Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

SplunkSummit 2015 - Real World Big Data Architecture

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Chargement dans…3
×

Consultez-les par la suite

1 sur 31 Publicité

Plus De Contenu Connexe

Diaporamas pour vous (20)

Similaire à SplunkSummit 2015 - Real World Big Data Architecture (20)

Publicité

Plus par Splunk (20)

Plus récents (20)

Publicité

SplunkSummit 2015 - Real World Big Data Architecture

  1. 1. ©  2015  Splunk  Inc. Real  World  Big  Data   Architecture  – Splunk,  Hadoop,  RDBMS Naman  Joshi  – Snr Sales  Engineer  
  2. 2. Disclaimer 2 During  the  course  of  this  presentation,  we  may  make  forward  looking  statements  regarding  future   events  or  the  expected  performance  of  the  company.  We  caution  you  that  such  statements  reflect  our   current  expectations  and  estimates  based  on  factors  currently  known  to  us  and  that  actual  events  or   results  could  differ  materially.  For  important  factors  that  may  cause  actual  results  to  differ  from  those   contained  in  our  forward-­‐looking  statements,  please  review  our  filings  with  the  SEC.  The  forward-­‐looking   statements  made  in  the  this  presentation  are  being  made  as  of  the  time  and  date  of  its  live  presentation.   If  reviewed  after  its  live  presentation,  this  presentation  may  not  contain  current  or  accurate  information.   We  do  not  assume  any  obligation  to  update  any  forward  looking  statements  we  may  make.   In  addition,  any  information  about  our  roadmap  outlines  our  general  product  direction  and  is  subject  to   change  at  any  time  without  notice.  It  is  for  informational  purposes  only  and  shall  not,  be  incorporated   into  any  contract  or  other  commitment.  Splunk  undertakes  no  obligation  either  to  develop  the  features   or  functionality  described  or  to  include  any  such  feature  or  functionality  in  a  future  release.
  3. 3. Agenda Splunk  Big  Data  Architecture Alternative  Open  Source  Approach Real-­‐World  Customer  Architecture Discussion Q/A (Demo)
  4. 4. Who’s  This  Dude? Naman  Joshi nbjoshi@splunk.com Senior  Sales  Engineer • Splunk  user  since  2008 • Started  with  Splunk  in  Feb  2014 • Former  Splunk  customer  in  the  Financial  Services  Industry • Big  Data  Subject  Matter  Expert
  5. 5. Big  Data  Technologies 5
  6. 6. 6
  7. 7. Splunk  Scalability 7
  8. 8. Splunk  Real-­‐Time  Analytics 8
  9. 9. Hunk  – Analytics  Platform  for  Hadoop 9
  10. 10. HUNK  Unique  Features 10
  11. 11. HUNK  Provides  Self-­‐Service  Analytics  For  Hadoop 11
  12. 12. HUNK  Provides  Self-­‐Service  Analytics  For  Hadoop Enterprise  Architect • Adapt  your  architecture  for  big  data • Hadoop  shared-­‐service  departments   offer  self-­‐service  analytics • Data  scientists  can  focus  on  custom   analytics,  not  be  data  butlers Business  Analyst Developer • Save  time  by  just  pointing  at  Hadoop   • Avoid  fixed-­‐schemas  and  low-­‐level  tooling • Answer  questions  iteratively  without   waiting  for  MapReduce  jobs  to  finish   • Build  scalable  big  data  apps  on  top   of  data  in  Hadoop • Use  the  development  languages   and  tools  you  know  and  like Pivot Data   Model Development   Environment Interactive   Search 12
  13. 13. What  about  Structured  Data? 13
  14. 14. Use  Cases  for  Structured  Data  in  Splunk 14
  15. 15. Machine  Data  – Delivers  Real-­‐time  insights 15
  16. 16. Structured  Data  – Contains  Business  Context 16
  17. 17. Splunk  DB  Connect 17
  18. 18. Case  Study  – Open  Source  Alternative
  19. 19. Hadoop  Ecosystem  Options 19
  20. 20. Hadoop  Advantage/Disadvantage 20
  21. 21. Easy  storage  but  hard  analytics:   difficult  to  explore,  analyze,   visualize Complex  technology:  many  open   source  projects Hard-­‐to-­‐staff  skills:  must  write   MapReduce  jobs  or  fixed  schemas   21 Hadoop   (MapReduce   &  HDFS) YARN DataFu H i v e Mahout Pig Sqoop Wide  Range  of  Open  Source Projects  for  Hadoop  Analytics Azkaban Getting  Value  from  Hadoop  Data  is  Challenging
  22. 22. What  Does  Gartner  Say? 22 TROUGH  OF   DISILLUSIONMENT TECHNOLOGY   TRIGGER PEAK  OF   INFLATED   EXPECTATIONS SLOPE  OF   ENLIGHTENMENT PLATEAU  OF   PRODUCTIVITY VISIBILITY TIME My  most  advanced  Hadoop  clients  are  also  getting   disillusioned   …  The  only  consistent  success,  reported  by   my  clients,  is  with  Splunk. Svetlana  Sicular,  Gartner  Research  Director,  January  22,  2013 “ “ Many   Hadoop   customers 22
  23. 23. Case  Study  – Real  World  Architecture
  24. 24. Summary  Architecture 24
  25. 25. Splunk  Deployment  Architecture 25
  26. 26. Hadoop  Architecture 26
  27. 27. Splunk  +  HUNK  =  All  The  Data 27
  28. 28. DB  Connect  Architecture 28
  29. 29. Summary  Architecture 29
  30. 30. Discussion
  31. 31. ©  2015  Splunk  Inc. Thank  You www.splunk.com/bigdata

×