Lecture 1.ppt

Lecture 1
MEASUREMENTS
and
PHYSICAL QUANTITIES
MEASUREMENT
 We obtain an understanding of
our environment by observing
the physical world through
measurements.
 Measurement is a comparison
of physical quantity with a
standard unit.
MEASUREMENT
 It is expressed with numbers and units.
 Physical characteristics can be
expressed in terms of fundamental
quantities.
 Our comprehension(level of
undersatnding) of the physical world is
based on fundamental quantities.
FUNDAMENTAL QUANTITIES
Four quantities have been identified and
specified as
fundamental.
These are:
 Length
 Mass
 Time
 Electric charge
They form the basis for other quantities
necessary to describe and understand the
physical sciences.
Length
 We use length to measure location or size.
 Length is defined as the measurement of
space in any direction.
Note: Space has three dimensions, each is
measured by length.
 Consider a box:
Length (l)
Width (w)
Height (h)
Time
 Time is the continuous forward
flow of events.
 Events allow us to precise time,
without events, we have no innate
awareness of time.
Mass
 Mass quantifies matter.
 Mass refers to the amount of matter
an object contains.
Electric Charge
 Electric Charge is the property
associated with some particles, that
gives rise to electric forces and
electrical phenomena.
STANDARD UNITS
 A standard unit is a fixed and
reproducible value for the purpose
of taking accurate measurements.
 A set of standard units is referred
to as a system of units.
International System of Units
There are seven base units of the
International
System of Units.
 Meter, m, measures length.
 Kilogram, kg, measures mass.
 Second, s, measures time.
 Ampere, A, measures electric current.
 Kelvin, K, measures temperature.
 Mole, mol, measures amount of
substance.
 Candela, cd, measures luminous
intensity.
Measurement Errors
Systematic Errors:
1. Systematic errors are associated
with instruments or the technique
used.
They are as a result of:
 Improperly calibrated instrument
 Error incurred from observer’s
reading
Measurement Errors
Random Errors:
2. Random Errors result from
unknown and unpredictable
variations in experimental situations.
 Such as fluctuation in electrical
voltage.
 Changes in temperature, pressure,
etc.
Accuracy / Precision
 Accuracy indicates how close
measurement comes to the true
value.
 Precision refers to the agreement
among repeated measurement, that
is, how close they are together.
14
15
 Physical quantity is defined as a ……………………………….
 It can be categorized into 2 types
 Basic (base) quantity
 Derived quantity
 Basic quantity is defined as …………………………………………….
 ………………………………………………………………………………..
 Table 1.1 shows all the basic (base) quantities.
1.1 Physical Quantities and Units
Quantity Symbol SI Unit Symbol
Length l metre m
Mass m ………………. kg
Time t second s
Temperature T/ kelvin K
Electric current I ampere …………..
Amount of substance ………. mole mol
Table 1.1
16
 Derived quantity is defined as a quantity which can be expressed
in term of base quantity.
 Table 1.2 shows some examples of derived quantity.
Derived quantity Symbol Formulae Unit
Velocity v s/t m s-1
Volume …….. l  w  t m 3
Acceleration a v/t m s-2
Density  m/V …………….
Momentum p ………… kg m s-1
Force ……… m  a kg m s-2 @ N
Work W F  s ……….. @ J
Pressure P F/A N m-2 @ ……
Frequency f 1/T s-1 @ ……..
Table 1.2
17
 It is used for presenting larger and smaller values.
 Table 1.3 shows all the unit prefixes.
 Examples:
 5740000 m = 5740 km = 5.74 Mm
 0.00000233 s = 2.33  106 s = 2.33 s
Prefix Multiple Symbol
tera  1012 T
giga  ……. G
mega  106 M
kilo  103 ………..
deci  101 d
centi  102 c
milli  103 m
micro  106 ………
nano  ,,,,,,, n
pico  1012 p
1.1.1 Unit Prefixes
Table 1.3
18
Solve the following problems of unit conversion.
a. 15 mm2 = ? m2 b. 65 km h1 = ? m s1
c. 450 g cm3 = ? kg m3
Solution :
a. 15 mm2 = ? m2
b. 65 km h-1 = ? m s-1
1st method :







 


h
1
m
10
65
h
km
65
3
1
Example 1.1 :







 


s
..........
m
10
65
h
km
65
3
1
1
1
s
m
........
h
km
65 


   2
2
......m
mm
1 
2
6
2
m
10
mm
1 

19
2nd method :
c. 450 g cm-3 = ? kg m-3








h
1
km
65
h
km
65 1
1
1
s
m
18
h
km
65 



3
cm
g
450
3
5
3
m
kg
10
.5
4
cm
g
450 























s
3600
h
....
......
1
.......m
h
1
km
65
h
km
65 1
20
Follow Up Exercise
1. A hall bulletin board has an area of 250 cm2. What is this area in
square meters ( m2 ) ?
2. The density of metal mercury is 13.6 g/cm3. What is this density
as expressed in kg/m3
3. A sheet of paper has length 27.95 cm, width 8.5 cm and
thickness of 0.10 mm. What is the volume of a sheet of paper in
m3 ?
4. Convert the following into its SI unit:
(a) 80 km h–1 = ? m s–1
(b) 450 g cm–3 = ? kg m–3
(c) 15 dm3 = ? m3
(d) 450 K = ? ° C
Any valid physical equation must be dimensionally
consistent – each side must have the same dimensions.
From the Table:
Distance = velocity × time
Velocity = acceleration ×
time
Energy = mass × (velocity)2
Dimensional Analysis (1)
Dimensional Analysis
 Fundamental Quantities
 Length - [L]
 Time - [T]
 Mass - [M]
 Derived Quantities
 Velocity - [L]/[T]
 Density - [M]/[L]3
 Energy - [M][L]2/[T]2
The period P [T] of a swinging
pendulum depends only on the length
of the pendulum d [L] and the
acceleration of gravity g [L/T2].
Which of the following formulas for P
could be correct ?
P
d
g
 2
P
d
g
 2
(a) (b) (c)
P  2 (dg)2
Example:
L
L
T
L
T
T






  
2
2 4
4
Dimensional Analysis (3)
L
L
T
T T
2
2
 
Remember that P is in units of time (T), d is
length (L) and g is acceleration (L/T2).
The both sides must have the same units
 
P dg
 2
2

(a) (b) (c)
P
d
g
 2
Try equation (a). Try equation (b). Try equation (c).
T
T
T
L
L 2
2


P
d
g
 2
25
 Scalar quantity is defined as a quantity with magnitude only.
 e.g. mass, time, temperature, pressure, electric current,
work, energy and etc.
 Mathematics operational : ordinary algebra
 Vector quantity is defined as a quantity with both magnitude
& direction.
 e.g. displacement, velocity, acceleration, force, momentum,
electric field, magnetic field and etc.
 Mathematics operational : vector algebra
1.2 Scalars and Vectors
26
 Table 1.4 shows written form (notation) of vectors.
 Notation of magnitude of vectors.
1.2.1 Vectors
Vector A
Length of an arrow– magnitude of vector A
displacement velocity acceleration
s

v

a

s a
v
v
v 

a
a 

s (bold) v (bold) a (bold)
Direction of arrow – direction of vector A
Table 1.4
27
 Two vectors equal if both magnitude and direction are the same.
(shown in figure 1.1)
 If vector A is multiplied by a scalar quantity k
 Then, vector A is
 if k = +ve, the vector is in the same direction as vector A.
 if k = -ve, the vector is in the opposite direction of vector A.
P

Q

Q
P



Figure 1.1
A
k

A
k

A

A


28
 Can be represented by using:
a) Direction of compass, i.e east, west, north, south, north-east,
north-west, south-east and south-west
b) Angle with a reference line
e.g. A boy throws a stone at a velocity of 20 m s-1, 50 above
horizontal.
1.2.2 Direction of Vectors
50
v

x
y
0
29
c) Cartesian coordinates
 2-Dimension (2-D)
m)
5
m,
1
(
)
,
( 
 y
x
s

s

y/m
x/m
5
1
0
30
 3-Dimension (3-D)
s

2
3
4
m
2)
3,
4,
(
)
,
,
( 
 z
y
x
s

y/m
x/m
z/m
0
...i +...j + ..k
s 
31
Unit vectors
A unit vector is a vector that has a magnitude of 1 with no units.
Are use to specify a given direction in space.
i , j & k is used to represent unit vectors
pointing in the positive x, y & z directions.
| | = | | = | | = 1
iˆ ĵ k̂
32
d) Polar coordinates
e) Denotes with + or – signs.
 


N,150
30

F
F

150
+
+
-
-
33
 There are two methods involved in addition of vectors graphically i.e.
 Parallelogram
 Triangle
 For example :
1.2.3 Addition of Vectors
Parallelogram Triangle
B

A

B

A

B
A



O
B
A



B

A

B
A



O
34
 Triangle of vectors method:
a) Use a suitable scale to draw vector A.
b) From the head of vector A draw a line to represent the vector B.
c) Complete the triangle. Draw a line from the tail of vector A to the
head of vector B to represent the vector A + B.
A
B
B
A






 Commutative Rule
B

A

A
B



O
35
 If there are more than 2 vectors therefore
 Use vector polygon and associative rule. E.g. R
Q
P





R

Q

P

R

Q

P
  
Q
P



   
R
Q
P
R
Q
P










 Associative Rule
  R
Q
P





36
 Distributive Rule :
a.
b.
 For example :
Proof of case a: let  = 2
  B
A
B
A






 


  A
A
A






 


number
real
are
,

   
B
A
B
A






 2

B

A

B
A



O
 
B
A



2
37
A

2
O
B

2
B
A


2
2 
  B
A
B
A




2
2
2 

 
B
A
B
A




2
2 



38
Proof of case b: let  = 2 and  = 1
A

    A
A
A



3
1
2 


 

A

3
A
A
A
A




1
2 

 

A

2 A


A

3

  A
A
A



1
2
1
2 

 
39
 For example :
1.2.4 Subtraction of Vectors
Parallelogram Triangle
D

C

O
D
C



O
......
 
D
C
D
C








C

D


D
C



C

D


D
C



40
 Vectors subtraction can be used
 to determine the velocity of one object relative to another object
i.e. to determine the relative velocity.
 to determine the change in velocity of a moving object.
1. Vector A has a magnitude of 8.00 units and 45 above the positive x
axis. Vector B also has a magnitude of 8.00 units and is directed along
the negative x axis. Using graphical methods and suitable scale to
determine
a) b)
c) d)
(Hint : use 1 cm = 2.00 units)
Exercise 1 :
B
A


 B
A



B
2
A


 B
A
2



41
 1st method :
1.2.5 Resolving a Vector
R

y
R

x
R


0
x
y
θ
R
Rx
cos
 ..........
Rx 

θ
R
Ry
sin
 θ
Rsin
....

 2nd method :
R

y
R

x
R


0
x
y

sin

R
Rx

sin
R
Rx 


cos

R
Ry
..........
..........


42
 The magnitude of vector R :
 Direction of vector R :
 Vector R in terms of unit vectors written as
......
..........
or 
R
R

x
y
R
R
θ 
tan or








 
x
y
R
R
θ 1
tan
.....
..........

R

43
A car moves at a velocity of 50 m s-1 in a direction north 30 east.
Calculate the component of the velocity
a) due north. b) due east.
Solution :
Example 1.2 :
N
E
W
S
N
v

E
v

v

30
60
a)
b)
or

60
v
vN sin

44
A particle S experienced a force of 100 N as shown in figure above.
Determine the x-component and the y-component of the force.
Solution :
Example 1.3 :
150
F

S
x
150
30
F

S
x
y
y
F

x
F

Vector x-component y-component
…………………………
…………………………

30
cos
F
Fx 

N
6
.
6
8


x
F
or
F


150
cos
F
Fx 
...
..........

x
F

150
cos
100

x
F
N
0
5

y
F
or

150
sin
F
Fy 
........

y
F

150
sin
100

y
F
45
The figure above shows three forces F1, F2 and F3 acted on a particle
O. Calculate the magnitude and direction of the resultant force on
particle O.
Example 1.4 : y
30o
O
)
N
30
(
2
F

)
N
10
(
1
F

30o
x
)
N
40
(
3
F

46
30o
Solution :
O
y
x
3
F

30o
y
3
F

x
F2

1
F

2
F

60o
y
F2

x
3
F

47
Solution :
Vector x-component y-component
1
F

3
F

2
F

N
0
1 
x
F 1
1 F
F y 
N
0
1
1 
y
F

60
sin
30
2 
y
F
N
6
2
2 
y
F

30
cos
40
3 

x
F
N
34.6
3 

x
F
Vector
sum
.......
..........

 x
F ........
..........

 y
F
48
y
x
O
Solution :
The magnitude of the resultant force is
and
Its direction is 162 from positive x-axis OR 18 above negative x-axis.
   2
2

 
 y
x
r F
F
F
52.1 ....
r
F 
................
r
F 












x
y
F
F
θ 1
tan

18
49.6
16
tan 1









 
θ
 y
F

 x
F


162
r
F

18
49
1. Vector has components Ax = 1.30 cm, Ay = 2.25 cm; vector
has components Bx = 4.10 cm, By = -3.75 cm. Determine
a) the components of the vector sum ,
b) the magnitude and direction of ,
c) the components of the vector ,
d) the magnitude and direction of . (Young & freedman,pg.35,no.1.42)
ANS. : 5.40 cm, -1.50 cm; 5.60 cm, 345; 2.80 cm, -6.00 cm;
6.62 cm, 295
2. For the vectors and in Figure 1.2, use the method of vector
resolution to determine the magnitude and direction of
a) the vector sum ,
b) the vector sum ,
c) the vector difference ,
d) the vector difference .
(Young & freedman,pg.35,no.1.39)
ANS. : 11.1 m s-1, 77.6; U think;
28.5 m s-1, 202; 28.5 m s-1, 22.2
Exercise 2 :
B
A



A

B
A



A
B



A
B



B

A

B

B
A



A
B



B
A



A
B



Figure 1.2
y
x
0
37.0
 
-1
s
m
18.0
B

 
-1
s
m
12.0
A

50
3. Vector points in the negative x direction. Vector points at an
angle of 30 above the positive x axis. Vector has a magnitude of
15 m and points in a direction 40 below the positive x axis. Given
that , determine the magnitudes of and .
(Walker,pg.78,no. 65)
ANS. : 28 m; 19 m
4. Given three vectors P, Q and R as shown in Figure 1.3.
Calculate the resultant vector of P, Q and R.
ANS. : 49.4 m s2; 70.1 above + x-axis
Exercise 2 :
C

A

B

0


 C
B
A



A

B

Figure 1.3
y
x
0
50
 
2
s
m
10 
R

 
2
s
m
35 
P

 
2
s
m
24 
Q

51
 notations –
 E.g. unit vector a – a vector with a magnitude of 1 unit in the direction
of vector A.
 Unit vectors are dimensionless.
 Unit vector for 3 dimension axes :
1.2.6 Unit Vectors
A

â
c
b
a ˆ
,
ˆ
,
ˆ
1
ˆ 

A
A
a 

  1
ˆ 
a
)
(
@
ˆ
⇒
- bold
j
j
axis
y 1
ˆ
ˆ
ˆ 

 k
j
i
)
(
@
ˆ
⇒
- bold
i
i
axis
x
)
(
@
ˆ
⇒
- bold
k
k
axis
z
52
 Vector can be written in term of unit vectors as :
 Magnitude of vector,
x
z
y
k̂
ĵ
iˆ
k
r
j
r
i
r
r z
y
x
ˆ
ˆ
ˆ 



     2
z
2
y
2
x r
r
r
r 


53
 E.g. :  m
ˆ
2
ˆ
3
ˆ
4 k
j
i
s 



      m
5.39
2
3
4
2
2
2




s
ĵ
3
x/m
y/m
z/m
0
s

i
ˆ
4
k̂
2
54
Two vectors are given as:
Calculate
a) the vector and its magnitude,
b) the vector and its magnitude,
c) the vector and its magnitude.
Solution :
a)
The magnitude,
Example 1.5 :
a
b



 m
ˆ
6
ˆ
2
ˆ k
j
i
a 



b
a



 m
ˆ
ˆ
3
ˆ
4 k
j
i
b 



  ........................
x
a b
 
  ........................
y
a b
 
.........................
a b
 
  k
b
a
b
a z
z
z
ˆ
7
1
6 







..................... 9.95 m
a b
  
b
a



2
55
b)
The magnitude,
c)
The magnitude,
  ............
x x
x
b a b a
   
  ................
y y
y
b a b a
   
.............. m
b a
 
  ..................
z z
z
b a b a
   
.....................
b a
 
 
2 .....................
x
a b
 
 
2 .........................
y
a b
 
2 ....................... m
a b
 
    k
b
a
b
a z
z
z
ˆ
13
1
6
2
2
2 







      m
15.9
13
7
6
2
2
2
2





 b
a
56
Scalar (dot) product
 The physical meaning of the scalar product can be explained by
considering two vectors and as shown in Figure 1.4a.
 Figure 1.4b shows the projection of vector onto the direction of
vector .
 Figure 1.4c shows the projection of vector onto the direction of
vector .
1.2.7 Multiplication of Vectors
A

B


A

B

A
 B

Figure 1.4a

A

B

A

B

θ
Bcos
Figure 1.4b

A

B

θ
Acos
Figure 1.4c
 
A
B
A
B
A




to
parallel
of
component


 
B
A
B
B
A




to
parallel
of
component


57
 From the Figure 1.4b, the scalar product can be defined as
meanwhile from the Figure 1.4c,
where
 The scalar product is a scalar quantity.
 The angle  ranges from 0 to 180 .
 When
 The scalar product obeys the commutative law of multiplication i.e.
 
θ
B
A
B
A cos




vectors
o
between tw
angle
:
θ
 
θ
A
B
A
B cos






90
θ
0 
 scalar product is positive


180
θ
0
9 
 scalar product is negative

90
θ  scalar product is zero
A
B
B
A







58
 Example of scalar product is work done by a constant force where the
expression is given by
 The scalar product of the unit vectors are shown below :
   
θ
F
s
θ
s
F
s
F
W cos
cos 





x
z
y
k̂
ĵ
iˆ
    1
1
1
cos
ˆ
ˆ 2



 o
2
0
i
i
i
1
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ 




 k
k
j
j
i
i
    1
1
1
cos
ˆ
ˆ 2



 o
2
0
j
j
j
    1
1
1
cos
ˆ
ˆ 2



 o
2
0
k
k
k
   0
9
cos
ˆ
ˆ 

 o
0
1
1
j
i
0
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ 




 k
i
k
j
j
i
   0
9
cos
ˆ
ˆ 

 o
0
1
1
k
i
   0
9
cos
ˆ
ˆ 

 o
0
1
1
k
j
59
Calculate the and the angle  between vectors and for the
following problems.
a) b)
Solution :
a)
The magnitude of the vectors:
The angle  ,
Example 1.6 :
A

B
A


 B

ˆ ˆ
ˆ ˆ ˆ ˆ
......... ........ .......
A B i i j j k k
      
      3
1
1
1
2
2
2





A
k
j
i
A ˆ
ˆ
ˆ 



k
j
i
A ˆ
ˆ
3
ˆ
4 



k
j
i
B ˆ
3
ˆ
2
ˆ
4 



k
j
B ˆ
3
ˆ
2 


.............
A B
 
3

 B
A


      29
3
2
4
2
2
2






B
θ
AB
B
A cos




















 
 

29
3
3
cos
cos 1
1
AB
B
A
θ



2
.
71

θ
ANS.:3; 99.4
60
Referring to the vectors in Figure 1.5,
a) determine the scalar product between them.
b) express the resultant vector of C and D in unit vector.
Solution :
a) The angle between vectors C and D is
Therefore
Example 1.7 :
1 99 .......
C D .
  
  
174
19
25
180 



θ
Figure 1.5
y
x
0
 
m
1
C

 
m
2
D

19
25
θ
CD
D
C cos




...................

61
b) Vectors C and D in unit vector are
and
Hence
j
C
i
C
C y
x
ˆ
ˆ 


ˆ ˆ
......... ..........
i j
 
 m
ˆ
42
.
0
ˆ
91
0 j
i
.
C 



   j
i
D
C ˆ
65
.
0
42
.
0
ˆ
89
.
1
91
.
0 







 m
ˆ
23
.
0
ˆ
98
.
0 j
i 

   j
i
D ˆ
19
sin
2
ˆ
19
cos
2 





.....................m
D 
62
Vector (cross) product
 Consider two vectors :
 In general, the vector product is defined as
and its magnitude is given by
where
 The angle  ranges from 0 to 180  so the vector product always
positive value.
 Vector product is a vector quantity.
 The direction of vector is determined by
k
r
j
q
i
p
B ˆ
ˆ
ˆ 



k
z
j
y
i
x
A ˆ
ˆ
ˆ 



C
B
A





θ
AB
θ
B
A
C
B
A sin
sin 








vectors
o
between tw
angle
:
θ
RIGHT-HAND RULE
C

63
 For example:
 How to use right hand rule :
 Point the 4 fingers to the direction of the 1st vector.
 Swept the 4 fingers from the 1st vector towards the 2nd vector.
 The thumb shows the direction of the vector product.
 Direction of the vector product always perpendicular
to the plane containing the vectors and .
A

C

B
 A

B

C

C
B
A





C
A
B





A
B
B
A






 but  
A
B
B
A








B

)
(C

A

64
 The vector product of the unit vectors are shown below :
 Example of vector product is a magnetic force on the straight
conductor carrying current places in magnetic field where the
expression is given by
x
z
y
k̂
ĵ
iˆ
i
j
k
k
j ˆ
ˆ
ˆ
ˆ
ˆ 




k
i
j
j
i ˆ
ˆ
ˆ
ˆ
ˆ 




j
k
i
i
k ˆ
ˆ
ˆ
ˆ
ˆ 




0
ˆ
ˆ
ˆ
ˆ
ˆ
ˆ 




 k
k
j
j
i
i
0
in
ˆ
ˆ 

 o
2
0
s
i
i
i
0
in
ˆ
ˆ 

 o
2
0
s
j
j
j
0
in
ˆ
ˆ 

 o
2
0
s
k
k
k
 
B
l
I
F





θ
IlB
F sin

65
 The vector product can also be expressed in
determinant form as
 Note :
 The angle between two vectors can only be
determined by using the scalar (dot) product.
r
q
p
z
y
x
k
j
i
B
A
ˆ
ˆ
ˆ




     k
yp
xq
j
zp
xr
i
zq
yr
B
A ˆ
ˆ
ˆ 








66
Given two vectors :
Determine
a) and its magnitude b)
c) the angle between vectors and .
Solution :
a)
The magnitude,
Example 1.8 :
ˆ
ˆ ˆ
i j k
A B
 
B
A


 B
A



A B
 
k
j
i
B
A ˆ
2
ˆ
6
1
ˆ
10 





19

 B
A


k
j
i
A ˆ
ˆ
2
ˆ
3 




k
i
B ˆ
5
ˆ 


A

B

A B
 
67
b)
c) The magnitude of vectors,
…………………………………………..
………………………………………….
Using the scalar (dot) product formula,
   
k
j
i
k
j
i
B
A ˆ
5
ˆ
0
ˆ
ˆ
ˆ
2
ˆ
3 









2

 B
A


θ
AB
B
A cos





84

θ
14
A 
26
B 
68
1. If vector and vector , determine
a) , b) , c) .
ANS. :
2. Three vectors are given as follow :
Calculate
a) , b) , c) .
ANS. :
3. If vector and vector ,
determine
a) the direction of
b) the angle between and .
ANS. : U think, 92.8
Exercise 3 :
46
;
26
;
ˆ
2k
j
i
a ˆ
+
ˆ
= 5
3

j
i
b ˆ
+
ˆ
= 4
2

b
a


 b
a


   b
b
a





k
j
i
c
k
j
i
b
k
j
i
a ˆ
ˆ
2
ˆ
2
and
ˆ
2
ˆ
4
ˆ
;
ˆ
2
ˆ
3
ˆ
3 












 
c
b
a




  
c
b
a




  
c
b
a





k
j
i ˆ
9
ˆ
11
ˆ
5
;
9
;
21 



k
j
i
P ˆ
ˆ
2
ˆ
3 



k
j
i
Q ˆ
3
ˆ
4
ˆ
2 




Q
P



P

Q

PHYSICS CHAPTER 1
69
THE END…
Next Chapter…
CHAPTER 2 :
Kinematics of Linear Motion
1 sur 69

Recommandé

Ch 1: Introduction and Math Concepts par
Ch 1:  Introduction and Math ConceptsCh 1:  Introduction and Math Concepts
Ch 1: Introduction and Math ConceptsScott Thomas
9.6K vues59 diapositives
Basic Quantities,Prefixes&Dimensions.ppt par
Basic Quantities,Prefixes&Dimensions.pptBasic Quantities,Prefixes&Dimensions.ppt
Basic Quantities,Prefixes&Dimensions.pptFathiyah Morad
3 vues42 diapositives
1-Units and measurement-Done.doc par
1-Units and measurement-Done.doc1-Units and measurement-Done.doc
1-Units and measurement-Done.docSTUDY INNOVATIONS
29 vues20 diapositives
Physicalquantities par
PhysicalquantitiesPhysicalquantities
PhysicalquantitiesRosmaya Mokhtar
537 vues47 diapositives
15. Exercise -Unit & Dimensions par
15. Exercise -Unit & Dimensions15. Exercise -Unit & Dimensions
15. Exercise -Unit & DimensionsSTUDY INNOVATIONS
15 vues9 diapositives
Chapter 1(3)DIMENSIONAL ANALYSIS par
Chapter 1(3)DIMENSIONAL ANALYSISChapter 1(3)DIMENSIONAL ANALYSIS
Chapter 1(3)DIMENSIONAL ANALYSISFIKRI RABIATUL ADAWIAH
32.6K vues24 diapositives

Contenu connexe

Similaire à Lecture 1.ppt

C1h2 par
C1h2C1h2
C1h2azlirozita
2.8K vues19 diapositives
C1h2 par
C1h2C1h2
C1h2azlirozita
1.9K vues19 diapositives
Radiation physics 2 par
Radiation physics 2Radiation physics 2
Radiation physics 2Rad Tech
3K vues90 diapositives
v1chap1.pdf par
v1chap1.pdfv1chap1.pdf
v1chap1.pdfPatrickNokrek
7 vues26 diapositives
Applied III Chapter 4(1).pdf par
Applied III  Chapter 4(1).pdfApplied III  Chapter 4(1).pdf
Applied III Chapter 4(1).pdfDawitThomas
7 vues161 diapositives
1.0 Physical Quantities and Measurement par
1.0 Physical Quantities and Measurement1.0 Physical Quantities and Measurement
1.0 Physical Quantities and MeasurementYusri Yusop
25.5K vues55 diapositives

Similaire à Lecture 1.ppt(20)

Radiation physics 2 par Rad Tech
Radiation physics 2Radiation physics 2
Radiation physics 2
Rad Tech3K vues
Applied III Chapter 4(1).pdf par DawitThomas
Applied III  Chapter 4(1).pdfApplied III  Chapter 4(1).pdf
Applied III Chapter 4(1).pdf
DawitThomas7 vues
1.0 Physical Quantities and Measurement par Yusri Yusop
1.0 Physical Quantities and Measurement1.0 Physical Quantities and Measurement
1.0 Physical Quantities and Measurement
Yusri Yusop25.5K vues
units and dimensions par Krishna Gali
units and dimensionsunits and dimensions
units and dimensions
Krishna Gali12.1K vues
Answering questions technique physics spm paper 3 par firdaus_mfm
Answering questions technique physics spm paper 3Answering questions technique physics spm paper 3
Answering questions technique physics spm paper 3
firdaus_mfm4.6K vues
Mechanics Chapter 1 units, base & derived quantities par Lily
Mechanics Chapter 1 units, base & derived quantitiesMechanics Chapter 1 units, base & derived quantities
Mechanics Chapter 1 units, base & derived quantities
Lily69 vues
Split result 2021_05_07_10_11_44 par Reema
Split result 2021_05_07_10_11_44Split result 2021_05_07_10_11_44
Split result 2021_05_07_10_11_44
Reema 12 vues
Units , Measurement and Dimensional Analysis par Oleepari
Units , Measurement and Dimensional AnalysisUnits , Measurement and Dimensional Analysis
Units , Measurement and Dimensional Analysis
Oleepari437 vues
Chapter 1: Physical Quantities Unit, And Vectors par Reema
Chapter 1: Physical Quantities Unit, And VectorsChapter 1: Physical Quantities Unit, And Vectors
Chapter 1: Physical Quantities Unit, And Vectors
Reema 30 vues

Dernier

MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf par
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfMODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfKerryNuez1
25 vues5 diapositives
Pollination By Nagapradheesh.M.pptx par
Pollination By Nagapradheesh.M.pptxPollination By Nagapradheesh.M.pptx
Pollination By Nagapradheesh.M.pptxMNAGAPRADHEESH
16 vues9 diapositives
application of genetic engineering 2.pptx par
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptxSankSurezz
10 vues12 diapositives
DEVELOPMENT OF FROG.pptx par
DEVELOPMENT OF FROG.pptxDEVELOPMENT OF FROG.pptx
DEVELOPMENT OF FROG.pptxsushant292556
8 vues21 diapositives
1978 NASA News Release Log par
1978 NASA News Release Log1978 NASA News Release Log
1978 NASA News Release Logpurrterminator
10 vues146 diapositives
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... par
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...ILRI
5 vues6 diapositives

Dernier(20)

MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf par KerryNuez1
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdfMODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
MODULE-9-Biotechnology, Genetically Modified Organisms, and Gene Therapy.pdf
KerryNuez125 vues
application of genetic engineering 2.pptx par SankSurezz
application of genetic engineering 2.pptxapplication of genetic engineering 2.pptx
application of genetic engineering 2.pptx
SankSurezz10 vues
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ... par ILRI
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
Small ruminant keepers’ knowledge, attitudes and practices towards peste des ...
ILRI5 vues
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl... par GIFT KIISI NKIN
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...
Synthesis and Characterization of Magnetite-Magnesium Sulphate-Sodium Dodecyl...
GIFT KIISI NKIN26 vues
himalay baruah acid fast staining.pptx par HimalayBaruah
himalay baruah acid fast staining.pptxhimalay baruah acid fast staining.pptx
himalay baruah acid fast staining.pptx
HimalayBaruah7 vues
Experimental animal Guinea pigs.pptx par Mansee Arya
Experimental animal Guinea pigs.pptxExperimental animal Guinea pigs.pptx
Experimental animal Guinea pigs.pptx
Mansee Arya17 vues
Metatheoretical Panda-Samaneh Borji.pdf par samanehborji
Metatheoretical Panda-Samaneh Borji.pdfMetatheoretical Panda-Samaneh Borji.pdf
Metatheoretical Panda-Samaneh Borji.pdf
samanehborji16 vues
Light Pollution for LVIS students par CWBarthlmew
Light Pollution for LVIS studentsLight Pollution for LVIS students
Light Pollution for LVIS students
CWBarthlmew7 vues
How to be(come) a successful PhD student par Tom Mens
How to be(come) a successful PhD studentHow to be(come) a successful PhD student
How to be(come) a successful PhD student
Tom Mens491 vues
Artificial Intelligence Helps in Drug Designing and Discovery.pptx par abhinashsahoo2001
Artificial Intelligence Helps in Drug Designing and Discovery.pptxArtificial Intelligence Helps in Drug Designing and Discovery.pptx
Artificial Intelligence Helps in Drug Designing and Discovery.pptx

Lecture 1.ppt

  • 2. MEASUREMENT  We obtain an understanding of our environment by observing the physical world through measurements.  Measurement is a comparison of physical quantity with a standard unit.
  • 3. MEASUREMENT  It is expressed with numbers and units.  Physical characteristics can be expressed in terms of fundamental quantities.  Our comprehension(level of undersatnding) of the physical world is based on fundamental quantities.
  • 4. FUNDAMENTAL QUANTITIES Four quantities have been identified and specified as fundamental. These are:  Length  Mass  Time  Electric charge They form the basis for other quantities necessary to describe and understand the physical sciences.
  • 5. Length  We use length to measure location or size.  Length is defined as the measurement of space in any direction. Note: Space has three dimensions, each is measured by length.  Consider a box: Length (l) Width (w) Height (h)
  • 6. Time  Time is the continuous forward flow of events.  Events allow us to precise time, without events, we have no innate awareness of time.
  • 7. Mass  Mass quantifies matter.  Mass refers to the amount of matter an object contains.
  • 8. Electric Charge  Electric Charge is the property associated with some particles, that gives rise to electric forces and electrical phenomena.
  • 9. STANDARD UNITS  A standard unit is a fixed and reproducible value for the purpose of taking accurate measurements.  A set of standard units is referred to as a system of units.
  • 10. International System of Units There are seven base units of the International System of Units.  Meter, m, measures length.  Kilogram, kg, measures mass.  Second, s, measures time.  Ampere, A, measures electric current.  Kelvin, K, measures temperature.  Mole, mol, measures amount of substance.  Candela, cd, measures luminous intensity.
  • 11. Measurement Errors Systematic Errors: 1. Systematic errors are associated with instruments or the technique used. They are as a result of:  Improperly calibrated instrument  Error incurred from observer’s reading
  • 12. Measurement Errors Random Errors: 2. Random Errors result from unknown and unpredictable variations in experimental situations.  Such as fluctuation in electrical voltage.  Changes in temperature, pressure, etc.
  • 13. Accuracy / Precision  Accuracy indicates how close measurement comes to the true value.  Precision refers to the agreement among repeated measurement, that is, how close they are together.
  • 14. 14
  • 15. 15  Physical quantity is defined as a ……………………………….  It can be categorized into 2 types  Basic (base) quantity  Derived quantity  Basic quantity is defined as …………………………………………….  ………………………………………………………………………………..  Table 1.1 shows all the basic (base) quantities. 1.1 Physical Quantities and Units Quantity Symbol SI Unit Symbol Length l metre m Mass m ………………. kg Time t second s Temperature T/ kelvin K Electric current I ampere ………….. Amount of substance ………. mole mol Table 1.1
  • 16. 16  Derived quantity is defined as a quantity which can be expressed in term of base quantity.  Table 1.2 shows some examples of derived quantity. Derived quantity Symbol Formulae Unit Velocity v s/t m s-1 Volume …….. l  w  t m 3 Acceleration a v/t m s-2 Density  m/V ……………. Momentum p ………… kg m s-1 Force ……… m  a kg m s-2 @ N Work W F  s ……….. @ J Pressure P F/A N m-2 @ …… Frequency f 1/T s-1 @ …….. Table 1.2
  • 17. 17  It is used for presenting larger and smaller values.  Table 1.3 shows all the unit prefixes.  Examples:  5740000 m = 5740 km = 5.74 Mm  0.00000233 s = 2.33  106 s = 2.33 s Prefix Multiple Symbol tera  1012 T giga  ……. G mega  106 M kilo  103 ……….. deci  101 d centi  102 c milli  103 m micro  106 ……… nano  ,,,,,,, n pico  1012 p 1.1.1 Unit Prefixes Table 1.3
  • 18. 18 Solve the following problems of unit conversion. a. 15 mm2 = ? m2 b. 65 km h1 = ? m s1 c. 450 g cm3 = ? kg m3 Solution : a. 15 mm2 = ? m2 b. 65 km h-1 = ? m s-1 1st method :            h 1 m 10 65 h km 65 3 1 Example 1.1 :            s .......... m 10 65 h km 65 3 1 1 1 s m ........ h km 65       2 2 ......m mm 1  2 6 2 m 10 mm 1  
  • 19. 19 2nd method : c. 450 g cm-3 = ? kg m-3         h 1 km 65 h km 65 1 1 1 s m 18 h km 65     3 cm g 450 3 5 3 m kg 10 .5 4 cm g 450                         s 3600 h .... ...... 1 .......m h 1 km 65 h km 65 1
  • 20. 20 Follow Up Exercise 1. A hall bulletin board has an area of 250 cm2. What is this area in square meters ( m2 ) ? 2. The density of metal mercury is 13.6 g/cm3. What is this density as expressed in kg/m3 3. A sheet of paper has length 27.95 cm, width 8.5 cm and thickness of 0.10 mm. What is the volume of a sheet of paper in m3 ? 4. Convert the following into its SI unit: (a) 80 km h–1 = ? m s–1 (b) 450 g cm–3 = ? kg m–3 (c) 15 dm3 = ? m3 (d) 450 K = ? ° C
  • 21. Any valid physical equation must be dimensionally consistent – each side must have the same dimensions. From the Table: Distance = velocity × time Velocity = acceleration × time Energy = mass × (velocity)2 Dimensional Analysis (1)
  • 22. Dimensional Analysis  Fundamental Quantities  Length - [L]  Time - [T]  Mass - [M]  Derived Quantities  Velocity - [L]/[T]  Density - [M]/[L]3  Energy - [M][L]2/[T]2
  • 23. The period P [T] of a swinging pendulum depends only on the length of the pendulum d [L] and the acceleration of gravity g [L/T2]. Which of the following formulas for P could be correct ? P d g  2 P d g  2 (a) (b) (c) P  2 (dg)2 Example:
  • 24. L L T L T T          2 2 4 4 Dimensional Analysis (3) L L T T T 2 2   Remember that P is in units of time (T), d is length (L) and g is acceleration (L/T2). The both sides must have the same units   P dg  2 2  (a) (b) (c) P d g  2 Try equation (a). Try equation (b). Try equation (c). T T T L L 2 2   P d g  2
  • 25. 25  Scalar quantity is defined as a quantity with magnitude only.  e.g. mass, time, temperature, pressure, electric current, work, energy and etc.  Mathematics operational : ordinary algebra  Vector quantity is defined as a quantity with both magnitude & direction.  e.g. displacement, velocity, acceleration, force, momentum, electric field, magnetic field and etc.  Mathematics operational : vector algebra 1.2 Scalars and Vectors
  • 26. 26  Table 1.4 shows written form (notation) of vectors.  Notation of magnitude of vectors. 1.2.1 Vectors Vector A Length of an arrow– magnitude of vector A displacement velocity acceleration s  v  a  s a v v v   a a   s (bold) v (bold) a (bold) Direction of arrow – direction of vector A Table 1.4
  • 27. 27  Two vectors equal if both magnitude and direction are the same. (shown in figure 1.1)  If vector A is multiplied by a scalar quantity k  Then, vector A is  if k = +ve, the vector is in the same direction as vector A.  if k = -ve, the vector is in the opposite direction of vector A. P  Q  Q P    Figure 1.1 A k  A k  A  A  
  • 28. 28  Can be represented by using: a) Direction of compass, i.e east, west, north, south, north-east, north-west, south-east and south-west b) Angle with a reference line e.g. A boy throws a stone at a velocity of 20 m s-1, 50 above horizontal. 1.2.2 Direction of Vectors 50 v  x y 0
  • 29. 29 c) Cartesian coordinates  2-Dimension (2-D) m) 5 m, 1 ( ) , (   y x s  s  y/m x/m 5 1 0
  • 30. 30  3-Dimension (3-D) s  2 3 4 m 2) 3, 4, ( ) , , (   z y x s  y/m x/m z/m 0 ...i +...j + ..k s 
  • 31. 31 Unit vectors A unit vector is a vector that has a magnitude of 1 with no units. Are use to specify a given direction in space. i , j & k is used to represent unit vectors pointing in the positive x, y & z directions. | | = | | = | | = 1 iˆ ĵ k̂
  • 32. 32 d) Polar coordinates e) Denotes with + or – signs.     N,150 30  F F  150 + + - -
  • 33. 33  There are two methods involved in addition of vectors graphically i.e.  Parallelogram  Triangle  For example : 1.2.3 Addition of Vectors Parallelogram Triangle B  A  B  A  B A    O B A    B  A  B A    O
  • 34. 34  Triangle of vectors method: a) Use a suitable scale to draw vector A. b) From the head of vector A draw a line to represent the vector B. c) Complete the triangle. Draw a line from the tail of vector A to the head of vector B to represent the vector A + B. A B B A        Commutative Rule B  A  A B    O
  • 35. 35  If there are more than 2 vectors therefore  Use vector polygon and associative rule. E.g. R Q P      R  Q  P  R  Q  P    Q P        R Q P R Q P            Associative Rule   R Q P     
  • 36. 36  Distributive Rule : a. b.  For example : Proof of case a: let  = 2   B A B A             A A A           number real are ,      B A B A        2  B  A  B A    O   B A    2
  • 37. 37 A  2 O B  2 B A   2 2    B A B A     2 2 2     B A B A     2 2    
  • 38. 38 Proof of case b: let  = 2 and  = 1 A      A A A    3 1 2       A  3 A A A A     1 2      A  2 A   A  3    A A A    1 2 1 2    
  • 39. 39  For example : 1.2.4 Subtraction of Vectors Parallelogram Triangle D  C  O D C    O ......   D C D C         C  D   D C    C  D   D C   
  • 40. 40  Vectors subtraction can be used  to determine the velocity of one object relative to another object i.e. to determine the relative velocity.  to determine the change in velocity of a moving object. 1. Vector A has a magnitude of 8.00 units and 45 above the positive x axis. Vector B also has a magnitude of 8.00 units and is directed along the negative x axis. Using graphical methods and suitable scale to determine a) b) c) d) (Hint : use 1 cm = 2.00 units) Exercise 1 : B A    B A    B 2 A    B A 2   
  • 41. 41  1st method : 1.2.5 Resolving a Vector R  y R  x R   0 x y θ R Rx cos  .......... Rx   θ R Ry sin  θ Rsin ....   2nd method : R  y R  x R   0 x y  sin  R Rx  sin R Rx    cos  R Ry .......... ..........  
  • 42. 42  The magnitude of vector R :  Direction of vector R :  Vector R in terms of unit vectors written as ...... .......... or  R R  x y R R θ  tan or           x y R R θ 1 tan ..... ..........  R 
  • 43. 43 A car moves at a velocity of 50 m s-1 in a direction north 30 east. Calculate the component of the velocity a) due north. b) due east. Solution : Example 1.2 : N E W S N v  E v  v  30 60 a) b) or  60 v vN sin 
  • 44. 44 A particle S experienced a force of 100 N as shown in figure above. Determine the x-component and the y-component of the force. Solution : Example 1.3 : 150 F  S x 150 30 F  S x y y F  x F  Vector x-component y-component ………………………… …………………………  30 cos F Fx   N 6 . 6 8   x F or F   150 cos F Fx  ... ..........  x F  150 cos 100  x F N 0 5  y F or  150 sin F Fy  ........  y F  150 sin 100  y F
  • 45. 45 The figure above shows three forces F1, F2 and F3 acted on a particle O. Calculate the magnitude and direction of the resultant force on particle O. Example 1.4 : y 30o O ) N 30 ( 2 F  ) N 10 ( 1 F  30o x ) N 40 ( 3 F 
  • 47. 47 Solution : Vector x-component y-component 1 F  3 F  2 F  N 0 1  x F 1 1 F F y  N 0 1 1  y F  60 sin 30 2  y F N 6 2 2  y F  30 cos 40 3   x F N 34.6 3   x F Vector sum ....... ..........   x F ........ ..........   y F
  • 48. 48 y x O Solution : The magnitude of the resultant force is and Its direction is 162 from positive x-axis OR 18 above negative x-axis.    2 2     y x r F F F 52.1 .... r F  ................ r F              x y F F θ 1 tan  18 49.6 16 tan 1            θ  y F   x F   162 r F  18
  • 49. 49 1. Vector has components Ax = 1.30 cm, Ay = 2.25 cm; vector has components Bx = 4.10 cm, By = -3.75 cm. Determine a) the components of the vector sum , b) the magnitude and direction of , c) the components of the vector , d) the magnitude and direction of . (Young & freedman,pg.35,no.1.42) ANS. : 5.40 cm, -1.50 cm; 5.60 cm, 345; 2.80 cm, -6.00 cm; 6.62 cm, 295 2. For the vectors and in Figure 1.2, use the method of vector resolution to determine the magnitude and direction of a) the vector sum , b) the vector sum , c) the vector difference , d) the vector difference . (Young & freedman,pg.35,no.1.39) ANS. : 11.1 m s-1, 77.6; U think; 28.5 m s-1, 202; 28.5 m s-1, 22.2 Exercise 2 : B A    A  B A    A B    A B    B  A  B  B A    A B    B A    A B    Figure 1.2 y x 0 37.0   -1 s m 18.0 B    -1 s m 12.0 A 
  • 50. 50 3. Vector points in the negative x direction. Vector points at an angle of 30 above the positive x axis. Vector has a magnitude of 15 m and points in a direction 40 below the positive x axis. Given that , determine the magnitudes of and . (Walker,pg.78,no. 65) ANS. : 28 m; 19 m 4. Given three vectors P, Q and R as shown in Figure 1.3. Calculate the resultant vector of P, Q and R. ANS. : 49.4 m s2; 70.1 above + x-axis Exercise 2 : C  A  B  0    C B A    A  B  Figure 1.3 y x 0 50   2 s m 10  R    2 s m 35  P    2 s m 24  Q 
  • 51. 51  notations –  E.g. unit vector a – a vector with a magnitude of 1 unit in the direction of vector A.  Unit vectors are dimensionless.  Unit vector for 3 dimension axes : 1.2.6 Unit Vectors A  â c b a ˆ , ˆ , ˆ 1 ˆ   A A a     1 ˆ  a ) ( @ ˆ ⇒ - bold j j axis y 1 ˆ ˆ ˆ    k j i ) ( @ ˆ ⇒ - bold i i axis x ) ( @ ˆ ⇒ - bold k k axis z
  • 52. 52  Vector can be written in term of unit vectors as :  Magnitude of vector, x z y k̂ ĵ iˆ k r j r i r r z y x ˆ ˆ ˆ          2 z 2 y 2 x r r r r   
  • 53. 53  E.g. :  m ˆ 2 ˆ 3 ˆ 4 k j i s           m 5.39 2 3 4 2 2 2     s ĵ 3 x/m y/m z/m 0 s  i ˆ 4 k̂ 2
  • 54. 54 Two vectors are given as: Calculate a) the vector and its magnitude, b) the vector and its magnitude, c) the vector and its magnitude. Solution : a) The magnitude, Example 1.5 : a b     m ˆ 6 ˆ 2 ˆ k j i a     b a     m ˆ ˆ 3 ˆ 4 k j i b       ........................ x a b     ........................ y a b   ......................... a b     k b a b a z z z ˆ 7 1 6         ..................... 9.95 m a b    b a    2
  • 55. 55 b) The magnitude, c) The magnitude,   ............ x x x b a b a       ................ y y y b a b a     .............. m b a     .................. z z z b a b a     ..................... b a     2 ..................... x a b     2 ......................... y a b   2 ....................... m a b       k b a b a z z z ˆ 13 1 6 2 2 2               m 15.9 13 7 6 2 2 2 2       b a
  • 56. 56 Scalar (dot) product  The physical meaning of the scalar product can be explained by considering two vectors and as shown in Figure 1.4a.  Figure 1.4b shows the projection of vector onto the direction of vector .  Figure 1.4c shows the projection of vector onto the direction of vector . 1.2.7 Multiplication of Vectors A  B   A  B  A  B  Figure 1.4a  A  B  A  B  θ Bcos Figure 1.4b  A  B  θ Acos Figure 1.4c   A B A B A     to parallel of component     B A B B A     to parallel of component  
  • 57. 57  From the Figure 1.4b, the scalar product can be defined as meanwhile from the Figure 1.4c, where  The scalar product is a scalar quantity.  The angle  ranges from 0 to 180 .  When  The scalar product obeys the commutative law of multiplication i.e.   θ B A B A cos     vectors o between tw angle : θ   θ A B A B cos       90 θ 0   scalar product is positive   180 θ 0 9   scalar product is negative  90 θ  scalar product is zero A B B A       
  • 58. 58  Example of scalar product is work done by a constant force where the expression is given by  The scalar product of the unit vectors are shown below :     θ F s θ s F s F W cos cos       x z y k̂ ĵ iˆ     1 1 1 cos ˆ ˆ 2     o 2 0 i i i 1 ˆ ˆ ˆ ˆ ˆ ˆ       k k j j i i     1 1 1 cos ˆ ˆ 2     o 2 0 j j j     1 1 1 cos ˆ ˆ 2     o 2 0 k k k    0 9 cos ˆ ˆ    o 0 1 1 j i 0 ˆ ˆ ˆ ˆ ˆ ˆ       k i k j j i    0 9 cos ˆ ˆ    o 0 1 1 k i    0 9 cos ˆ ˆ    o 0 1 1 k j
  • 59. 59 Calculate the and the angle  between vectors and for the following problems. a) b) Solution : a) The magnitude of the vectors: The angle  , Example 1.6 : A  B A    B  ˆ ˆ ˆ ˆ ˆ ˆ ......... ........ ....... A B i i j j k k              3 1 1 1 2 2 2      A k j i A ˆ ˆ ˆ     k j i A ˆ ˆ 3 ˆ 4     k j i B ˆ 3 ˆ 2 ˆ 4     k j B ˆ 3 ˆ 2    ............. A B   3   B A         29 3 2 4 2 2 2       B θ AB B A cos                          29 3 3 cos cos 1 1 AB B A θ    2 . 71  θ ANS.:3; 99.4
  • 60. 60 Referring to the vectors in Figure 1.5, a) determine the scalar product between them. b) express the resultant vector of C and D in unit vector. Solution : a) The angle between vectors C and D is Therefore Example 1.7 : 1 99 ....... C D .       174 19 25 180     θ Figure 1.5 y x 0   m 1 C    m 2 D  19 25 θ CD D C cos     ................... 
  • 61. 61 b) Vectors C and D in unit vector are and Hence j C i C C y x ˆ ˆ    ˆ ˆ ......... .......... i j    m ˆ 42 . 0 ˆ 91 0 j i . C        j i D C ˆ 65 . 0 42 . 0 ˆ 89 . 1 91 . 0          m ˆ 23 . 0 ˆ 98 . 0 j i      j i D ˆ 19 sin 2 ˆ 19 cos 2       .....................m D 
  • 62. 62 Vector (cross) product  Consider two vectors :  In general, the vector product is defined as and its magnitude is given by where  The angle  ranges from 0 to 180  so the vector product always positive value.  Vector product is a vector quantity.  The direction of vector is determined by k r j q i p B ˆ ˆ ˆ     k z j y i x A ˆ ˆ ˆ     C B A      θ AB θ B A C B A sin sin          vectors o between tw angle : θ RIGHT-HAND RULE C 
  • 63. 63  For example:  How to use right hand rule :  Point the 4 fingers to the direction of the 1st vector.  Swept the 4 fingers from the 1st vector towards the 2nd vector.  The thumb shows the direction of the vector product.  Direction of the vector product always perpendicular to the plane containing the vectors and . A  C  B  A  B  C  C B A      C A B      A B B A        but   A B B A         B  ) (C  A 
  • 64. 64  The vector product of the unit vectors are shown below :  Example of vector product is a magnetic force on the straight conductor carrying current places in magnetic field where the expression is given by x z y k̂ ĵ iˆ i j k k j ˆ ˆ ˆ ˆ ˆ      k i j j i ˆ ˆ ˆ ˆ ˆ      j k i i k ˆ ˆ ˆ ˆ ˆ      0 ˆ ˆ ˆ ˆ ˆ ˆ       k k j j i i 0 in ˆ ˆ    o 2 0 s i i i 0 in ˆ ˆ    o 2 0 s j j j 0 in ˆ ˆ    o 2 0 s k k k   B l I F      θ IlB F sin 
  • 65. 65  The vector product can also be expressed in determinant form as  Note :  The angle between two vectors can only be determined by using the scalar (dot) product. r q p z y x k j i B A ˆ ˆ ˆ          k yp xq j zp xr i zq yr B A ˆ ˆ ˆ         
  • 66. 66 Given two vectors : Determine a) and its magnitude b) c) the angle between vectors and . Solution : a) The magnitude, Example 1.8 : ˆ ˆ ˆ i j k A B   B A    B A    A B   k j i B A ˆ 2 ˆ 6 1 ˆ 10       19   B A   k j i A ˆ ˆ 2 ˆ 3      k i B ˆ 5 ˆ    A  B  A B  
  • 67. 67 b) c) The magnitude of vectors, ………………………………………….. …………………………………………. Using the scalar (dot) product formula,     k j i k j i B A ˆ 5 ˆ 0 ˆ ˆ ˆ 2 ˆ 3           2   B A   θ AB B A cos      84  θ 14 A  26 B 
  • 68. 68 1. If vector and vector , determine a) , b) , c) . ANS. : 2. Three vectors are given as follow : Calculate a) , b) , c) . ANS. : 3. If vector and vector , determine a) the direction of b) the angle between and . ANS. : U think, 92.8 Exercise 3 : 46 ; 26 ; ˆ 2k j i a ˆ + ˆ = 5 3  j i b ˆ + ˆ = 4 2  b a    b a      b b a      k j i c k j i b k j i a ˆ ˆ 2 ˆ 2 and ˆ 2 ˆ 4 ˆ ; ˆ 2 ˆ 3 ˆ 3                c b a        c b a        c b a      k j i ˆ 9 ˆ 11 ˆ 5 ; 9 ; 21     k j i P ˆ ˆ 2 ˆ 3     k j i Q ˆ 3 ˆ 4 ˆ 2      Q P    P  Q 
  • 69. PHYSICS CHAPTER 1 69 THE END… Next Chapter… CHAPTER 2 : Kinematics of Linear Motion