SlideShare une entreprise Scribd logo
1  sur  56
Télécharger pour lire hors ligne
2015 12 4
1 / 56
1.
2.
3.
4.
2 / 56
1.
3 / 56
4 / 56
5 / 56
John Snow
1854
616
John Snow
:
6 / 56
7 / 56
1.
8 / 56
G :
V(G) : G
E(G) : G
(i, j) ∈ E(G) : i j
9 / 56
t ≥ 0 F(t)
F(t) = 1 − e−λt
λ
F
10 / 56
∆t λ · ∆t
t
(1 − λ · ∆t)
t
∆t
∆t → 0
lim
∆t→0
(1 − λ · ∆t)
t
∆t = e−λt
11 / 56
{τ(i,j)}(i,j)∈E : F
(Susceptible-infected (SI) model)
0 v1
v v v′ τ(v,v′)
†
†
SIS model
12 / 56
S(G) : G
Gn : ( ) n
G
G Gn ∈ S(G)
v1 V(Gn) SI model
13 / 56
ϕ : S(G) → V(G) :
Cn(ϕ, v1) : v1 ϕ
Cn(ϕ, v1) =
Gn∈S(G)
Pn(Gn|v1) Pr{ϕ(Gn) = v1}
Pn(Gn|v) v n
Gn
14 / 56
=⇒ Gn ∈ S(G) V(Gn)
[Shah and Zaman, 2011]
Gn ∈ S(G)
ˆv = argmax
v∈V(Gn)
Pn(Gn|v)
2
Pn(Gn|v)
15 / 56
1.
16 / 56
N(v) : G v
B(V) : V
B(V)
v∈V
N(v) V
Pn(v1) : v1 n
Pn(v1) vn
∈ Vn
: vi ∈ B({v1, · · · , vi−1})
vn = (v1, v2, · · · , vn) Vn = V × V · · · × V
n
Pn(v1, Gn) : V(Gn) Pn(v1)
Pn(v1, Gn) vn
∈ Pn(v1) : V(Gn) = {v1, v2, · · · , vn}
17 / 56
N(1) = {2, 3, 4}
B({1, 2}) = {3, 4, 5, 6}
P2(2) = {(2, 1), (2, 5), (2, 6)}
P3(2) = {(2, 1, 4), (2, 1, 3), (2, 1, 5), (2, 1, 6),
(2, 5, 1), (2, 5, 6), (2, 6, 1), (2, 6, 5)}
P3(2, Gn) = {(2, 5, 6), (2, 6, 5)}
18 / 56
Regular Tree
: Regular Tree
†
†
19 / 56
Vi : i
Pr{V1 = v1} = 1
v2 ∈ B({v1})
Pr{V2 = v2|V1 = v1} = Pr{τ(v1,v2) = min
v∈B({v1})
{τ(v1,v)}}
=
1
|B({v1})|
20 / 56
†
vn−1 ∈ P(v1) vn ∈ B({v1, · · · , vn−1})
Pr{Vn = vn|V n−1
= vn−1
} =
1
|B({v1, · · · , vn−1})|
†
τ Pr{τ > s + t|τ > s} = Pr{τ > t}
21 / 56
δ(v) : v
|B({v1})| = δ(v1)
|B({v1, v2})| = |B({v1})| − 1 + δ(v2) − 1
= δ(v1) + (δ(v2) − 2)
|B({v1, v2, v3})| = |B({v1, v2})| − 1 + δ(v3) − 1
= δ(v1) + (δ(v2) − 2) + (δ(v3) − 2)
|B({v1, · · · , vn})| = δ(v1) +
n
i=2
(δ(vi) − 2)
22 / 56
Pn(Gn|v1) = Pr{Gn V n |v1}
=
vn∈P(v1,Gn)
Pr{V n
= vn
}
=
vn∈P(v1,Gn)
n
k=2
1
|B({v1, · · · , vk−1})|
=
vn∈P(v1,Gn)
n
k=2
1
δ(v1) + k
i=2(δ(vi) − 2)
vn∈P(v1,Gn)
p(vn
)
23 / 56
Regular Tree
argmax
v∈V(Gn)
Pn(Gn|v) = argmax
v∈V(Gn) vn∈P(v,Gn)
n
k=2
1
δ + k
i=2(δ − 2)
= argmax
v∈V(Gn)
|P(v, Gn)|
argmax
v∈V(Gn)
R(v, Gn)
argmax
v∈V(Gn)
R(v, Gn) O(n)
[Shah and Zaman, 2011]
24 / 56
Regular Tree
[Dong et al., 2013]
ϕML v1 ∈ V(G)
Cn(ϕML, v1) =
⎧
⎪⎪⎨
⎪⎪⎩
1
2n−1
n−1
⌊(n−1)/2⌋ if δ = 2,
1
4 + 3
4
1
2⌊n/2⌋+1 if δ = 3,
1 − δ 1
2 PP´olya(n/2) + x>n/2 PP´olya(x) if δ ≥ 4
PP´olya(x) =
n − 1
x
1(δ−2,x)(δ − 1)(δ−2,n−1−x)
δ(δ−2,n−1)
x(a,b) = x(x + a)(x + 2a) · · · (x + (b − 1)a)
25 / 56
100 200 300 400 500
0.0
0.2
0.4
0.6
0.8
1.0
n
Correctprob.
∆ 2
∆ 3
∆ 4
∆ 5
26 / 56
[Shah and Zaman, 2012]
δ = 2 v1 ∈ V(G)
Cn(ϕML, v1) = Θ
1
√
n
δ ≥ 3
lim
n→∞
Cn(ϕML, v1) = δ · I1/2
1
δ − 2
,
δ − 1
δ − 2
− (δ − 1)
Ix(a, b)
Ix(a, b)
Γ(a + b)
Γ(a)Γ(b)
x
0
ta−1
(1 − t)b−1
dt,
Γ(·)
27 / 56
50 100 150 200
0.300
0.302
0.304
0.306
0.308
∆
limCn
[Shah and Zaman, 2012]
lim
δ→∞
lim
n→∞
Cn(ϕML, v1) = 1 − ln 2 ≈ 0.3069
28 / 56
regular tree
[Shah and Zaman, 2011]
ˆv = argmax
v∈V(Gn)
R(v, Gn)p(vn
BFS(v))
vn
BFS(v) v Gn
vn ∈ P(v, Gn) p(vn)
29 / 56
[Shah and Zaman, 2011]
ˆv = argmax
v∈V(Gn)
R(v, TBFS(v))p(vn
BFS(v))
TBFS(v) v Gn
vn ∈ P(v, Gn) p(vn)
30 / 56
: Small-World Network
5000 Small-world network 400
−→ ) 2%
[Shah and Zaman, 2011]
31 / 56
: Scale-Free Network
5000 scale-free netowrk 400
−→ 5% [Shah and Zaman, 2011]
32 / 56
33 / 56
2.
34 / 56
:
2
35 / 56
regular
tree
36 / 56
Dn(d) : v1 ˆv d
Dn(d) Pr ˆV ∈ v
(d)
1 , v
(d)
2 · · · , v
(d)
δ·(δ−1)d−1
ˆV :
v
(d)
1 , · · · , v
(d)
δ·(δ−1)d−1 : v1 d(≥ 1)
( δ · (δ − 1)d−1 )
Dn(0) = Cn(ϕML, v1)
37 / 56
1
1
k
l
(k − 1)
k − 1
l
+
k − 1
l − 1
xk = x(x + 1)(x + 2) · · · (x + k − 1)
xk
=
n
l=0
k
l
xl
1
s(k, l) (−1)k−l k
l
xk = x(x − 1)(x − 2) · · · (x − k + 1)
xk
=
n
l=0
s(k, l)xl
38 / 56
δ = 3
[Matsuta and Uyematsu, 2014]
d ≥ 1 n ≥ 3
Dn(d) = 3 · 2d−1
(n+1)/2
k=d+1
2
k + 1
(n+3)/2
k+1
n+1
k+1
(−1)d+k
(k − 1)!
d
l=1
s(k, l)
n ≥ 2
Dn(d) = 3 · 2d−1
n/2+1
k=d+1
2
k + 1
n/2+1
k+1 + n
2(n+2)
n/2+1
k
n+1
k+1
(−1)d+k
(k − 1)!
d
l=1
s(k, l)
39 / 56
δ = 3
50 100 150 200
0.0
0.1
0.2
0.3
0.4
0.5
0.6
n
DistanceProb.
d 0
d 1
d 2
d 3
d 4
d 5
40 / 56
δ = 3
[Matsuta and Uyematsu, 2014]
d ≥ 2
lim
n→∞
Dn(d)
= 3 · 2d−1
(−1)d
d
l=1
(−1)l lnl
2
l!
− 2 +
l
m=0
(ln 2)m
m!
+
1
4
0 1 2 3 4 5 6
0.0
0.1
0.2
0.3
0.4
0.5
0 1 2 3 4 5 6
d
DistanceProb.
41 / 56
δ = 3
0 1 2 3 4 5 6
0.0
0.2
0.4
0.6
0.8
1.0
0 1 2 3 4 5 6
d
CumulativeProb.
3
d=0
lim
n→∞
Dn(d) ≈ 0.9676.
42 / 56
δ ≥ 3
[Matsuta and Uyematsu, 2014]
d ≥ 1 δ ≥ 3 m ∈ N
0 ≤ lim
n→∞
Dn(d) − f(δ, d, m) ≤ e2
(3 + m)24−m
f(δ, d, m) δ(δ − 1)d−1
m
k=d+1
p(δ, d, k) I1/2 k − 1 +
1
δ − 2
,
δ − 1
δ − 2
− (δ − 1)I1/2 k − 1 +
δ − 1
δ − 2
,
1
δ − 2
p(δ, d, k)
2
(δ − 2)d
1
δ−2
k−1
2
δ−2
k
ζd−1
k−2
1
δ − 2
ζd
k (x)
1≤j1<j2<···<jd≤k
d
i=1
1
ji + x
( )
43 / 56
δ = 6
m = 35 f(δ, d, 35)
lim
n→∞
Dn(d) − f(δ, d, m) ≤ e2
(3 + m)24−m
≈ 1.3075 · 10−7
0 1 2 3 4 5 6
0.0
0.1
0.2
0.3
0.4
0.5
0 1 2 3 4 5 6
d
DistanceProb.
44 / 56
δ = 6
0 1 2 3 4 5 6
0.0
0.2
0.4
0.6
0.8
1.0
0 1 2 3 4 5 6
d
CumulativeProb.
3
d=0
lim
n→∞
Dn(d) ≈ lim
n→∞
Cn(ϕML, v1) +
3
d=1
f(6, d, 35)
≈ 0.9854.
45 / 56
2.
46 / 56
47 / 56
3.
48 / 56
[Dong et al., 2013]
Regular tree
P´olya
49 / 56
SIR
[Zhu and Ying, 2013]
Susceptible-Infected-Recovered model: SI + R
(Recovered)
sample path
based detection
Regular tree
50 / 56
[Prakash et al., 2012]
MDL (Minimum description length)
51 / 56
[Wang et al., 2014]
Gn L
Regular tree
L → ∞ 1
L ≥ 2 δ → ∞ 1
52 / 56
[Luo et al., 2014]
Sample path based detection
Regular tree O(n)
O(n3)
Regular tree
53 / 56
4.
54 / 56
regular tree
Regular tree
55 / 56
[Dong et al., 2013] W. Dong, W. Zhang, and C. W. Tan, “Rooting out the rumor culprit
from suspects,” ISIT 2013, pp.2671–2675, 7-12 July 2013.
[Kuba and Prodinger, 2010] M. Kuba and H. Prodinger, “A note on Stirling series,”
Integers, vol. 10, no. 4, pp. 393–406, 2010.
[Luo et al., 2014] W. Luo, W. P. Tay, and M. Leng, “How to identify an infection source
with limited observations,” IEEE Journal of Selected Topics in Signal Processing, vol. 8,
no. 4, pp. 586–597, Aug. 2014
[Matsuta and Uyematsu, 2014] T. Matsuta and T. Uyematsu, “Probability distributions of
the distance between the rumor source and its estimation on regular trees,” SITA 2014,
pp. 605-610, Dec. 2014.
[Prakash et al., 2012] B. A. Prakash, J. Vreeken, and C. Faloutsos, “Spotting culprits in
epidemics: How many and which ones?,” ICDM 2012, pp. 11–20, 10-13 Dec. 2012.
[Shah and Zaman, 2011] D. Shah and T. Zaman, “Rumors in a network: Who’s the
culprit?,” IEEE Trans. Inform. Theory, vol. 57,no. 8, pp. 5163–5181, Aug. 2011.
[Shah and Zaman, 2012] D. Shah and T. Zaman, “Rumor centrality: A universal source
detector,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 199–210, Jun. 2012.
[Steyn, 1951] H. S. Steyn, “On discrete multivariate probability functions,”
Proc. Koninklijke Nderlandse Akademie van Wetenschappen, Ser. A, vol. 54, pp. 23–30.
[Wang et al., 2014] Z. Wang, W. Dong, and W. Zhang and C.W. Tan, “Rumor source
detection with multiple observations: Fundamental limits and algorithms,” ACM
SIGMETRICS 2014, pp. 1–13, 16-20 June 2014.
[Zhu and Ying, 2013] K. Zhu and L. Ying, “Information source detection in the SIR
model: A sample path based approach,” ITA 2013, pp. 1–9, 10-15 Feb. 2013.
56 / 56

Contenu connexe

Tendances

A Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILNA Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILNTomonari Masada
 
Calculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualCalculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualReece1334
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsionrro7560
 
Hand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th editionHand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th editionPriSim
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsHareem Aslam
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDBenjamin Jaedon Choi
 
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」Ken'ichi Matsui
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidezJhayson Carvalho
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationMark Chang
 
統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半Ken'ichi Matsui
 
Ejercicios prueba de algebra de la UTN- widmar aguilar
Ejercicios prueba de algebra de la UTN-  widmar aguilarEjercicios prueba de algebra de la UTN-  widmar aguilar
Ejercicios prueba de algebra de la UTN- widmar aguilarWidmar Aguilar Gonzalez
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structuresDavid Gleich
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationAlexander Litvinenko
 
Wu Mamber (String Algorithms 2007)
Wu  Mamber (String Algorithms 2007)Wu  Mamber (String Algorithms 2007)
Wu Mamber (String Algorithms 2007)mailund
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximationTarun Gehlot
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNikolai Priezjev
 

Tendances (20)

A Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILNA Note on the Derivation of the Variational Inference Updates for DILN
A Note on the Derivation of the Variational Inference Updates for DILN
 
Finite frequency H∞control design for nonlinear systems
Finite frequency H∞control design for nonlinear systemsFinite frequency H∞control design for nonlinear systems
Finite frequency H∞control design for nonlinear systems
 
Calculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manualCalculus 10th edition anton solutions manual
Calculus 10th edition anton solutions manual
 
2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion2d beam element with combined loading bending axial and torsion
2d beam element with combined loading bending axial and torsion
 
Hand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th editionHand book of Howard Anton calculus exercises 8th edition
Hand book of Howard Anton calculus exercises 8th edition
 
Solution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 FunctionsSolution Manual : Chapter - 01 Functions
Solution Manual : Chapter - 01 Functions
 
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCDPhase diagram at finite T & Mu in strong coupling limit of lattice QCD
Phase diagram at finite T & Mu in strong coupling limit of lattice QCD
 
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
第13回数学カフェ「素数!!」二次会 LT資料「乱数!!」
 
Bc4103338340
Bc4103338340Bc4103338340
Bc4103338340
 
Capítulo 05 deflexão e rigidez
Capítulo 05   deflexão e rigidezCapítulo 05   deflexão e rigidez
Capítulo 05 deflexão e rigidez
 
Modeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential EquationModeling the Dynamics of SGD by Stochastic Differential Equation
Modeling the Dynamics of SGD by Stochastic Differential Equation
 
統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半統計的学習の基礎 4章 前半
統計的学習の基礎 4章 前半
 
Ejercicios prueba de algebra de la UTN- widmar aguilar
Ejercicios prueba de algebra de la UTN-  widmar aguilarEjercicios prueba de algebra de la UTN-  widmar aguilar
Ejercicios prueba de algebra de la UTN- widmar aguilar
 
Iterative methods with special structures
Iterative methods with special structuresIterative methods with special structures
Iterative methods with special structures
 
Response Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty QuantificationResponse Surface in Tensor Train format for Uncertainty Quantification
Response Surface in Tensor Train format for Uncertainty Quantification
 
Wu Mamber (String Algorithms 2007)
Wu  Mamber (String Algorithms 2007)Wu  Mamber (String Algorithms 2007)
Wu Mamber (String Algorithms 2007)
 
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
2018 MUMS Fall Course - Mathematical surrogate and reduced-order models - Ral...
 
Local linear approximation
Local linear approximationLocal linear approximation
Local linear approximation
 
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
2018 MUMS Fall Course - Sampling-based techniques for uncertainty propagation...
 
Numerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equationsNumerical Methods: Solution of system of equations
Numerical Methods: Solution of system of equations
 

En vedette

Kohta Suzuno
Kohta SuzunoKohta Suzuno
Kohta SuzunoSuurist
 
Akitoshi Takayasu
Akitoshi TakayasuAkitoshi Takayasu
Akitoshi TakayasuSuurist
 
Shunsuke Horii
Shunsuke HoriiShunsuke Horii
Shunsuke HoriiSuurist
 
Tatsuhiro Kishi
Tatsuhiro KishiTatsuhiro Kishi
Tatsuhiro KishiSuurist
 
Tatsuya Yatagawa
Tatsuya YatagawaTatsuya Yatagawa
Tatsuya YatagawaSuurist
 
Suurist Test Slide
Suurist Test SlideSuurist Test Slide
Suurist Test SlideSuurist
 
Akiyasu Tomoeda
Akiyasu TomoedaAkiyasu Tomoeda
Akiyasu TomoedaSuurist
 
Naoya Tsuruta
Naoya TsurutaNaoya Tsuruta
Naoya TsurutaSuurist
 

En vedette (9)

Kohta Suzuno
Kohta SuzunoKohta Suzuno
Kohta Suzuno
 
Akitoshi Takayasu
Akitoshi TakayasuAkitoshi Takayasu
Akitoshi Takayasu
 
Shunsuke Horii
Shunsuke HoriiShunsuke Horii
Shunsuke Horii
 
Tatsuhiro Kishi
Tatsuhiro KishiTatsuhiro Kishi
Tatsuhiro Kishi
 
Tatsuya Yatagawa
Tatsuya YatagawaTatsuya Yatagawa
Tatsuya Yatagawa
 
Suurist Test Slide
Suurist Test SlideSuurist Test Slide
Suurist Test Slide
 
Akiyasu Tomoeda
Akiyasu TomoedaAkiyasu Tomoeda
Akiyasu Tomoeda
 
Naoya Tsuruta
Naoya TsurutaNaoya Tsuruta
Naoya Tsuruta
 
SlideShare 101
SlideShare 101SlideShare 101
SlideShare 101
 

Similaire à Tetsunao Matsuta

Biostatistics Standard deviation and variance
Biostatistics Standard deviation and varianceBiostatistics Standard deviation and variance
Biostatistics Standard deviation and varianceHARINATHA REDDY ASWARTHA
 
Table 1
Table 1Table 1
Table 1butest
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Alexander Litvinenko
 
離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用Ryo Hayakawa
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15silvio_sas
 
SLC 2015 talk improved version
SLC 2015 talk improved versionSLC 2015 talk improved version
SLC 2015 talk improved versionZheng Mengdi
 
Physique révision
Physique révisionPhysique révision
Physique révisionbadro96
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Hareem Aslam
 
Such stuff as dreams are made on: a computational tale of optimal transport a...
Such stuff as dreams are made on: a computational tale of optimal transport a...Such stuff as dreams are made on: a computational tale of optimal transport a...
Such stuff as dreams are made on: a computational tale of optimal transport a...Marie E. Rognes
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelTomonari Masada
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfAntonellaMeaurio
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
 
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習Masahiro Suzuki
 

Similaire à Tetsunao Matsuta (20)

Biostatistics Standard deviation and variance
Biostatistics Standard deviation and varianceBiostatistics Standard deviation and variance
Biostatistics Standard deviation and variance
 
Table 1
Table 1Table 1
Table 1
 
41-50
41-5041-50
41-50
 
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
Computing f-Divergences and Distances of\\ High-Dimensional Probability Densi...
 
離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用
 
PMED Transition Workshop - A Bayesian Model for Joint Longitudinal and Surviv...
PMED Transition Workshop - A Bayesian Model for Joint Longitudinal and Surviv...PMED Transition Workshop - A Bayesian Model for Joint Longitudinal and Surviv...
PMED Transition Workshop - A Bayesian Model for Joint Longitudinal and Surviv...
 
resposta do capitulo 15
resposta do capitulo 15resposta do capitulo 15
resposta do capitulo 15
 
SLC 2015 talk improved version
SLC 2015 talk improved versionSLC 2015 talk improved version
SLC 2015 talk improved version
 
Physique révision
Physique révisionPhysique révision
Physique révision
 
Sub1567
Sub1567Sub1567
Sub1567
 
QMC: Operator Splitting Workshop, Optimization and Control in Free ans Moving...
QMC: Operator Splitting Workshop, Optimization and Control in Free ans Moving...QMC: Operator Splitting Workshop, Optimization and Control in Free ans Moving...
QMC: Operator Splitting Workshop, Optimization and Control in Free ans Moving...
 
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systemsAdaptive dynamic programming algorithm for uncertain nonlinear switched systems
Adaptive dynamic programming algorithm for uncertain nonlinear switched systems
 
Fismat chapter 4
Fismat chapter 4Fismat chapter 4
Fismat chapter 4
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
Solution Manual : Chapter - 06 Application of the Definite Integral in Geomet...
 
Such stuff as dreams are made on: a computational tale of optimal transport a...
Such stuff as dreams are made on: a computational tale of optimal transport a...Such stuff as dreams are made on: a computational tale of optimal transport a...
Such stuff as dreams are made on: a computational tale of optimal transport a...
 
A Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax ModelA Note on Over-replicated Softmax Model
A Note on Over-replicated Softmax Model
 
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdfSolucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
Solucionario Beer, Johnton, Mazurek y Eisenberg - Octava Edicion.pdf
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
 
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
 

Plus de Suurist

Hiroki Shigemune
Hiroki  ShigemuneHiroki  Shigemune
Hiroki ShigemuneSuurist
 
Hidetomo Nagai
Hidetomo NagaiHidetomo Nagai
Hidetomo NagaiSuurist
 
Kensuke Aihara
Kensuke AiharaKensuke Aihara
Kensuke AiharaSuurist
 
Yasunori Futamura
Yasunori FutamuraYasunori Futamura
Yasunori FutamuraSuurist
 
Takuya Tsuchiya
Takuya TsuchiyaTakuya Tsuchiya
Takuya TsuchiyaSuurist
 
Akira Imakura
Akira ImakuraAkira Imakura
Akira ImakuraSuurist
 

Plus de Suurist (6)

Hiroki Shigemune
Hiroki  ShigemuneHiroki  Shigemune
Hiroki Shigemune
 
Hidetomo Nagai
Hidetomo NagaiHidetomo Nagai
Hidetomo Nagai
 
Kensuke Aihara
Kensuke AiharaKensuke Aihara
Kensuke Aihara
 
Yasunori Futamura
Yasunori FutamuraYasunori Futamura
Yasunori Futamura
 
Takuya Tsuchiya
Takuya TsuchiyaTakuya Tsuchiya
Takuya Tsuchiya
 
Akira Imakura
Akira ImakuraAkira Imakura
Akira Imakura
 

Dernier

BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasBACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasChayanika Das
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learningvschiavoni
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsSérgio Sacani
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGiovaniTrinidad
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxzeus70441
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
final waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterfinal waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterHanHyoKim
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxPayal Shrivastava
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clonechaudhary charan shingh university
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPirithiRaju
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPRPirithiRaju
 
Probability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UGProbability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UGSoniaBajaj10
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11GelineAvendao
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxGiDMOh
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024Jene van der Heide
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxfarhanvvdk
 

Dernier (20)

BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasBACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
 
Interferons.pptx.
Interferons.pptx.Interferons.pptx.
Interferons.pptx.
 
Observational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive starsObservational constraints on mergers creating magnetism in massive stars
Observational constraints on mergers creating magnetism in massive stars
 
Gas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptxGas-ExchangeS-in-Plants-and-Animals.pptx
Gas-ExchangeS-in-Plants-and-Animals.pptx
 
Abnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptxAbnormal LFTs rate of deco and NAFLD.pptx
Abnormal LFTs rate of deco and NAFLD.pptx
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
final waves properties grade 7 - third quarter
final waves properties grade 7 - third quarterfinal waves properties grade 7 - third quarter
final waves properties grade 7 - third quarter
 
FBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptxFBI Profiling - Forensic Psychology.pptx
FBI Profiling - Forensic Psychology.pptx
 
whole genome sequencing new and its types including shortgun and clone by clone
whole genome sequencing new  and its types including shortgun and clone by clonewhole genome sequencing new  and its types including shortgun and clone by clone
whole genome sequencing new and its types including shortgun and clone by clone
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPR
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
 
Probability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UGProbability.pptx, Types of Probability, UG
Probability.pptx, Types of Probability, UG
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptx
 
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024GenAI talk for Young at Wageningen University & Research (WUR) March 2024
GenAI talk for Young at Wageningen University & Research (WUR) March 2024
 
Introduction Classification Of Alkaloids
Introduction Classification Of AlkaloidsIntroduction Classification Of Alkaloids
Introduction Classification Of Alkaloids
 
Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?
 
Oxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptxOxo-Acids of Halogens and their Salts.pptx
Oxo-Acids of Halogens and their Salts.pptx
 

Tetsunao Matsuta

  • 1. 2015 12 4 1 / 56
  • 9. G : V(G) : G E(G) : G (i, j) ∈ E(G) : i j 9 / 56
  • 10. t ≥ 0 F(t) F(t) = 1 − e−λt λ F 10 / 56
  • 11. ∆t λ · ∆t t (1 − λ · ∆t) t ∆t ∆t → 0 lim ∆t→0 (1 − λ · ∆t) t ∆t = e−λt 11 / 56
  • 12. {τ(i,j)}(i,j)∈E : F (Susceptible-infected (SI) model) 0 v1 v v v′ τ(v,v′) † † SIS model 12 / 56
  • 13. S(G) : G Gn : ( ) n G G Gn ∈ S(G) v1 V(Gn) SI model 13 / 56
  • 14. ϕ : S(G) → V(G) : Cn(ϕ, v1) : v1 ϕ Cn(ϕ, v1) = Gn∈S(G) Pn(Gn|v1) Pr{ϕ(Gn) = v1} Pn(Gn|v) v n Gn 14 / 56
  • 15. =⇒ Gn ∈ S(G) V(Gn) [Shah and Zaman, 2011] Gn ∈ S(G) ˆv = argmax v∈V(Gn) Pn(Gn|v) 2 Pn(Gn|v) 15 / 56
  • 17. N(v) : G v B(V) : V B(V) v∈V N(v) V Pn(v1) : v1 n Pn(v1) vn ∈ Vn : vi ∈ B({v1, · · · , vi−1}) vn = (v1, v2, · · · , vn) Vn = V × V · · · × V n Pn(v1, Gn) : V(Gn) Pn(v1) Pn(v1, Gn) vn ∈ Pn(v1) : V(Gn) = {v1, v2, · · · , vn} 17 / 56
  • 18. N(1) = {2, 3, 4} B({1, 2}) = {3, 4, 5, 6} P2(2) = {(2, 1), (2, 5), (2, 6)} P3(2) = {(2, 1, 4), (2, 1, 3), (2, 1, 5), (2, 1, 6), (2, 5, 1), (2, 5, 6), (2, 6, 1), (2, 6, 5)} P3(2, Gn) = {(2, 5, 6), (2, 6, 5)} 18 / 56
  • 19. Regular Tree : Regular Tree † † 19 / 56
  • 20. Vi : i Pr{V1 = v1} = 1 v2 ∈ B({v1}) Pr{V2 = v2|V1 = v1} = Pr{τ(v1,v2) = min v∈B({v1}) {τ(v1,v)}} = 1 |B({v1})| 20 / 56
  • 21. † vn−1 ∈ P(v1) vn ∈ B({v1, · · · , vn−1}) Pr{Vn = vn|V n−1 = vn−1 } = 1 |B({v1, · · · , vn−1})| † τ Pr{τ > s + t|τ > s} = Pr{τ > t} 21 / 56
  • 22. δ(v) : v |B({v1})| = δ(v1) |B({v1, v2})| = |B({v1})| − 1 + δ(v2) − 1 = δ(v1) + (δ(v2) − 2) |B({v1, v2, v3})| = |B({v1, v2})| − 1 + δ(v3) − 1 = δ(v1) + (δ(v2) − 2) + (δ(v3) − 2) |B({v1, · · · , vn})| = δ(v1) + n i=2 (δ(vi) − 2) 22 / 56
  • 23. Pn(Gn|v1) = Pr{Gn V n |v1} = vn∈P(v1,Gn) Pr{V n = vn } = vn∈P(v1,Gn) n k=2 1 |B({v1, · · · , vk−1})| = vn∈P(v1,Gn) n k=2 1 δ(v1) + k i=2(δ(vi) − 2) vn∈P(v1,Gn) p(vn ) 23 / 56
  • 24. Regular Tree argmax v∈V(Gn) Pn(Gn|v) = argmax v∈V(Gn) vn∈P(v,Gn) n k=2 1 δ + k i=2(δ − 2) = argmax v∈V(Gn) |P(v, Gn)| argmax v∈V(Gn) R(v, Gn) argmax v∈V(Gn) R(v, Gn) O(n) [Shah and Zaman, 2011] 24 / 56
  • 25. Regular Tree [Dong et al., 2013] ϕML v1 ∈ V(G) Cn(ϕML, v1) = ⎧ ⎪⎪⎨ ⎪⎪⎩ 1 2n−1 n−1 ⌊(n−1)/2⌋ if δ = 2, 1 4 + 3 4 1 2⌊n/2⌋+1 if δ = 3, 1 − δ 1 2 PP´olya(n/2) + x>n/2 PP´olya(x) if δ ≥ 4 PP´olya(x) = n − 1 x 1(δ−2,x)(δ − 1)(δ−2,n−1−x) δ(δ−2,n−1) x(a,b) = x(x + a)(x + 2a) · · · (x + (b − 1)a) 25 / 56
  • 26. 100 200 300 400 500 0.0 0.2 0.4 0.6 0.8 1.0 n Correctprob. ∆ 2 ∆ 3 ∆ 4 ∆ 5 26 / 56
  • 27. [Shah and Zaman, 2012] δ = 2 v1 ∈ V(G) Cn(ϕML, v1) = Θ 1 √ n δ ≥ 3 lim n→∞ Cn(ϕML, v1) = δ · I1/2 1 δ − 2 , δ − 1 δ − 2 − (δ − 1) Ix(a, b) Ix(a, b) Γ(a + b) Γ(a)Γ(b) x 0 ta−1 (1 − t)b−1 dt, Γ(·) 27 / 56
  • 28. 50 100 150 200 0.300 0.302 0.304 0.306 0.308 ∆ limCn [Shah and Zaman, 2012] lim δ→∞ lim n→∞ Cn(ϕML, v1) = 1 − ln 2 ≈ 0.3069 28 / 56
  • 29. regular tree [Shah and Zaman, 2011] ˆv = argmax v∈V(Gn) R(v, Gn)p(vn BFS(v)) vn BFS(v) v Gn vn ∈ P(v, Gn) p(vn) 29 / 56
  • 30. [Shah and Zaman, 2011] ˆv = argmax v∈V(Gn) R(v, TBFS(v))p(vn BFS(v)) TBFS(v) v Gn vn ∈ P(v, Gn) p(vn) 30 / 56
  • 31. : Small-World Network 5000 Small-world network 400 −→ ) 2% [Shah and Zaman, 2011] 31 / 56
  • 32. : Scale-Free Network 5000 scale-free netowrk 400 −→ 5% [Shah and Zaman, 2011] 32 / 56
  • 37. Dn(d) : v1 ˆv d Dn(d) Pr ˆV ∈ v (d) 1 , v (d) 2 · · · , v (d) δ·(δ−1)d−1 ˆV : v (d) 1 , · · · , v (d) δ·(δ−1)d−1 : v1 d(≥ 1) ( δ · (δ − 1)d−1 ) Dn(0) = Cn(ϕML, v1) 37 / 56
  • 38. 1 1 k l (k − 1) k − 1 l + k − 1 l − 1 xk = x(x + 1)(x + 2) · · · (x + k − 1) xk = n l=0 k l xl 1 s(k, l) (−1)k−l k l xk = x(x − 1)(x − 2) · · · (x − k + 1) xk = n l=0 s(k, l)xl 38 / 56
  • 39. δ = 3 [Matsuta and Uyematsu, 2014] d ≥ 1 n ≥ 3 Dn(d) = 3 · 2d−1 (n+1)/2 k=d+1 2 k + 1 (n+3)/2 k+1 n+1 k+1 (−1)d+k (k − 1)! d l=1 s(k, l) n ≥ 2 Dn(d) = 3 · 2d−1 n/2+1 k=d+1 2 k + 1 n/2+1 k+1 + n 2(n+2) n/2+1 k n+1 k+1 (−1)d+k (k − 1)! d l=1 s(k, l) 39 / 56
  • 40. δ = 3 50 100 150 200 0.0 0.1 0.2 0.3 0.4 0.5 0.6 n DistanceProb. d 0 d 1 d 2 d 3 d 4 d 5 40 / 56
  • 41. δ = 3 [Matsuta and Uyematsu, 2014] d ≥ 2 lim n→∞ Dn(d) = 3 · 2d−1 (−1)d d l=1 (−1)l lnl 2 l! − 2 + l m=0 (ln 2)m m! + 1 4 0 1 2 3 4 5 6 0.0 0.1 0.2 0.3 0.4 0.5 0 1 2 3 4 5 6 d DistanceProb. 41 / 56
  • 42. δ = 3 0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 6 d CumulativeProb. 3 d=0 lim n→∞ Dn(d) ≈ 0.9676. 42 / 56
  • 43. δ ≥ 3 [Matsuta and Uyematsu, 2014] d ≥ 1 δ ≥ 3 m ∈ N 0 ≤ lim n→∞ Dn(d) − f(δ, d, m) ≤ e2 (3 + m)24−m f(δ, d, m) δ(δ − 1)d−1 m k=d+1 p(δ, d, k) I1/2 k − 1 + 1 δ − 2 , δ − 1 δ − 2 − (δ − 1)I1/2 k − 1 + δ − 1 δ − 2 , 1 δ − 2 p(δ, d, k) 2 (δ − 2)d 1 δ−2 k−1 2 δ−2 k ζd−1 k−2 1 δ − 2 ζd k (x) 1≤j1<j2<···<jd≤k d i=1 1 ji + x ( ) 43 / 56
  • 44. δ = 6 m = 35 f(δ, d, 35) lim n→∞ Dn(d) − f(δ, d, m) ≤ e2 (3 + m)24−m ≈ 1.3075 · 10−7 0 1 2 3 4 5 6 0.0 0.1 0.2 0.3 0.4 0.5 0 1 2 3 4 5 6 d DistanceProb. 44 / 56
  • 45. δ = 6 0 1 2 3 4 5 6 0.0 0.2 0.4 0.6 0.8 1.0 0 1 2 3 4 5 6 d CumulativeProb. 3 d=0 lim n→∞ Dn(d) ≈ lim n→∞ Cn(ϕML, v1) + 3 d=1 f(6, d, 35) ≈ 0.9854. 45 / 56
  • 49. [Dong et al., 2013] Regular tree P´olya 49 / 56
  • 50. SIR [Zhu and Ying, 2013] Susceptible-Infected-Recovered model: SI + R (Recovered) sample path based detection Regular tree 50 / 56
  • 51. [Prakash et al., 2012] MDL (Minimum description length) 51 / 56
  • 52. [Wang et al., 2014] Gn L Regular tree L → ∞ 1 L ≥ 2 δ → ∞ 1 52 / 56
  • 53. [Luo et al., 2014] Sample path based detection Regular tree O(n) O(n3) Regular tree 53 / 56
  • 56. [Dong et al., 2013] W. Dong, W. Zhang, and C. W. Tan, “Rooting out the rumor culprit from suspects,” ISIT 2013, pp.2671–2675, 7-12 July 2013. [Kuba and Prodinger, 2010] M. Kuba and H. Prodinger, “A note on Stirling series,” Integers, vol. 10, no. 4, pp. 393–406, 2010. [Luo et al., 2014] W. Luo, W. P. Tay, and M. Leng, “How to identify an infection source with limited observations,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 4, pp. 586–597, Aug. 2014 [Matsuta and Uyematsu, 2014] T. Matsuta and T. Uyematsu, “Probability distributions of the distance between the rumor source and its estimation on regular trees,” SITA 2014, pp. 605-610, Dec. 2014. [Prakash et al., 2012] B. A. Prakash, J. Vreeken, and C. Faloutsos, “Spotting culprits in epidemics: How many and which ones?,” ICDM 2012, pp. 11–20, 10-13 Dec. 2012. [Shah and Zaman, 2011] D. Shah and T. Zaman, “Rumors in a network: Who’s the culprit?,” IEEE Trans. Inform. Theory, vol. 57,no. 8, pp. 5163–5181, Aug. 2011. [Shah and Zaman, 2012] D. Shah and T. Zaman, “Rumor centrality: A universal source detector,” SIGMETRICS Perform. Eval. Rev., vol. 40, no. 1, pp. 199–210, Jun. 2012. [Steyn, 1951] H. S. Steyn, “On discrete multivariate probability functions,” Proc. Koninklijke Nderlandse Akademie van Wetenschappen, Ser. A, vol. 54, pp. 23–30. [Wang et al., 2014] Z. Wang, W. Dong, and W. Zhang and C.W. Tan, “Rumor source detection with multiple observations: Fundamental limits and algorithms,” ACM SIGMETRICS 2014, pp. 1–13, 16-20 June 2014. [Zhu and Ying, 2013] K. Zhu and L. Ying, “Information source detection in the SIR model: A sample path based approach,” ITA 2013, pp. 1–9, 10-15 Feb. 2013. 56 / 56