, the heat causes currents in
atmosphere (wind) and ocean (tide), causes the water cycle
and generates photosynthesis in plants.
• Solar energy can be utilized in two ways, either T
hermally or by
Photovoltaics.
32
28
• The solar photovoltaic cells are exposed to sunlight and in turn
the electricity is produced. Photovoltaic cells converts the sun
light energy into electricity.
• The Solar energy’s potential is about 178 Billion MW, which is
around 20000 timesmore than the world’s total energy
demand.
• Various applications of Solar energy are:
1. Solar Water Heating
2. Solar Cookers
2. Solar Energy:
29
3. Solar engine for water pumping.
4. Street Lights
5. Solar drying of agricultural and animal products.
6. Salt production by sea water evaporation.
7. Heating and Cooling of Residential buildings.
8. Solar Furnace.
9. Solar distillation.
10.Electric power generation by Solar Ponds, Steam Generators
heated by rotating reflectors and Photovoltaic cells.
2. Solar Energy:
3. Wind Energy:
30
• Energy can be produced by harnessing the wind power.
• Wind iscaused by mainly two reasons:
1. Heating & Cooling of the atmosphere which generates
convection current.
2. The Rotation of Earth with respect to its atmosphere and its
motion around the Sun.
• The potential of wind energy is very large which is estimated to
be about 1.6x107 MW.
3. Wind Energy:
31
• Wind Energy is an indirect source of Solar Energy. Why?
• In India generally the wind speed is low. Therefore attempts are
being made for development of low speed, low cost wind mills.
• Special focus is on development of mill for water pumping
which can operate at low wind speed of 8-36 km/hr
. Which can
be utilised for providing drinking water in small rural area,
irrigation of small farms.
• I
n I
ndia high speed winds are available in coastal areasof
Saurashtra, Rajasthan and some parts of central India.
3. Wind Energy:
• In these area we can use high speed wind mills, to generate
Electricity and feeding the same to the grid.
• Wind Mill Types:
1. Multi-blade type Wind Mill
Horizontal Axis
Vertical Axis
2. Sail type
3. Propeller type
4. Savonius type
5. Darrieus type
32
3. Wind Energy:
33
• Characteristics of Wind Energy:
1
. I
t isa renewable source of energy.
2. Wind power systems are non-polluting and has no adverse
effects of the environment.
3. Wind energy systems avoids fuel provision and transport.
4. On small scale of upto few kilowatts, it is less costly. On large
scale the costs are comparable with the costs of
conventional energy sources, but low cost can be achieved
by massproduction.
3. Wind Energy:
34
• Problems with Wind Energy:
1. Availability of wind is fluctuating or irregular in nature.
2. Unlike water energy, it requires storage means because of
irregularnature.
3. Wind energy systems are noisy in operation; a large unit can
be heard many km away.
4. Large area is needed for installation of Wind Farms, for
Electricity generation.
3. Wind Energy:
35
• I
t isused for operating water pumps for irrigation purposes.
Approximately 2756 wind pumps were set up for thispurpose.
• In seven states, wind power operated power houses were
installed and their installed capacity is 1000 MW.
• I
ndia has second position in wind power energy generation.
4. Bio Mass and Bio Gas
• Bio Massmeans Organic Matter.
• The Bio-mass is produced in nature through Photosynthesis
achieved by solar energy conversion.
• I
n simplest form the reactions in the Photosynthesiscan be
represented as:
6H2O +6CO2 C6H12O6 +6O2
• Inthis reaction, the water and carbon dioxide are converted
into organic material C6H12O6 which is basic molecule of stable
carbohydrate at low temperature.
36
4. Bio Mass and Bio Gas
• At high temperature, it breaks and releases Heat of amount
equal to 112 kcal/mole or 469 kJ/mole.
C6H12O6 +O2 CO2 +H2O +112 kcal/mole
• So the absorbed energy of photons is converted into
carbohydrate which can then be used as source of energy.
• I
t ispossible to produce large amount of carbohydrate by
growing Algae (say) under suitable conditions, in plastic tubes or
in ponds.
37
4. Bio Mass and Bio Gas
38
• Then the Algae, which is our Bio-Mass in this example, could be
harvested, dried and burned for production of heat that could
be converted into Electricity.
• The energy from Bio-Mass is taken by burning it directly or by
further processing it to produce more convenient liquid and gas
forms.
4. Bio Mass and Bio Gas
• The Bio-Mass resources falls into three categories:
1. Bio-Mass in its traditional solid form. (e.g. Wood, agri waste etc.)
This form is directly burned to get energy.
2. Bio-Mass in its non-traditional form (converted into liquid form)
In this category the Bio-Mass is converted into liquid from such
asEthanol & Methanol, which can be used asliquid fuel in
engines
3. Bio-Mass in Fermented form. Inthis category Bio-mass is
fermented to obtain its Gaseous fuel called Bio-Gas. Bio-gas
has 55-65%Methane, 30-40%CO2 and rest impurities containing
H2, H2Sand some N2.
44
3. Bio Mass and Bio Gas
40
• Energy Plantation: For large scale production of electricity, use
of fire wood as a fuel for the boiler of a conventional power
plant is called Energy Plantation scheme. In this some selected
species of trees are planted and harvested over regular time
period, on land near a power plant.
• This requires a large area near power plant for plantation
purpose.
• T
he trees which are suggested for I
ndia are Eucalyptus,
Casuarina and Babool.
3. Bio Mass and Bio Gas
41
• Bio-Gas: The main source for production of bio-gas is wet cow
dung (gobar) or wet livestock waste (or even Human waste).
• The bio-gas has a particular significance in India because of
large cattle population, which isabout 250 million.
• Some other sources of bio-gasare: Sewage, Crop residue,
vegetable waste, poultry waste, algae etc.
4. Ocean Thermal Energy Conversion (OTEC)
42
• This is also as indirect source of Solar Energy.
• The tropical oceans absorb a large amount of solar energy. The
surface of ocean acts as collector of heat, while the
temperature in the depths is20-25 ºc lower.
• This difference in temperature is used to obtain energy.
• T
he surface water
, which isheated, isused to heat some low
boiling organic fluid such as ammonia, propane, R-12, R-22, etc.
• T
hen the vapourproduced will run the heat engine.
4. Ocean Thermal Energy Conversion (OTEC)
43
• The exit vapour is condensed using cold ocean water of deeper
regions.
• Several such plants were build in France with capacity upto 7.5
MW.
• T
he OTEC works in Closed Rankine Cycle.
• In India the Department of Non-Conventional Energy Sources
(DNES) hasproposed to set up a 1 MW OTEC plant in
Lakshadweep Islnd.
4. Ocean Thermal Energy Conversion (OTEC)
• Rankine Cycle OTEC
44
5. Tidal Energy
45
• The Tides in the sea are result of the universal gravitational
effects of the Sun and Moon on the Earth.
• T
hiscauses a periodic rise and fall of the sea water level with
daily rising and setting of the Sun and Moon.
• These tides can be used to produce electricity which is known
asT
idal power.
• When the water isabove the mean sea level it iscalled flood
tide, and when it is below it’s called ebb tide.
5. Tidal Energy
• To harness the power of tides, a dam is built near the coastal
area. The dam has large gates to let the water in and out. A low
head hydraulic reversible Turbine is used which in turn generates
electricity.
46
5. Tidal Energy
47
• A tidal basin is formed, which is separated from the sea by the
dam. With every tide, a difference in water levels of the sea and
the basin isobtained.
• The basin is filled with water with high tide and emptied with low
tide, with the water passing through the T
urbine.
• The turbine is reversible type which can operate in both
directions of rotation.
• The turbine is coupled with a Generator, which generates
Electricity.
5. Tidal Energy
48
• The tidal plant shown in figure is called as Single Basin Plant. The
problem with such plants is that it can not generate electricity
continuously.
• To overcome this drawback, two basin plants can be used.
• Due to the absence of cost effective technology, and
unavailability of continuous tides, this source of energy is not fully
utilized.
6. Geothermal Energy
49
• This energy is embedded within the Earth. The Earth has molten
core and various volcanic activities occurs in many places.
• Due to the heat, the ground water is converted into steam and
sometimes the hot water and steam comes out naturally due to
high pressure.
• For large scale use, we can bore holes (Steam Wells) for upto
1000m, which will release the steam & hot water with
temperature upto 200-300 ºc.
• These steam can be used to operate steam turbine which will
generate electricity.
6. Geothermal Energy
• Geothermal power plant
50
6. Geothermal Energy
51
• The water coming out of steam wells contains high amount of
dissolved minerals, and the steam contains these water
molecules.
• So the moisture and solid particles needs to be separated out
from the steam before being fed to the steam turbine.
7. Hydrogen Energy
52
• The Hydrogen can play an important role as an alternative
source of energy.
• Its burning process is non-polluting and it can be used in the fuel
cells too.
• Hydrogen has highest energy content per unit of mass as
compared to any other chemical fuels.
• One of the most attractive feature of Hydrogen is that, it can be
produced from water which iseasily & abundantly available in
nature.
7. Hydrogen Energy
53
• T
he problems with Hydrogen Energy are:
1. Hydrogen isnot freely available in nature, it hasto be
produced.
2. technical problems in production of Hydrogen, its storage and
transportation.
8. Fuel Cells
• It is defined as an electro-chemical device which continuously
converts the fuel into electrical energy.
• The difference between a fuel cell and a battery is that, the
battery generates electricity from the energy which is stored in
it. While, the fuel cell generates electricity from fuel which is
stored in an external tank.
• So, a battery may become dead, while a fuel cell will run until
the fuel supplied to it.
59 Qu. Write difference between Fuel Cell and Battery.
8. Fuel Cells
55
• Some types of fuel cell are: Hydrogen-Oxygen (H2, O2),
Hydrazine-Oxygen (N2H4, O2), Carbon/Coal-Oxygen (C, O2),
Methane-Oxygen (CH4, O2).
• Hydrogen-Oxygen fuel cells (Hydrox) are most efficient and
highly developed cell among all.
• Inthis two porous carbon or nickel electrodes are immersed in
an electrolyte. The electrolyte is usually 30%KOH due to its high
electrical conductivity and low corrosiveness.
• In the fuel cells the prime requirement of electrolyte is that, it
should not change as the cell operates.
8. Fuel Cells
• The H2 fed at one end, is absorbed by electrode, which gives
free electrons and it also reacts with Hydroxyl ions (OH-) of
electrolyte to form H2O.
56
8. Fuel Cells
• The free electrons travel from one electrode to another through
external circuit, causing current.
• T
hese electrons reacts with the H2O and the O2 being fed from
another side, and formsHydroxyl ions (OH-).
• T
he OH- ions generated are consumed in the electrolyte and
thus the electrolyte remains unaffected.
H2
2H+ +2OH-
O2
2H+ +2e-
2H2O
2O
57
O +H2O +2e- 2OH-
8. Fuel Cells
58
• These type of cells operate at (or slightly above) the
atmospheric pressure and at temperature of about 90 ºc. These
cells are also called as Low Pressure and Low temperature cells.
• In high pressure cells the pressure may go upto 45 atmospheric
and temperature may go upto 300 ºc.
• A single Hydrogen-Oxygen fuel cell produces an emf of 1.23
volts. By connecting more cells in proper arrangement we can
get highervalues of voltage and power.
8. Fuel Cells
• Advantages of fuel cells:
1. It is a direct conversion process and does not involve a thermal
process, so it hashigh efficiency (38%- 60%).
2. The cell unit is small, light weight and requires low maintenance.
3. Fuel cells use may reduce the transmission losses.
4. Very low pollution and noise, it can easily be used in residential
areas.
• Drawbacks includes low voltage output, high initial costs and
low service life.
64
9. MHD (Magneto Hydro-Dynamic) Power
60
• T
he principle of MHD power generation isbased on direct
conversion of Thermal Energy into Electrical Energy.
• Itis based on the Faraday’s principle: “When an electric
conductor ismoved across a magnetic field, a voltage is
induced in it which produces electric current.”
• I
n MHD generation solid conductor is replaced by electrically
conducting fluid, which may be either an ionised gas or liquid
metal.
9. MHD (Magneto Hydro-Dynamic) Power
61
9. MHD (Magneto Hydro-Dynamic) Power
62
• As shown, Hot, partially ionised and compressed gasispassed
through a strong magnetic field in a duct, which causes
generation of electrical potential in the gas.
• Electrodes placed at the two ends of the duct, pick up the
potential generated in the gas.
• In this manner the Direct Current (DC) is obtained, which can be
later converted into AC using an inverter.
• An experimental MHD plant of 5 MW is set up in Tiruchirapalli.
Suggested Study
63
• Advantages & Disadvantages (Merits & Demerits )of Non-
conventional / Renewable energy sources.
• Obstacles in implementation of NCES.
• Prepare answers of previous year’s questions and questions
given in the book.
• Note: Energy Storage (of Solar
, Wind etc.) will be studied in
upcoming units.
End of Unit - 1
69

Contenu connexe

Similaire à Non-Conventional Energy Sources_L1.pptx

Energy scenario
Energy scenarioEnergy scenario
Energy scenarioRahul Shah
 
lecture_note_403105181219180.pdf
lecture_note_403105181219180.pdflecture_note_403105181219180.pdf
lecture_note_403105181219180.pdfPawanKumarPal7
 
Environment Science unit 1
Environment Science  unit 1Environment Science  unit 1
Environment Science unit 1Blaze691
 
Natural resources renewable and non renewable
Natural resources   renewable and non renewableNatural resources   renewable and non renewable
Natural resources renewable and non renewablePardhu Madipalli
 
CONVENTIONAL AND NON CONVENTIONAL RESOURCES
CONVENTIONAL AND NON CONVENTIONAL RESOURCES CONVENTIONAL AND NON CONVENTIONAL RESOURCES
CONVENTIONAL AND NON CONVENTIONAL RESOURCES Rhythm Narula
 
Energy Auditing and demand side management ,EADSM
Energy Auditing and demand side management ,EADSMEnergy Auditing and demand side management ,EADSM
Energy Auditing and demand side management ,EADSMvmkrvgr
 
1.5 Energy Resources.ppt
1.5 Energy Resources.ppt1.5 Energy Resources.ppt
1.5 Energy Resources.pptJAYAPRIYAR7
 
Energy resources Growing energy needs Renewable and non renewable energy reso...
Energy resources Growing energy needs Renewable and non renewable energy reso...Energy resources Growing energy needs Renewable and non renewable energy reso...
Energy resources Growing energy needs Renewable and non renewable energy reso...BestStatus1
 
Advances in power generation
Advances in power generationAdvances in power generation
Advances in power generationKetan Pitrubhakta
 
Energy resources
Energy resourcesEnergy resources
Energy resourcesajay_483
 
Coal an energy resource
Coal an energy resourceCoal an energy resource
Coal an energy resourcesehrish628
 
Energy (Coal Reserves of Pakistan)
Energy (Coal Reserves of Pakistan)Energy (Coal Reserves of Pakistan)
Energy (Coal Reserves of Pakistan)sehrish628
 
Non Conventionaal source of energy
Non Conventionaal   source of energy Non Conventionaal   source of energy
Non Conventionaal source of energy shriram555222
 
Module-1 Non Conventional Energy sources
Module-1 Non Conventional Energy sourcesModule-1 Non Conventional Energy sources
Module-1 Non Conventional Energy sourcesDr Ramesh B T
 

Similaire à Non-Conventional Energy Sources_L1.pptx (20)

Energy scenario
Energy scenarioEnergy scenario
Energy scenario
 
lecture_note_403105181219180.pdf
lecture_note_403105181219180.pdflecture_note_403105181219180.pdf
lecture_note_403105181219180.pdf
 
Environment Science unit 1
Environment Science  unit 1Environment Science  unit 1
Environment Science unit 1
 
Natural resources renewable and non renewable
Natural resources   renewable and non renewableNatural resources   renewable and non renewable
Natural resources renewable and non renewable
 
Energy resources
Energy resourcesEnergy resources
Energy resources
 
CONVENTIONAL AND NON CONVENTIONAL RESOURCES
CONVENTIONAL AND NON CONVENTIONAL RESOURCES CONVENTIONAL AND NON CONVENTIONAL RESOURCES
CONVENTIONAL AND NON CONVENTIONAL RESOURCES
 
Global Warming & Our Energy Future
Global Warming & Our Energy FutureGlobal Warming & Our Energy Future
Global Warming & Our Energy Future
 
Energy Auditing and demand side management ,EADSM
Energy Auditing and demand side management ,EADSMEnergy Auditing and demand side management ,EADSM
Energy Auditing and demand side management ,EADSM
 
Introduction to Power Plants.pdf
Introduction to Power Plants.pdfIntroduction to Power Plants.pdf
Introduction to Power Plants.pdf
 
1.5 Energy Resources.ppt
1.5 Energy Resources.ppt1.5 Energy Resources.ppt
1.5 Energy Resources.ppt
 
Energy resources Growing energy needs Renewable and non renewable energy reso...
Energy resources Growing energy needs Renewable and non renewable energy reso...Energy resources Growing energy needs Renewable and non renewable energy reso...
Energy resources Growing energy needs Renewable and non renewable energy reso...
 
Advances in power generation
Advances in power generationAdvances in power generation
Advances in power generation
 
Energy resources
Energy resourcesEnergy resources
Energy resources
 
Coal an energy resource
Coal an energy resourceCoal an energy resource
Coal an energy resource
 
Energy (Coal Reserves of Pakistan)
Energy (Coal Reserves of Pakistan)Energy (Coal Reserves of Pakistan)
Energy (Coal Reserves of Pakistan)
 
Lecture 9 energy_sources
Lecture 9 energy_sourcesLecture 9 energy_sources
Lecture 9 energy_sources
 
UNIT-1 RES.pdf
UNIT-1 RES.pdfUNIT-1 RES.pdf
UNIT-1 RES.pdf
 
Kps
KpsKps
Kps
 
Non Conventionaal source of energy
Non Conventionaal   source of energy Non Conventionaal   source of energy
Non Conventionaal source of energy
 
Module-1 Non Conventional Energy sources
Module-1 Non Conventional Energy sourcesModule-1 Non Conventional Energy sources
Module-1 Non Conventional Energy sources
 

Plus de ShalabhMishra10

Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformShalabhMishra10
 
Chapter09-10 Pointers and operations .PPT
Chapter09-10  Pointers and operations .PPTChapter09-10  Pointers and operations .PPT
Chapter09-10 Pointers and operations .PPTShalabhMishra10
 
arrays, pointers and operations pointers
arrays, pointers and operations pointersarrays, pointers and operations pointers
arrays, pointers and operations pointersShalabhMishra10
 
Fourier Series, its properties and applications in signal processing
Fourier Series, its properties and applications in signal processingFourier Series, its properties and applications in signal processing
Fourier Series, its properties and applications in signal processingShalabhMishra10
 
Single phase AC circuit.ppt
Single phase AC circuit.pptSingle phase AC circuit.ppt
Single phase AC circuit.pptShalabhMishra10
 
5_2019_02_01!09_42_56_PM.pptx
5_2019_02_01!09_42_56_PM.pptx5_2019_02_01!09_42_56_PM.pptx
5_2019_02_01!09_42_56_PM.pptxShalabhMishra10
 
chapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptchapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptShalabhMishra10
 
vectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptx
vectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptxvectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptx
vectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptxShalabhMishra10
 
physics121_lecture05.ppt
physics121_lecture05.pptphysics121_lecture05.ppt
physics121_lecture05.pptShalabhMishra10
 
dcmotor-190211092619.pptx
dcmotor-190211092619.pptxdcmotor-190211092619.pptx
dcmotor-190211092619.pptxShalabhMishra10
 
BEE301 - circuit theory - NT.pptx
BEE301 - circuit theory - NT.pptxBEE301 - circuit theory - NT.pptx
BEE301 - circuit theory - NT.pptxShalabhMishra10
 

Plus de ShalabhMishra10 (20)

Ch4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transformCh4 (1)_fourier series, fourier transform
Ch4 (1)_fourier series, fourier transform
 
Chapter09-10 Pointers and operations .PPT
Chapter09-10  Pointers and operations .PPTChapter09-10  Pointers and operations .PPT
Chapter09-10 Pointers and operations .PPT
 
arrays, pointers and operations pointers
arrays, pointers and operations pointersarrays, pointers and operations pointers
arrays, pointers and operations pointers
 
Fourier Series, its properties and applications in signal processing
Fourier Series, its properties and applications in signal processingFourier Series, its properties and applications in signal processing
Fourier Series, its properties and applications in signal processing
 
circuit theory.pptx
 circuit theory.pptx circuit theory.pptx
circuit theory.pptx
 
Single phase AC circuit.ppt
Single phase AC circuit.pptSingle phase AC circuit.ppt
Single phase AC circuit.ppt
 
5_2019_02_01!09_42_56_PM.pptx
5_2019_02_01!09_42_56_PM.pptx5_2019_02_01!09_42_56_PM.pptx
5_2019_02_01!09_42_56_PM.pptx
 
chapter6-speed-control-dc.ppt
chapter6-speed-control-dc.pptchapter6-speed-control-dc.ppt
chapter6-speed-control-dc.ppt
 
class17A.ppt
class17A.pptclass17A.ppt
class17A.ppt
 
DC-machines (2).ppt
DC-machines (2).pptDC-machines (2).ppt
DC-machines (2).ppt
 
Unit7-DC_Motors.ppt
Unit7-DC_Motors.pptUnit7-DC_Motors.ppt
Unit7-DC_Motors.ppt
 
class13.ppt
class13.pptclass13.ppt
class13.ppt
 
emf-1-unit (1).ppt
emf-1-unit (1).pptemf-1-unit (1).ppt
emf-1-unit (1).ppt
 
vectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptx
vectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptxvectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptx
vectorcalculusandlinearalgebra-150518103010-lva1-app6892.pptx
 
physics121_lecture05.ppt
physics121_lecture05.pptphysics121_lecture05.ppt
physics121_lecture05.ppt
 
dcmotor-190211092619.pptx
dcmotor-190211092619.pptxdcmotor-190211092619.pptx
dcmotor-190211092619.pptx
 
BEE301 - circuit theory - NT.pptx
BEE301 - circuit theory - NT.pptxBEE301 - circuit theory - NT.pptx
BEE301 - circuit theory - NT.pptx
 
DC-machines (1).ppt
DC-machines (1).pptDC-machines (1).ppt
DC-machines (1).ppt
 
Lecture7.ppt
Lecture7.pptLecture7.ppt
Lecture7.ppt
 
class1A.ppt
class1A.pptclass1A.ppt
class1A.ppt
 

Dernier

DM Pillar Training Manual.ppt will be useful in deploying TPM in project
DM Pillar Training Manual.ppt will be useful in deploying TPM in projectDM Pillar Training Manual.ppt will be useful in deploying TPM in project
DM Pillar Training Manual.ppt will be useful in deploying TPM in projectssuserb6619e
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating SystemRashmi Bhat
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating SystemRashmi Bhat
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgsaravananr517913
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solidnamansinghjarodiya
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptSAURABHKUMAR892774
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...Erbil Polytechnic University
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfAsst.prof M.Gokilavani
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleAlluxio, Inc.
 
Configuration of IoT devices - Systems managament
Configuration of IoT devices - Systems managamentConfiguration of IoT devices - Systems managament
Configuration of IoT devices - Systems managamentBharaniDharan195623
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the weldingMuhammadUzairLiaqat
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxRomil Mishra
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Coursebim.edu.pl
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm Systemirfanmechengr
 

Dernier (20)

DM Pillar Training Manual.ppt will be useful in deploying TPM in project
DM Pillar Training Manual.ppt will be useful in deploying TPM in projectDM Pillar Training Manual.ppt will be useful in deploying TPM in project
DM Pillar Training Manual.ppt will be useful in deploying TPM in project
 
Main Memory Management in Operating System
Main Memory Management in Operating SystemMain Memory Management in Operating System
Main Memory Management in Operating System
 
Virtual memory management in Operating System
Virtual memory management in Operating SystemVirtual memory management in Operating System
Virtual memory management in Operating System
 
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfgUnit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
Unit7-DC_Motors nkkjnsdkfnfcdfknfdgfggfg
 
Design and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdfDesign and analysis of solar grass cutter.pdf
Design and analysis of solar grass cutter.pdf
 
Engineering Drawing section of solid
Engineering Drawing     section of solidEngineering Drawing     section of solid
Engineering Drawing section of solid
 
Arduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.pptArduino_CSE ece ppt for working and principal of arduino.ppt
Arduino_CSE ece ppt for working and principal of arduino.ppt
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
"Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ..."Exploring the Essential Functions and Design Considerations of Spillways in ...
"Exploring the Essential Functions and Design Considerations of Spillways in ...
 
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdfCCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
CCS355 Neural Networks & Deep Learning Unit 1 PDF notes with Question bank .pdf
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Correctly Loading Incremental Data at Scale
Correctly Loading Incremental Data at ScaleCorrectly Loading Incremental Data at Scale
Correctly Loading Incremental Data at Scale
 
Configuration of IoT devices - Systems managament
Configuration of IoT devices - Systems managamentConfiguration of IoT devices - Systems managament
Configuration of IoT devices - Systems managament
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
welding defects observed during the welding
welding defects observed during the weldingwelding defects observed during the welding
welding defects observed during the welding
 
Mine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptxMine Environment II Lab_MI10448MI__________.pptx
Mine Environment II Lab_MI10448MI__________.pptx
 
Katarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School CourseKatarzyna Lipka-Sidor - BIM School Course
Katarzyna Lipka-Sidor - BIM School Course
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Class 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm SystemClass 1 | NFPA 72 | Overview Fire Alarm System
Class 1 | NFPA 72 | Overview Fire Alarm System
 

Non-Conventional Energy Sources_L1.pptx

  • 2. Syllabus 2 • Various non-conventional energy resources- Introduction, availability, classification, relative merits and demerits.
  • 3. Introduction 3 • Energy - Energy can be defined as the ability (or) capacity to do work. • Different forms of energy: - due to chemical reaction - due to flow of electron - due to thermal vibration - due to radiation of light - due to moving parts - due to nuclear reaction (1)Chemical energy (2) Electrical energy (3)Heat energy (4) Light energy (5)Mechanical energy (6)Nuclearenergy etc.
  • 4. Introduction 4 • The S Iunit of Energy is Joule (or)N/m • Law of conservation of Energy: According to law of conservation of energy, Energy can neither be created nor destroyed. But, one form of energy can be converted to another form. • Examples: 1. A heater convert electrical energy into heat energy. 2.A battery converts chemical energy into electrical energy. etc.
  • 5. Energy Sources 5 • T he available energy sources can be divided into two categories. 1. Primary Energy Sources 2. Secondary Energy Sources
  • 6. Primary Energy Sources 6 • The energy sources which provide a net supply of energy are defined asPrimary Sources. • Examples are Coal, Oil, Natural Gas and Nuclear. Secondary Energy Sources • T hese sources produce no net energy. • Examples include Solar , Wind, Water (Hydro, Tidal, Wave etc.) • T hese sources produce no harm to the environment and earth.
  • 8. Energy Sources Coal 32.5% 92% (commercial) Oil 38.3% Natural Gas 19.0% Nuclear 0.13% Hydro 2.0% Wood 6.6% 8% (non-commercial) Dung 1.2% Waste 0.3% 33% 38% 19% 7 % 2 % 0 % 0 % 1 % • T able below gives the %usage of various energy sources Chart Title Coal Oil Natural Gas Nuclear Hydro Wood Dung Waste 8 (source: Book)
  • 9. Energy Sources 9 • From above table we see that the non-commercial sources contributes a huge 8%of total energy demand. • This is 4 times the energy produced by Hydro and 60 times more than that of Nuclear energy. • Indeveloping nations the non-commercial sources play a significant role in energy supply, and this dependence is likely to grow continuously unless some alternate sources are adopted.
  • 10. Energy Sources • Table below gives the %usage of various energy sources (India) Coal 56.9% 66.3% Conventional (Non-Renewable) Oil 0.2% Natural Gas 7.2% Nuclear 2.0% Hydro 14.2% 33.7% Non-Conventional (Renewable) Solar 6.9% Wind 10.0% Bio Mass 2.6% 57% 0 % 7 % 2 % 14% 7 % 10% 3 % Chart Title Coal Oil Natural Gas Nuclear Hydro Solar Wind Bio Mass 10
  • 12. 1. Coal 12 • Coal is a non-renewable energy source because it takes millions of yearsto form. That means what isin the ground now isall there isand we can’t realistically make more. • Since the advent of industrialization, the Coal has been the most common source of energy. • To generate energy from coal, mainly it is burnt in Boilers and Heat energy is produced, which in turn is used to generate other forms of energy such as Electricity.
  • 13. How Coal is formed 13 • The energy in coal comes from energy that was stored in trees that lived hundredsof millions of yearsago in swamp forests, even before the dinosaurs! • When these trees died, they formed layers at the bottom of the swamps. Water and dirt began to pile up on top of the dead plant. • Over thousands of years pressure and heat would build up on top of the plant remains, undergoing chemical and physical changes and pushing out the oxygen, turning these remains into what we call coal.
  • 14. Types of coal 14 • The geological process of changing something under the effect of temperature and pressure is called metamorphism. 1. Peat is generally considered a precursor of coal, but it has been used as a fuel in some areas — most notably in Ireland and Finland. In its dehydrated form, it can help soak up oil spills. 2. Lignite is the lowest quality and the first to be formed. 3. Sub-Bituminous Coal ismost often used as fuel for steam- electric power generation.
  • 15. Types of coal 15 4. Bituminous Coal is a dense sedimentary rock, generally of a high-quality. 5. Steam coal isa transition type between bituminous and anthracite. 6. Anthracite isthe highest rank of coal. I t’s a hard, glossy rock and highly valued for its properties. 7. Graphite isnot generally considered a type of coal because it cannot be used for heating. It is most often used in pencils or as a lubricant (when powdered).
  • 16. How Coal is formed 16
  • 17. The Adverse Effects Of Coal 17 • Coal isone of the main contributors to global warming, and coal mining and its fueling of power stations cause major environmental damage. • Coal mining had been very dangerous. The list of coal mine accidents is long, and even today, accidents are still surprisingly common. • Many miners also suffer from Coal-worker’s Pneumoconiosis, also known as“Black Lung”.
  • 18. The Adverse Effects Of Coal 18 • Coal pollution alone is responsible for one million deaths annually across the world; • According to a US report published in 2004, coal-fired power plants shorten nearly 24,000 lives each year in the US(2,800 from lung cancer). • Burning coal releases great quantities of carbon dioxide into the air and also releases methane — a much more potent greenhouse gas.
  • 19. Thermal Power in India • I ndia'selectricity sector isdominated by fossil fuels, and in particular coal, which in 2017-18 produced about three fourths of all electricity. • However, the government is pushing for an increased investment in renewable energy. • The National Electricity Plan of 2018 prepared by the Government of I ndia states that the country does not need additional non-renewable power plants in the utility sector until 2027. 22
  • 20. 2. Oil 20 • Almost 40%of the total energy needs of the world is fed by Oil. • The rising prices of Oil has brought a considerable strain to the world economy. • With today’s rate of consumption of oil and what we have in reserve, the oil will last for about 100 years, unless more oil source isdiscovered.
  • 21. 3. Natural Gas 21 • Natural Gas isan incompletely utilised resource available at the bottom of earth. • Its huge quantity is burnt off in the oil production process. • It is not fully utilised due to non availability of ready market and due to it’s high transportation cost. • Gaseousfuels can be classified as: 1. Gases of fixed composition such as Acetylete, Ethylene, Methane etc. 2. Composite industrial gases such as coke oven gas, blast furnace gas etc.
  • 22. 4. Nuclear Energy 22 • Nuclear power isthe use of nuclearreactions that releases nuclear energy to generate heat, which most commonly is then used in steam turbines to produce electricity in a Nuclear Power Plant. • Nuclear power can be obtained from nuclear fission, nuclear decay and nuclear fusion reactions. • At present majority of electricity isproduced by Nuclear fission of Uranium and Plutonium.
  • 24. NCES(Non-Conventional Energy Sources) • The NCES are Solar , Wind, Sea/Ocean, Geothermal, Biomass etc. • Many people are continuously trying to find more NCES. • The other terms used to describe the non-conventional energy are ‘Alternative’, ‘Appropriate’, ‘Natural’, ‘New’, and ‘Renewable’.
  • 25. RENEWABLE ENERGY POTENTIAL IN INDIA Sr. No Energy Sources Country Potential Installed Capacity 1. Biomass & Waste 60000 MW 4278.87 MW 2. Small hydro 15,000 MW 3496.14 MW 3. Wind 100000 MW 18420.4 MW 4. Solar Energy 200000 MW 1282.58 MW 5 Geothermal 10 GW 4 MW
  • 26. 1. Hydro Energy 26 • The energy form water is generated by allowing the water to fall under the force of gravity. • I t isused almost exclusively for Electricity generation. • The Potential energy of the water is converted into Mechanical energy through Hydraulic Turbines, which in turn moves the Generator which generates Electricity. • T he capital cost of Hydro Electric Plant is very high as compared to other kinds of power plants. • The operating cost of these plants is low as no fuel isrequired.
  • 27. 2. Solar Energy: web • Energy produced through the sunlight is called solar energy. • Sun’s energy comes to earth in form of Light and Heat. This energy keeps the temperature of earth’s atmosphere at normal level, so that living things can survive, the heat causes currents in atmosphere (wind) and ocean (tide), causes the water cycle and generates photosynthesis in plants. • Solar energy can be utilized in two ways, either T hermally or by Photovoltaics. 32
  • 28. 28 • The solar photovoltaic cells are exposed to sunlight and in turn the electricity is produced. Photovoltaic cells converts the sun light energy into electricity. • The Solar energy’s potential is about 178 Billion MW, which is around 20000 timesmore than the world’s total energy demand. • Various applications of Solar energy are: 1. Solar Water Heating 2. Solar Cookers 2. Solar Energy:
  • 29. 29 3. Solar engine for water pumping. 4. Street Lights 5. Solar drying of agricultural and animal products. 6. Salt production by sea water evaporation. 7. Heating and Cooling of Residential buildings. 8. Solar Furnace. 9. Solar distillation. 10.Electric power generation by Solar Ponds, Steam Generators heated by rotating reflectors and Photovoltaic cells. 2. Solar Energy:
  • 30. 3. Wind Energy: 30 • Energy can be produced by harnessing the wind power. • Wind iscaused by mainly two reasons: 1. Heating & Cooling of the atmosphere which generates convection current. 2. The Rotation of Earth with respect to its atmosphere and its motion around the Sun. • The potential of wind energy is very large which is estimated to be about 1.6x107 MW.
  • 31. 3. Wind Energy: 31 • Wind Energy is an indirect source of Solar Energy. Why? • In India generally the wind speed is low. Therefore attempts are being made for development of low speed, low cost wind mills. • Special focus is on development of mill for water pumping which can operate at low wind speed of 8-36 km/hr . Which can be utilised for providing drinking water in small rural area, irrigation of small farms. • I n I ndia high speed winds are available in coastal areasof Saurashtra, Rajasthan and some parts of central India.
  • 32. 3. Wind Energy: • In these area we can use high speed wind mills, to generate Electricity and feeding the same to the grid. • Wind Mill Types: 1. Multi-blade type Wind Mill Horizontal Axis Vertical Axis 2. Sail type 3. Propeller type 4. Savonius type 5. Darrieus type 32
  • 33. 3. Wind Energy: 33 • Characteristics of Wind Energy: 1 . I t isa renewable source of energy. 2. Wind power systems are non-polluting and has no adverse effects of the environment. 3. Wind energy systems avoids fuel provision and transport. 4. On small scale of upto few kilowatts, it is less costly. On large scale the costs are comparable with the costs of conventional energy sources, but low cost can be achieved by massproduction.
  • 34. 3. Wind Energy: 34 • Problems with Wind Energy: 1. Availability of wind is fluctuating or irregular in nature. 2. Unlike water energy, it requires storage means because of irregularnature. 3. Wind energy systems are noisy in operation; a large unit can be heard many km away. 4. Large area is needed for installation of Wind Farms, for Electricity generation.
  • 35. 3. Wind Energy: 35 • I t isused for operating water pumps for irrigation purposes. Approximately 2756 wind pumps were set up for thispurpose. • In seven states, wind power operated power houses were installed and their installed capacity is 1000 MW. • I ndia has second position in wind power energy generation.
  • 36. 4. Bio Mass and Bio Gas • Bio Massmeans Organic Matter. • The Bio-mass is produced in nature through Photosynthesis achieved by solar energy conversion. • I n simplest form the reactions in the Photosynthesiscan be represented as: 6H2O +6CO2 C6H12O6 +6O2 • Inthis reaction, the water and carbon dioxide are converted into organic material C6H12O6 which is basic molecule of stable carbohydrate at low temperature. 36
  • 37. 4. Bio Mass and Bio Gas • At high temperature, it breaks and releases Heat of amount equal to 112 kcal/mole or 469 kJ/mole. C6H12O6 +O2 CO2 +H2O +112 kcal/mole • So the absorbed energy of photons is converted into carbohydrate which can then be used as source of energy. • I t ispossible to produce large amount of carbohydrate by growing Algae (say) under suitable conditions, in plastic tubes or in ponds. 37
  • 38. 4. Bio Mass and Bio Gas 38 • Then the Algae, which is our Bio-Mass in this example, could be harvested, dried and burned for production of heat that could be converted into Electricity. • The energy from Bio-Mass is taken by burning it directly or by further processing it to produce more convenient liquid and gas forms.
  • 39. 4. Bio Mass and Bio Gas • The Bio-Mass resources falls into three categories: 1. Bio-Mass in its traditional solid form. (e.g. Wood, agri waste etc.) This form is directly burned to get energy. 2. Bio-Mass in its non-traditional form (converted into liquid form) In this category the Bio-Mass is converted into liquid from such asEthanol & Methanol, which can be used asliquid fuel in engines 3. Bio-Mass in Fermented form. Inthis category Bio-mass is fermented to obtain its Gaseous fuel called Bio-Gas. Bio-gas has 55-65%Methane, 30-40%CO2 and rest impurities containing H2, H2Sand some N2. 44
  • 40. 3. Bio Mass and Bio Gas 40 • Energy Plantation: For large scale production of electricity, use of fire wood as a fuel for the boiler of a conventional power plant is called Energy Plantation scheme. In this some selected species of trees are planted and harvested over regular time period, on land near a power plant. • This requires a large area near power plant for plantation purpose. • T he trees which are suggested for I ndia are Eucalyptus, Casuarina and Babool.
  • 41. 3. Bio Mass and Bio Gas 41 • Bio-Gas: The main source for production of bio-gas is wet cow dung (gobar) or wet livestock waste (or even Human waste). • The bio-gas has a particular significance in India because of large cattle population, which isabout 250 million. • Some other sources of bio-gasare: Sewage, Crop residue, vegetable waste, poultry waste, algae etc.
  • 42. 4. Ocean Thermal Energy Conversion (OTEC) 42 • This is also as indirect source of Solar Energy. • The tropical oceans absorb a large amount of solar energy. The surface of ocean acts as collector of heat, while the temperature in the depths is20-25 ºc lower. • This difference in temperature is used to obtain energy. • T he surface water , which isheated, isused to heat some low boiling organic fluid such as ammonia, propane, R-12, R-22, etc. • T hen the vapourproduced will run the heat engine.
  • 43. 4. Ocean Thermal Energy Conversion (OTEC) 43 • The exit vapour is condensed using cold ocean water of deeper regions. • Several such plants were build in France with capacity upto 7.5 MW. • T he OTEC works in Closed Rankine Cycle. • In India the Department of Non-Conventional Energy Sources (DNES) hasproposed to set up a 1 MW OTEC plant in Lakshadweep Islnd.
  • 44. 4. Ocean Thermal Energy Conversion (OTEC) • Rankine Cycle OTEC 44
  • 45. 5. Tidal Energy 45 • The Tides in the sea are result of the universal gravitational effects of the Sun and Moon on the Earth. • T hiscauses a periodic rise and fall of the sea water level with daily rising and setting of the Sun and Moon. • These tides can be used to produce electricity which is known asT idal power. • When the water isabove the mean sea level it iscalled flood tide, and when it is below it’s called ebb tide.
  • 46. 5. Tidal Energy • To harness the power of tides, a dam is built near the coastal area. The dam has large gates to let the water in and out. A low head hydraulic reversible Turbine is used which in turn generates electricity. 46
  • 47. 5. Tidal Energy 47 • A tidal basin is formed, which is separated from the sea by the dam. With every tide, a difference in water levels of the sea and the basin isobtained. • The basin is filled with water with high tide and emptied with low tide, with the water passing through the T urbine. • The turbine is reversible type which can operate in both directions of rotation. • The turbine is coupled with a Generator, which generates Electricity.
  • 48. 5. Tidal Energy 48 • The tidal plant shown in figure is called as Single Basin Plant. The problem with such plants is that it can not generate electricity continuously. • To overcome this drawback, two basin plants can be used. • Due to the absence of cost effective technology, and unavailability of continuous tides, this source of energy is not fully utilized.
  • 49. 6. Geothermal Energy 49 • This energy is embedded within the Earth. The Earth has molten core and various volcanic activities occurs in many places. • Due to the heat, the ground water is converted into steam and sometimes the hot water and steam comes out naturally due to high pressure. • For large scale use, we can bore holes (Steam Wells) for upto 1000m, which will release the steam & hot water with temperature upto 200-300 ºc. • These steam can be used to operate steam turbine which will generate electricity.
  • 50. 6. Geothermal Energy • Geothermal power plant 50
  • 51. 6. Geothermal Energy 51 • The water coming out of steam wells contains high amount of dissolved minerals, and the steam contains these water molecules. • So the moisture and solid particles needs to be separated out from the steam before being fed to the steam turbine.
  • 52. 7. Hydrogen Energy 52 • The Hydrogen can play an important role as an alternative source of energy. • Its burning process is non-polluting and it can be used in the fuel cells too. • Hydrogen has highest energy content per unit of mass as compared to any other chemical fuels. • One of the most attractive feature of Hydrogen is that, it can be produced from water which iseasily & abundantly available in nature.
  • 53. 7. Hydrogen Energy 53 • T he problems with Hydrogen Energy are: 1. Hydrogen isnot freely available in nature, it hasto be produced. 2. technical problems in production of Hydrogen, its storage and transportation.
  • 54. 8. Fuel Cells • It is defined as an electro-chemical device which continuously converts the fuel into electrical energy. • The difference between a fuel cell and a battery is that, the battery generates electricity from the energy which is stored in it. While, the fuel cell generates electricity from fuel which is stored in an external tank. • So, a battery may become dead, while a fuel cell will run until the fuel supplied to it. 59 Qu. Write difference between Fuel Cell and Battery.
  • 55. 8. Fuel Cells 55 • Some types of fuel cell are: Hydrogen-Oxygen (H2, O2), Hydrazine-Oxygen (N2H4, O2), Carbon/Coal-Oxygen (C, O2), Methane-Oxygen (CH4, O2). • Hydrogen-Oxygen fuel cells (Hydrox) are most efficient and highly developed cell among all. • Inthis two porous carbon or nickel electrodes are immersed in an electrolyte. The electrolyte is usually 30%KOH due to its high electrical conductivity and low corrosiveness. • In the fuel cells the prime requirement of electrolyte is that, it should not change as the cell operates.
  • 56. 8. Fuel Cells • The H2 fed at one end, is absorbed by electrode, which gives free electrons and it also reacts with Hydroxyl ions (OH-) of electrolyte to form H2O. 56
  • 57. 8. Fuel Cells • The free electrons travel from one electrode to another through external circuit, causing current. • T hese electrons reacts with the H2O and the O2 being fed from another side, and formsHydroxyl ions (OH-). • T he OH- ions generated are consumed in the electrolyte and thus the electrolyte remains unaffected. H2 2H+ +2OH- O2 2H+ +2e- 2H2O 2O 57 O +H2O +2e- 2OH-
  • 58. 8. Fuel Cells 58 • These type of cells operate at (or slightly above) the atmospheric pressure and at temperature of about 90 ºc. These cells are also called as Low Pressure and Low temperature cells. • In high pressure cells the pressure may go upto 45 atmospheric and temperature may go upto 300 ºc. • A single Hydrogen-Oxygen fuel cell produces an emf of 1.23 volts. By connecting more cells in proper arrangement we can get highervalues of voltage and power.
  • 59. 8. Fuel Cells • Advantages of fuel cells: 1. It is a direct conversion process and does not involve a thermal process, so it hashigh efficiency (38%- 60%). 2. The cell unit is small, light weight and requires low maintenance. 3. Fuel cells use may reduce the transmission losses. 4. Very low pollution and noise, it can easily be used in residential areas. • Drawbacks includes low voltage output, high initial costs and low service life. 64
  • 60. 9. MHD (Magneto Hydro-Dynamic) Power 60 • T he principle of MHD power generation isbased on direct conversion of Thermal Energy into Electrical Energy. • Itis based on the Faraday’s principle: “When an electric conductor ismoved across a magnetic field, a voltage is induced in it which produces electric current.” • I n MHD generation solid conductor is replaced by electrically conducting fluid, which may be either an ionised gas or liquid metal.
  • 61. 9. MHD (Magneto Hydro-Dynamic) Power 61
  • 62. 9. MHD (Magneto Hydro-Dynamic) Power 62 • As shown, Hot, partially ionised and compressed gasispassed through a strong magnetic field in a duct, which causes generation of electrical potential in the gas. • Electrodes placed at the two ends of the duct, pick up the potential generated in the gas. • In this manner the Direct Current (DC) is obtained, which can be later converted into AC using an inverter. • An experimental MHD plant of 5 MW is set up in Tiruchirapalli.
  • 63. Suggested Study 63 • Advantages & Disadvantages (Merits & Demerits )of Non- conventional / Renewable energy sources. • Obstacles in implementation of NCES. • Prepare answers of previous year’s questions and questions given in the book. • Note: Energy Storage (of Solar , Wind etc.) will be studied in upcoming units.
  • 64. End of Unit - 1 69