ANÁLISIS DE DATOS E INCERTIDUMBRE.
INVESTIGACIÓN SOBRE TEMAS RELACIONADOS CON LA POSIBILIDAD,
ESTADÍSTICA Y LÓGICA
o Númer...
INVESTIGACIÓN REALIZADA POR:
Sarabia Salas Samantha
1-2 Matutino
DEFINICIÓN DENÚMEROS REALES
Un número es la expresión de una cantidad con relación a su unidad. El término proviene del
la...
CLASIFICACIÓN DE NUMEROS REALES
ESQUEMA DE NÚMEROS REALES
EJEMPLO DE NÚMEROS
REALES
PROPIEDADES DE LOS NÚMEROS REALES
Elemento identidad
Suma: a + 0 = 0 + a = a
Producto: a . 1 = 1 . a = a
Elemento inverso
...
OPERACIONES CON NÚMEROS REALES Y
FRACCIONARIOS
A.- Para sumar o restar una fracción y un número natural:
3 + 5 / 2
Empezam...
SUMA
 Suma de números positivos y otro
negativo
Para sumar un número positivo y un número negativo se procede a hallar la...
MULTIPLICACIÓN
 Multiplicación de Números Relativos
 Regla: El producto de dos números relativos se halla multiplicando ...
RESTA
 Sustracción de números relativos
 Regla: Para hallar la diferencia entre dos números relativos se suma el
minuend...
DIVISIÓN
 División de números relativos
 Regla: Para dividir un número cualquiera d por otro número distinto de cero d´,...
RADICALES
 Leyes de los Radicales
Ley
La potencia pasa a ser exponente del radicando y se convierte en fracción, el índic...
EXPRESIONES ALGEBRAICAS
TÉRMINO ALGEBRAICO Y SUS PARTES
Se llama término a toda expresión algebraica cuyas partes no están...
EXPRESIONES ALGEBRAICAS
Grado absoluto: se obtiene sumando todos los exponentes de las variables.
Grado = 5 + 4 + 7
Grado ...
LEYES DE LOS EXPONENTES
Leyes de los exponentes
Los exponentes también se llaman potencias o índices
El exponente de un nú...
NOTACIÓN CIENTÍFICA EN SUMA, RESTA, MULTIPLICACIÓN Y
DIVISIÓN
SUMA Y RESTA EN NOTACIÓN CIENTÍFICA 0 DE POTENCIAS EN BASE
D...
EXPONENTES FRACCIONARIOS
Los exponentes fraccionarios no son usados a menudo, además de las fórmulas avanzadas en los alto...
EXPONENTES COMPUESTOS
OPERACIONES CON EXPRESIONES ALGEBRAICAS, SUMA, RESTA,
MULTIPLICACIÓN Y DIVISIÓN.
PRODUCTOS NOTABLES
FACTORIZACIÓN DE 4 MÉTODOS DIFERENTES
1.- factor común
ab + ac =
a*b + a*c =
a*(b + c)
2.- factor común x grupo
ab + 4ac +...
SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS
OPERACIONES CON EXPRESIONES ALGEBRAICAS FRACCIONARIAS
Prochain SlideShare
Chargement dans…5
×

Númeos reale ssamanhta

754 vues

Publié le

Números Reales Samantha

Publié dans : Formation
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

Númeos reale ssamanhta

  1. 1. ANÁLISIS DE DATOS E INCERTIDUMBRE. INVESTIGACIÓN SOBRE TEMAS RELACIONADOS CON LA POSIBILIDAD, ESTADÍSTICA Y LÓGICA o Números Reales o Clasificación de Números Reales o Propiedades de los Números Reales o Operaciones con Números Reales y Fraccionarios o Suma o Multiplicación o Resta o División o Radicales o Expresiones Algebraicas, Termino Algebraica, Clasificaciones de Expresiones Algebraicas. Grado Absoluto, o Grado Relativo y Grado de una expresión. o Leyes de los Exponentes o Notación Científica en suma, resta, multiplicación y división. o Exponentes Fraccionarios. o Exponentes Compuestos. o Operaciones con expresiones algebraicas, suma, resta, multiplicación y división. o Productos Notables. o Factorización por 4 métodos diferentes. o Simplificación de expresiones algebraicas. o Operaciones con expresiones algebraicas fraccionarias.
  2. 2. INVESTIGACIÓN REALIZADA POR: Sarabia Salas Samantha 1-2 Matutino
  3. 3. DEFINICIÓN DENÚMEROS REALES Un número es la expresión de una cantidad con relación a su unidad. El término proviene del latín numĕrus y hace referencia a un signo o un conjunto de signos. La teoría de los números agrupa a estos signos en distintos grupos. Los números naturales, por ejemplo, incluyen al uno (1), dos (2), tres (3), cuatro (4), cinco (5), seis (6), siete (7), ocho (8), nueve (9) y, por lo general, al cero (0). El concepto de números reales surgió a partir de la utilización de fracciones comunes por parte de los egipcios, cerca del año 1.000 a.C. El desarrollo de la noción continuó con los aportes de los griegos, que proclamaron la existencia de los números irracionales. Los números reales son los que pueden ser expresados por un número entero (3, 28, 1568) o decimal (4,28; 289,6; 39985,4671). Esto quiere decir que abarcan a los números racionales (que pueden representarse como el cociente de dos enteros con denominador distinto a cero) y los números irracionales (los que no pueden ser expresados como una fracción de números enteros con denominador diferente a cero). Otra clasificación de los números reales puede realizarse entre números algebraicos (un tipo de número complejo) y números trascendentes (un tipo de número irracional).
  4. 4. CLASIFICACIÓN DE NUMEROS REALES ESQUEMA DE NÚMEROS REALES EJEMPLO DE NÚMEROS REALES
  5. 5. PROPIEDADES DE LOS NÚMEROS REALES Elemento identidad Suma: a + 0 = 0 + a = a Producto: a . 1 = 1 . a = a Elemento inverso Suma: a + (–a) = –a + a = 0 Producto: a (1/a) = (1/a)a = 1, a¹0 Ley Asociativa Suma: a + (b + c) = (a + b) + c Producto: a . (b . c) = (a . b) . c Ley Conmutativa Suma: a + b = b + a Producto: a . b = b . a Ley Distributiva Producto sobre la suma: a (b + c) = (b + c) a = ab + ac EJEMPLOS: Indique qué propiedad de los números reales se ilustra con cada ejemplo. A) –3 + 3 = 0. Respuesta: elemento inverso para la suma. B) (x + y) × z = xz + yz. Respuesta: ley distributiva. C) (–3)(6) = (6)(–3). Respuesta: ley conmutativa para el producto. La siguiente tabla resume las propiedades de los números reales
  6. 6. OPERACIONES CON NÚMEROS REALES Y FRACCIONARIOS A.- Para sumar o restar una fracción y un número natural: 3 + 5 / 2 Empezamos convirtiendo el número natural en fracción poniéndole como denominador 1: 3 = 3 / 1 Ahora seguimos operando igual que con fracciones con distintos denominadores. 3 / 1 + 5 / 2 Calculamos fracciones equivalentes con el mismo denominador: Aplicamos el procedimiento del mínimo común múltiplo: 1 x 2 = 2 Sustituimos las fracciones originales por las fracciones equivalentes y sumamos: 6 / 2 + 5 / 2 = 11 / 2 Veamos otro ejemplo: 7 – 6 / 3 7 – 6 / 3 = 7 / 1 – 6 / 3 Aplicamos el procedimiento del mínimo común múltiplo: 1 x 3 = 3 Sustituimos las fracciones originales por las fracciones equivalentes y restamos: 21 / 3 – 6 / 3 = 15 / 3 B.- Multiplicación de una fracción por un número natural: 3 x 7 / 2 Se multiplica el numerador por el número y el denominador se deja el mismo. 3 x 7 / 2 = (3 x 7) / 2 = 21 / 2 Esta es la operatoria que se utiliza cuando se aplica una fracción a un número natural: Por ejemplo: en una clase de 30 niños, 2 / 3 nunca juegan al fútbol ¿cuántos son? 2 / 3 x 30 = (2 x 30) / 3 = 60 / 3 = 60 : 3 = 20 niños C.- División de una fracción por un número natural: 5 / 4 : 3 Se deja el mismo numerador y se multiplica el denominador por el número: 5 / 4 : 3 = 5 / (4 x 3) = 5 / 12
  7. 7. SUMA  Suma de números positivos y otro negativo Para sumar un número positivo y un número negativo se procede a hallar la diferencia aritmética de los valores absolutos de ambos números, y al resultado obtenido se le antepone el signo del número mayor. Cuando los dos números tienen igual valor absoluto y signos distintos la suma es cero. -78+1=-77 47+ (-1) =46
  8. 8. MULTIPLICACIÓN  Multiplicación de Números Relativos  Regla: El producto de dos números relativos se halla multiplicando los valores absolutos de ambos. El producto hallado levará signo positivo (+), si los signos de ambos factores son iguales; llevará signos negativos (-), si los factores tienen signos distintos. Si uno de los factores es 0 el producto será 0.  Cuando operamos con símbolos literales el producto es siempre indicado, bien en la forma  ax b; bien en la forma a.b; y más usualmente ab.
  9. 9. RESTA  Sustracción de números relativos  Regla: Para hallar la diferencia entre dos números relativos se suma el minuendo el sustraendo, cambiándole el signo. Ejemplos:
  10. 10. DIVISIÓN  División de números relativos  Regla: Para dividir un número cualquiera d por otro número distinto de cero d´, multiplicamos d por el recíproco d´ ( 1/d´). El cociente que resulte será positivo si los dos números son del mismo signo; y negativos, si son de signos contrarios.  Con el siguiente cuadro podemos recordar fácilmente la ley de los signos de la división con números relativos.
  11. 11. RADICALES  Leyes de los Radicales Ley La potencia pasa a ser exponente del radicando y se convierte en fracción, el índice será el denominador y el exponente el numerados. (ⁿ√x)ᵐ=ⁿ√xᵐ Producto de radicales con un mismo índice radical El índice se conserva y los radicandos se multiplican. ⁿ√x.ⁿ√y=ⁿ√x.y División de radicales con un mismo índice radical El índice se conserva y los radicandos se dividen. ⁿ√x/ⁿ√y=ⁿ√x/y Raíz de raíces El radicando se conserva y los índices se multiplican. ᵐ√ⁿ√x=ᵐ˙ⁿ√x
  12. 12. EXPRESIONES ALGEBRAICAS TÉRMINO ALGEBRAICO Y SUS PARTES Se llama término a toda expresión algebraica cuyas partes no están separadas por los signos + o -. Así, por ejemplo xy2 es un término algebraico. En todo término algebraico pueden distinguirse cuatro elementos: el signo, el coeficiente, la parte literal y el grado. CLASIFICACIÓN DE EXPRESIONES ALGEBRAICAS. De acuerdo al número de términos, las expresiones algebraicas se pueden clasificar generalmente en monomios y polinomios. MONOMIO: Es una expresión algebraica que consta de un solo término, por ejemplo, 12m⁴, - a² b , POLINOMIO: Son expresiones algebraicas que constan de dos o más términos. Ejemplo: a. x+y+z b. 9m² - 16n⁴ c. 2x⁴ + 5x⁵ - 54x – 135 Los polinomios de dos términos reciben el nombre especial de BINOMIOS. Ejemplos de binomios: a. x² - y² b. a⁴ b⁵ + 3 a² b² c⁷ Los polinomios de tres términos reciben el nombre de TRINOMIOS. Son ejemplos de trinomios: a. x² - 10x + 25 b. ab³ + 5a² b⁷ m – 35 abx⁵
  13. 13. EXPRESIONES ALGEBRAICAS Grado absoluto: se obtiene sumando todos los exponentes de las variables. Grado = 5 + 4 + 7 Grado = 16 Grado relativo: es el valor del exponente de cada variable. Grado de a = 5 Grado de b = 4 Grado de c = 7 GRADO DE UNA EXPRESIÓN ALGEBRAICA. El exponente de mayor orden de la variable se conoce como grado del polinomio. Para encontrar el grado de un polinomio, basta examinar cada término y hallar el exponente de mayor orden de la variable. Por lo tanto, el grado de 3x2 + 5x4 - 2 se halla examinando el exponente de la variable en cada término. El exponente en 3x2 es 2 El exponente en 5x4 es 4 El exponente en -2 es 0, porque -2=-2x0 (x0=1)
  14. 14. LEYES DE LOS EXPONENTES Leyes de los exponentes Los exponentes también se llaman potencias o índices El exponente de un número dice cuántas veces se multiplica el número. En este ejemplo: 82 = 8 × 8 = 64
  15. 15. NOTACIÓN CIENTÍFICA EN SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN SUMA Y RESTA EN NOTACIÓN CIENTÍFICA 0 DE POTENCIAS EN BASE DIEZ. Multiplicación o división en notación científica o con potencias en base diez.
  16. 16. EXPONENTES FRACCIONARIOS Los exponentes fraccionarios no son usados a menudo, además de las fórmulas avanzadas en los altos niveles de las matemáticas y la ciencia. Pero ocasionalmente son útiles para simplificar expresiones algebraicas.
  17. 17. EXPONENTES COMPUESTOS
  18. 18. OPERACIONES CON EXPRESIONES ALGEBRAICAS, SUMA, RESTA, MULTIPLICACIÓN Y DIVISIÓN.
  19. 19. PRODUCTOS NOTABLES
  20. 20. FACTORIZACIÓN DE 4 MÉTODOS DIFERENTES 1.- factor común ab + ac = a*b + a*c = a*(b + c) 2.- factor común x grupo ab + 4ac + 2b + 8c = a*b + 4*a*c + 2*b + 2*4*c = a*(b + 4c) + 2*(b + 4c) = como los dos paréntesis son iguales.. (a + 2) * (b + 4c) 3.-binômio (suma o resta de dos términos).. 2a + b ½b - 5c -b² + 2b 4.-trinomios.. a + b - c -a² + ¾a + ½g 625x² + 30[25]x + 225
  21. 21. SIMPLIFICACIÓN DE EXPRESIONES ALGEBRAICAS
  22. 22. OPERACIONES CON EXPRESIONES ALGEBRAICAS FRACCIONARIAS

×