SlideShare a Scribd company logo
1 of 29
Lithium Ion Abuse Test Methods 
Lithium Ion Abuse Test Methods
Improvement
Erik J Spek, 
Dr. Mehdi Hosseinifar, TÜV SÜD 




   Portland
    5 – 7 November  2012
                                  Oregon




                                           http://www.psessymposium.org/
                                                                           1
Abuse Testing of Lithium Ion Cells



•   Summary  y
•   Introduction Abuse Testing
•   Role of Standards
    Role of Standards
•   Standardization of Test Methods
•   Response to Abuse Tests
    Response to Abuse Tests
•   Survey of TÜV SÜD Nail Penetration Tests since 2009


                                                          2
Summary
      y
The increasing use of high energy, high power lithium ion batteries for electric
and hybrid vehicles has progressed to the point of commercial introduction
                                                               introduction.
Nevertheless, these cells are yet to show strong resistance to thermal,
mechanical and electrical abuse.
Despite the availability of test recommended procedures and standards for
characterizing the cell response to abuse stimuli, b
  h        ii    h      ll              b       i li better engineered and
                                                                  i      d     d
robust test methods need to be developed within the context of these
standards.
Attempts to improve the nail penetration abuse test procedure are described
       p        p              p                      p
in this presentation.
The effects of various parameters on the hazard response level of Li‐ion cells
have been evaluated.
It is concluded that Li ion technologies are generally becoming less sensitive
                      Li‐ion
to abuse conditions.




                                                                              3
Introduction‐1
•   Expectation: survivability in accidents and benign response 
    under abuse conditions. 
•   Standards help support the expectation that electrified vehicles 
    are subject to at least the same expectations. 
•   Standards for ICE based vehicles developed over 100 years
     –   are effective in ensuring vehicles are robust & hazards are managed 
     –   occupants can survive accident scenarios that are survivable. 
•   These standards have been augmented to account for the 
    electrification component that comes with elevated voltage and 
    significant amounts of stored electrical energy. 
•   New risks in these electrified vehicles need to be considered in 
    the design and development
•   The task of writing and then proving out these standards
     –   slow and laborious process with stakeholders coming together, 
         putting aside individual interests
         putting aside individual interests
     –   publish a tool that is effective but flexible enough to consider 
         different technologies




                                                                                4
Introduction‐2
•   Standards documents for batteries and other vehicle 
    electrification components. 
    electrification components
•   Issues to improve standards robustness, consistency and 
    universality. 
•   American National Standards Institute (ANSI) through the Electric 
    Vehicles Standards Panel  (EVSP) has identified gaps
                               (     )
•   Standards only effective if test methods satisfy intent consistently. 
•   Some of the first organizations to encounter this issue while 
    implementing new test methods are third party test agencies. 
       p           g                           p y          g
     –   build or acquire the specialized equipment
     –   develop the skills and methods that minimize test risk, and develop 
         consistent and effective testing. 
     –   test method shortcomings and opportunities for improvement are 
                                  g         pp              p
         discovered
•   Issues TÜV SÜD has resolved to make nail penetration abuse 
    testing effective.
•   Large format cells of many descriptions analyzed for the effects of 
    Large format cells of many descriptions analyzed for the effects of
    parameters on the reaction to abuse test conditions. 

                                                                                5
Abuse Testing of Lithium‐Ion Cells
            g
Role of TÜV SÜD  
• Third party, ISO 17025 certified, global testing company.
    Third party, ISO 17025 certified, global testing company.
• Abuse tests establish reaction of cells, modules or complete batteries to 
    conditions exceeding those expected to be encountered in normal use.
• Data used by battery manufacturers and OEMs for design decision making
• Lithium‐ion energy storage devices need to prove compliance,
      – little operational track record over many years of service, under abuse 
         conditions. 
• TÜV SÜD, is privy to an overview of cell technology trends that cell, battery 
    and OEM organizations may not see due to their focused efforts. 
• Individual companies are often immersed in one technology family
    Individual companies are often immersed in one technology family.
• Would be loath to change direction based only on reports of more progress 
    with competing technologies. 
• Reports from independent testing agencies from a general point of view.
      – the technology is improving
         the technology is improving, 
      – boost overall confidence for the electric vehicle market and customers.




                                                                                   6
Available Standards & Practices‐1
•   Many tests covering electrical, mechanical and thermal/environmental abuse that are used to gauge 
    product robustness. 
•   Mechanical abuse tests cover mechanisms as nail penetration, crush, drop, impact or shock and vibration. 
    Mechanical abuse tests cover mechanisms as nail penetration, crush, drop, impact or shock and vibration.
•   Simulate the actual use and abuse conditions that may be beyond the normal safe operating limits [2]. 
•   Nail penetration is typically the most reactive of all the mechanical abuse tests
•   Frequently used to assess cell robustness with short test turnaround time. 
•   Three principle nail penetration test standards: 
    Three principle nail penetration test standards:
     –   United States Advanced Battery Consortium (USABC), 
     –   Society of Automotive Engineers (SAE), 
     –   Automotive Industry Standard of the People’s Republic of China.
•   Most commonly requested nail penetration tests for automotive batteries:
     os co   o y eques ed a pe e a o es s o au o o e ba e es
     –   SAE J2464 section 4.3.3 [3] and FreedomCAR through SAND 2005‐3123 section 3.2 [2]. 
•   Nail penetration testing is also described in QC/T 743‐2006, Lithium‐ion Batteries for Electric Vehicles, 
    Automotive Industry Standard of the People’s Republic of China [4]. 
•   The Japan Storage Battery Association (JSBA) has a Guideline for Safety Evaluation on Secondary Lithium 
    Cells [5]. 
     –   primarily for small size portable electrical appliances which use cells smaller than 5 Ah. 
     –   In contrast, most cells for automotive PHEV and EV applications are greater than 5 Ah and reach as high as 75 Ah. 
     –   Nail diameter in JSBA is specified as between 2.5 to 5 mm with no nail material nor nail speed specified. 
     –   In contrast, both SAE J2464 section 4.3.3 and SAND 2005‐3123 section 3.2 specify one nail diameter and mild steel 
         I      t t b th SAE J2464        ti 4 3 3 d SAND 2005 3123           ti 3 2        if       il di t     d ild t l
         with nail speed greater than 8 cm/s for single cells. 


                                                                                                                              7
Available Standards & Practices‐2
•   SAE and SAND tests do not present pass and fail criteria, 
•   SBA requires that no explosion and no fire result from the test. 
           q                 p
•   QC/T 743‐2006 section 6.2.12.7 provides for two nail diameters of 10 and 40 mm and no nail speed 
    but it also requires no explosion and no fire.
•   Test specifications are open to interpretation in methodology due to:
     –    the short history of lithium ion battery development, 
     –   large ampere‐hour and pouch prismatic cells
         large ampere‐hour and pouch prismatic cells
•   Test methods were standardized at TUV SUD driven by significant uncontrolled variations
•   Since 2009, TÜV SÜD, has pursued a path of continuous test methodology improvement for the cell 
    penetration testing. 
•   Accredited TÜV SÜD test procedure used to test hundreds of large format lithium ion cells.
•   Scope does not begin to cover all cells from all manufacturers ‐ it is a snapshot of a population of 
    nail penetration tests conducted at TÜV SÜD.
•   This work is different from what is typically found in literature [6‐15] in that it covers commercial 
    large format cells rather than experimental low capacity cells. 
•   The equipment and safe practices used have been developed specifically and exclusively for these 
          q p                 p                                  p     p        y                y
    tests. 
•   A large number of tests are carried out on a variety of cells as opposed to a few tests.




                                                                                                        8
Drive to Standardize
•   Failed cell or battery tests in 3rd party testing ‐> subsequent ripple effect. 
     –   Ripple effect for phone call or email that implies that ‘The product failed the 
         test so the test method must be wrong’ or ‘another test organization did the 
                   h           h d      b         ’ ‘      h                     dd h
         same test and the product passed there so you must be wrong’. 
     –   Resolution consumes significant resources to explain test results
     –   Most test organizations work hard to ensure test equipment, methods and 
         facilities are robust and consistent. 
     –   The benefit is that proving competence when called upon is easily and 
         The benefit is that proving competence when called upon is easily and
         confidently carried out. 
•   The SAE/FreedomCAR cell penetration test was selected as an ideal early 
    candidate for this kind of improvement effort. 
•   TÜV SÜD performs tests to customer requirements. 
•   The tests conducted have been selected by the customer as being 
    The tests conducted have been selected by the customer as being
    application relevant.  
•   When standard tests are not deemed application relevant, TÜV SÜD 
    works with customers to develop tests that are suited to the 
    requirements. 
•   It is not the role of TÜV SÜD to pass judgment on cell or battery designs.
    I i        h    l f TÜV SÜD           j d           ll b          d i




                                                                                            9
Table 1: EUCAR Hazard Severity Levels (HSL)
                                                                 TABLE I
                                                      EUCAR HAZARD SEVERITY LEVELS (HSL)
     HAZARD SEVERITY
                                   DESCRIPTION                               CLASSIFICATION CRITERIA AND EFFECT
         LEVEL
 0                     No Effect                              No effect. No loss of functionality
                                                              No damage or hazard; reversible loss of function. Replacement or re-
 1                     Passive Protection Activated           setting of protection device is sufficient to restore normal
                                                              functionality
                                                              No hazard but damage to RESS*; irreversible loss of function.
 2                                g
                       Defect/Damage
                                                              Replacement or repair needed.
                                                              R l           t       i    d d
                                                              Evidence of cell leakage or venting with RESS weight loss < 50% of
 3                     Minor Leakage/Venting
                                                              electrolyte weight.
                                                              Evidence of cell leakage or venting with RESS weight loss > 50% of
 4                     Major Leakage/Venting
                                                              electrolyte weight.
                                                              Loss of mechanical integrity of the RESS container, resulting in
 5                     Rupture                                release of contents. The kinetic energy of released material is not
                                                                         contents
                                                              sufficient to cause physical damage external to the RESS.
                                                              Ignition and sustained combustion of flammable gas or liquid
 6                     Fire or Flame
                                                              (approximately more than one second). Sparks are not flames.
                                                              Very fast release of energy sufficient to cause pressure waves and/or
                                                              projectiles that may cause considerable structural and/or bodily
 7                     Explosion
                         p                                    damage, depending on the size of the RESS. The kinetic energy of
                                                                    g , p        g                                           gy
                                                              flying debris from the RESS may be sufficient to cause damage as
                                                              well.




                                                                                                                                      10
Testing Response ‐ 1
      g    p
• Cells that are abused may react in a number of ways from 
  no reaction to total and violent destruction. 
  no reaction to total and violent destruction
• Both Sandia National Labs [2] and SAE J2464 [3] use the 
  EUCAR Hazard Severity Levels [16] to describe to what 
  extent a cell can react to a specific abuse. 
  extent a cell can react to a specific abuse
• Table I depicts the Hazard Severity Levels as in SAE J2464. 
  Levels 5 and 6 are reversed in the Sandia table.
• A cell undergoing a level 7 reaction is more than a designer
  A cell undergoing a level 7 reaction is more than a designer 
  would want to cope with in any battery pack. 
• Most OEM and battery companies look for level 2 as a 
  worst case response with level 3 as acceptable in some 
  worst case response with level 3 as acceptable in some
  circumstances. 
• There is no ‘pass’ or ‘fail’ criteria yet for this test. 


                                                                  11
Testing Response ‐ 2
      g    p
• The risk of personal injury 
  with this level of testing is 
    ith thi l l f t ti i
  high and is therefore 
  conducted in purpose‐
  designed chambers. 
  designed chambers
• 3 chambers used at TÜV SÜD 
  in Newmarket, Ontario, 
  Canada for cell abuse testing. 
  C d f           ll b    t ti
• Pressure vessel style for single 
  cell tests up to hazard severity 
  level (HSL) 7. 
• ISO Style chambers used in 
  Auburn Hills, MI for pack tests
                ,       p

                                      12
Testing Response ‐ 3
      g    p
• one of 3 concrete 
  bunkers at TÜV 
  b k          TÜV
  SÜD in Garching, 
  Germany designed 
  to withstand HSL 
        ih     d
  up to 7 for up to 
  full packs. 
• fully equipped 
  with gas cleaning, 
         p p
  multiple pressure 
  relief features and 
  blast proof 
        p
  viewports.

                         13
Test Methodology‐Development History
              gy       p           y
                    Table 2: SAE J2464 Cell Penetration Test  Variables
        Parameter
        P     t                    Measured value
                                   M      d l                                  Value
                                                                               V l
 Nail                   material                                mild steel
                        diameter                                3 mm (no tolerance)
                        Point taper
                        Point taper                             No values for length, included 
                                                                No values for length included
                                                                angle or surface finish
                        Surface finish                          No value specified
                        Straightness                            No value specified
                        orientation                             Perpendicular to electrodes

 Penetration            Rate                                    ≥8 cm/s

                        depth                                   Through cell

 Constraints            Preload                                 None specified

                        Supporting scheme                       None specified

 Electrical             Resistance of path from DUT to ground
                        Resistance of path from DUT to ground   None specified
                                                                None specified


                                                                                                  14
Test Methodology‐Development History
              gy       p           y
    •   For both cylindrical and prismatic cells.
    •   However, most have been soft prismatic (pouch) cells for 
        nail penetration.  
        nail penetration
    •   First TÜV SÜD test device was an air driven pneumatic 
        cylinder (see Figure 3) set at 100 cm/sec. 
    •   High value for speed used to ensure that the minimum 
        nail velocity occurring during the ‘through the thickness’  
           il l i           i d i       h ‘h      h h hi k       ’
        penetra on of cells as thick as 12 mm would be ˃ 
        specified 8 cm/sec. 
    •   This value pales in comparison to the 2,780 cm/sec that a 
        nail might be launched at when a vehicle travelling at 100 
        km/h impacts a nail. 
•       It is not the purpose of this presentation to comment on the relevancy of this test velocity but 
        it is helpful to consider that a single cell, similar to a vehicle occupant, is not expected to be 
        it is helpful to consider that a single cell, similar to a vehicle occupant, is not expected to be
        subjected to a projectile hurled at that velocity. 
•       Battery and vehicle as a system designed to protect an individual cell from this event. 
•       May be achieved by crumple zones, energy absorbing layers or shielding materials or as part of 
        the vehicle.

                                                                                                    15
Test Methodology‐Development History
              gy       p           y
 •   Since pneumatic cylinder force was considered substantial at 1.7 kN, there was little 
     concern for a slowing down of the nail through the cell thickness to ˂8 cm/sec. 
 •   An initial group of cells were tested in this manner but results could not be 
     An initial group of cells were tested in this manner but results could not be
     correlated to the cell suppliers’ similar penetration test data. 
 •   Parameters in Table 2 were compared: between the TUV SUD values and cell 
     supplier’s values. 
 •   The comparison showed that, like the SAE Recommended Practice, most of the 
     Th           i     h      d h lik h SAE R                d dP     i          f h
     parameters including the actual nail penetration speed were not measured at the 
     cell supplier. 
 •   Several such as nail diameter and material were not in line with the SAE 
     requirements.:
      – Specifically, nail diameter was 5 mm where SAE J2464 specified 3mm 
      – Material was stainless steel where SAE J2464 specified mild steel.
 •   To establish a starting point for those parameters lacking values, a review of the 
     To establish a starting point for those parameters lacking values a review of the
     tests conducted to date that for those with HSL response values of <5  




                                                                                              16
Test Methodology‐Development History
              gy       p           y
 •   Note that the HSL <5 was chosen since the test population size was small 
     with high HSL variability. 
 •   The starting values listed in Table 3 were assigned.
     Th t ti         l    li t d i T bl 3           i d
 •   With these starting values adopted, more cells were tested of selected 
     anode and cathode chemistries, % state of charge (SOC) and capacities. 
 •   Mild steel nails had a high incidence of buckling in thicker cells. This was 
     Mild steel nails had a high incidence of buckling in thicker cells This was
     resolved by using high carbon steel nails made from commercial drill rod. 
     The resistivity of the high carbon steel is similar to the specified mild steel.




                                                                                        17
Test Methodology‐Development History
              gy       p           y
         Table 3: TUV SUD Values for SAE J2464 Cell Penetration Test  Variables
        Parameter
        P     t                  Measured value
                                 M      d l                               Value
                                                                          V l
 Nail                  material                          Tool steel (C1090)
                       diameter                          3 mm (no tolerance)
                       Point taper
                       Point taper                       28o included angle
                                                             included angle
                       Surface finish                    Ra<1.6
                       Straightness                      Within 0.5mm within 100mm length
                       orientation                       Perpendicular to test bed within 
                                                         Perpendicular to test bed within
                                                         0.5mm
 Penetration           Rate                              ≥8 cm/s, ˂8.5 c/s measured in free 
                                                         space
                       depth
                       d th                              Through cell
                                                         Th    h ll

 Constraints           Preload                           Customer selected

                       Supporting scheme                 None specified

 Electrical            Resistance of path from DUT to    Nail electrically isolated from DUT
                       ground
                                                                                               18
Test Methodology‐Development History
              gy       p           y
•   Pneumatic nail driving system was capable for thin pouch type cells, 
    but questionable for thicker cells
•   Pneumatic system replaced with a hydraulically driven system
•   Capable of delivering 45 kN with more precise and accurate control 
    of velocity, acceleration and depth of penetration. 
•   This set of measurements was then used on a further set of cells to 
    determine if the HSL was the same for pneumatic and hydraulic 
                                              p               y
    systems. 
•   Discrepancies were found under otherwise apparently identical 
    parameters. 
•   Key differences in methodologies studied
•   In spite of all these test improvement efforts, the hydraulic system 
    In spite of all these test improvement efforts the hydraulic system
    HSLs were markedly different from that of the pneumatic system. 
•   Further analysis was carried out to verify the velocities of the air 
    system and the hydraulic system using independent test methods. 
•   High force of the hydraulic system was sufficient to overcome the 
    resistance of cells in up to 1 cm of cell thickness without loss of 
    resistance of cells in up to 1 cm of cell thickness without loss of
    velocity while pneumatic slowed down by up to 3cm/sec
•   Hydraulic system is the most robust and consistent for nail 
    penetration tests on pouch cells. 




                                                                            19
Penetration Test to Date
•   A total of over 250 cells have been subjected to the TUV SUD standard cell 
    p
    penetration test to date. 
•   This paper examines the results of the tests as conducted. 
•   In recognition of the proprietary nature of some of the data, no information about 
    cell manufacturer, specific size or electrochemistry is referenced. 
•    The sample cells in these tests had the following attributes:
     The sample cells in these tests had the following attributes:
     –   Soft and hard pouch prismatic
     –   Cylindrical 
     –   Nameplate capacity from 8 Ah to 60 Ah
     –   %SOC from 60 to 100
         %SOC from 60 to 100
     –   Undisclosed cathode, anode, separator and electrolyte formulations
•   The test method and equipment include:
     –   Both pneumatic (earlier method) and hydraulic
     –   Standard nail configuration (material, diameter, point angle & finish, alignment)
                            g        (        ,          ,p        g          , g        )
     –   Standard apparatus to support the DUT
     –   Both restrained and unrestrained cell fixturing
     –   10,000 liter abuse chamber
     –   Multi channel data acquisition system for DUT parameters (voltage, temperatures, internal 
         pressure) and abuse apparatus parameters such as nail velocity.
                  ) d b              t           t       h      il l it


                                                                                                      20
Penetration Test to Date
•   The data from all of these tests have been analyzed to search for trends and influencing factors on 
    HSL. 
•   Reporting of HSL in each test is not an exact takeoff of the 0‐7 rating EUCAR system. 
     –   For example, the range 0‐2 is used to report any HSL in that range. 
•   In order to distinguish between the individual values in the range, a post abuse test functional test 
    would be required and this rarely requested. Objectively, the reasoning may be that whether a cell 
    is a 0, 1 or 2 HSL has little influence on the criteria for the pack engineer regarding safety when 
          ,                                                         p      g        g     g      y
    compared to HSL > 3. 
•   Similarly, the range 3‐5 represents any of the three individual HSLs in that range. 
     –   Since 3 and 4 are a function of the electrolyte weight loss and electrolyte weight is seldom disclosed, 
         distinguishing between them is not definitively possible. 
     –   Similarly HSL 5 calls for rupture which can be argued to have happened for both 3 and 4. 
                 y                   p                    g               pp
     –   HSLs 6 and 7 also present judgment quandaries since explosions have occurred with no flames and large 
         vapor clouds have ignited and burned out in fractions of a second.
•   Independent spark source was not used in any of these tests. 
•   All tests in this population were conducted at room temperature. 
•   It is known from other TUV SUD abuse tests conducted at 55oC that HSLs can be significantly higher
    It is known from other TUV SUD abuse tests conducted at 55 C, that HSLs can be significantly higher 
    than at room temperature. Accordingly, running these tests at the recommended maximum cell 
    operating temperature may be instructive. 




                                                                                                                    21
Results
• As a first indicator of confidence in the test method and cell quality, 
  data was sorted to search for the time dependent trend in HSL. 
  data was sorted to search for the time dependent trend in HSL
• Acceptable HSL was selected as HSL≤3.  
• Rationale for HSL≤3 => a largely favorable result while HSL>3 
  indicates more cell development work required if cell behavior at 
  indicates more cell development work required if cell behavior at
  HSL>3 cannot be managed by pack design or pack management. 
• Note HSL≤3 is a convenient decision level but does not take into 
  account that HSL=3 may in fact in some tests be an actual HSL=4 
  due to the possible interpretation latitude of the test result.
• The penetration tests database makes possible analysis for more 
  questions such as: i) what effect does %SOC have on HSL, ii) what 
  effect does restraining the sample have versus unrestrained, iii) is 
  effect does restraining the sample have versus unrestrained iii) is
  there a difference between pneumatic and hydraulic methods, and 
  iv) how does nail velocity affect HSL. 


                                                                       22
Fig 5: HSL Trend over Time
  g

• population of 182 
  p p                         100
  penetration test cells       90
  selected for HSL less than  80


                            % of samples showing  HSL  ≤ 3
                                                                                                                                     30-40 Ah,
  or equal to 3.               70                                                                                                    restrained,
                                                                                                                                     std test spec.
                               60
• Except for the last data
  Except for the last data 
                               50
  point, trend of HSL for 
                               40                                                                                                                 HSL ≤ 3
  HSL< 3 is favorable          30
  direction over last 12       20
                            %




  quarters.                    10

• This trend is encouraging     0
                                                             10-1


                                                                    10-2


                                                                           10-3


                                                                                  10-4


                                                                                           11-1


                                                                                                  11-2


                                                                                                         11-3


                                                                                                                11-4


                                                                                                                       12-1


                                                                                                                              12-2
  and supports the                                                                       Year‐Quarter
  improvements made in the 
  improvements made in the
  test method. 




                                                                                                                                                            23
Fig 6a: Effect of SOC on HSL _ restrained
  g                          _

• %SOC at a selected cell 
  range of 30‐40 Ah on HSL 
  for restrained cells for a 
  population of 173 
  samples. 
  samples.
• At 100% SOC in this cell 
  capacity range, from this 
  data, it is more likely that 
  the cell, when penetrated 
   h     ll h                 d
  will have a >3 HSL 
  reaction than HSL<3. This 
  likelihood declines as SOC 
  declines and for this 
  population, all cells at 
  70% SOC had an HSL<3.



                                            24
Fig 6b: Effect of SOC on HSL _ unrestrained
  g                          _
• SOC on HSL for 44 
  unrestrained cells over 
  unrestrained cells over
  range of 8‐60 Ah. 
• For SOC of 100%, the 
  likelihood of HSL>3 is 
  almost the same as for 
  the larger population 
  in figure 6a while an 
  SOC of 60% had all 8 
  SOC of 60% had all 8
  samples react with an 
  HSL<3. 
• Note 8 samples from a 
  population of 2 mfgrs, 
  4 Ah capacities and 
  similar chemistries.  



                                          25
Fig 7: Effect of Nail Speed on HSL
  g                    p
• population of 258 samples. 
• 30‐40 Ah in the restrained 
  state and at >80% SOC. 
• All samples tested at 100 
  cm/s had an HSL >3. 
• Two thirds of the samples
  Two thirds of the samples 
  tested at 8 cm/s had an HSL 
  <3. 
• All the samples at 5.5 cm/s 
  had an HSL ≤ 3
• However, the small lot of 4 
  samples tested at the very 
  slow 1.1 cm/s showed 
  slow 1 1 cm/s showed
  unexpected behavior in 
  that the lot had HSL>3. 




                                     26
Conclusion
•   The shortcomings of the standardized nail penetration abuse test are addressed 
    and a robust procedure has been developed. 
                 p                            p
•   This method is utilized for abuse testing of hundreds of Li‐ion cells and the 
    following results are obtained:
     – In general, cells are exhibiting a trend of increasing robustness to abuse as measured by HSL 
       values over the last two and one half years in the TÜV SÜD population of nail penetration 
       tests.
     – Cells tested at lower SOCs of 60‐70% in this population are strongly showing HSLs < 3.
     – Nail velocity at 100 cm/s shows a strong tendency to produce HSLs > 3.
•   As a guideline for battery pack design it can be concluded that until cells are robust 
    enough to withstand high velocity projectiles, packs need to be designed to 
    enough to withstand high velocity projectiles packs need to be designed to
    protect the cells from these events. 
•   From the population in these tests, there appears to be an opportunity for risk 
    reduction in the area of penetration abuse at high SOCs (90‐100%).
•   As a third party, ISO 17025 testing agency, TÜV SÜD is committed to help develop 
    As a third party ISO 17025 testing agency TÜV SÜD is committed to help develop
    robust and reliable testing processes for the advanced battery industry. 




                                                                                                    27
Acknowledgement
         g
• The Authors would like to thank the personnel of 
                                      p
  TÜV SÜD Canada, Newmarket, ON, for their role in 
  conducting the tests. 
• The invaluable comments of Mr. Malcolm Shemmans 
  are also greatly appreciated. 
• The work was supported in part by the Natural 
  Sciences and Engineering Research Council of Canada 
  (NSERC)



                                                   28
References
1.    Standardization Roadmap for Electric Vehicles, ANSI EVSP ver. 1, 2012. Available: 
      http://www.ansi.org/standards_activities/standards_boards_panels/evsp/overview.aspx?menuid=3
2.    FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications, Sandia 
      FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications, Sandia
      National Laboratories SAND2005‐3123, 2005. Available: http://prod.sandia.gov/techlib/access‐control.cgi/2005/053123.pdf
3.    Electric and Hybrid Electric Vehicle Rechargeable Energy Storage System (RESS) Safety and Abuse Testing, SAE International J2464, 
      2009. 
4.    Lithium‐ion Batteries for Electric Vehicles, Automotive Industry Standard of the People's Republic of China QC/T 743, 2006.  
5.    Guideline for Safety Evaluation on Secondary Lithium Cells, The Japan Storage Battery Association SBA G 1101, 1995.
6.    R. Spotnitz and J. Franklin, “Abuse behavior of high‐power, lithium‐ion cells,” J. Power Sources, vol. 113, no. 1, pp. 81–100, January 
      2003.
7.    M. Takahashi, H. Ohtsuka, K. Akuto, and Y. Sakurai, “Confirmation of long‐term cyclability and high thermal stability of LiFePO4 in 
      prismatic lithium‐ion cells,” J. Electrochem. Soc., vol. 152, no. 5, pp. A899–A904, May 2005.
8.    T. Sato, K. Banno, T. Maruo, and R. Nozu, “New design for a safe lithium‐ion gel polymer battery,” J. Power Sources, vol. 152, no. 1‐2,  
      pp. 264–271, December 2005.
9.    C. Hu, and X. Li, Non‐flammable electrolytes based on trimethyl phosphate solvent for lithium‐ion batteries,” Trans. Nonferrous Met. 
      Soc. China, vol. 15, no. 6, pp. 1380 1387, December 2005.
      Soc China vol 15 no 6 pp 1380–1387 December 2005
10.   H.  Lee, M. G. Kim, and J. Cho, “Olivine LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries,” Electrochem. 
      Commun., vol. 9, no. 1, pp 149–154, January 2007.
11.   M. Yang, B. Lin, S. Yeh, and J. Tsai, “Design of high power lithium ion battery for HEV application,” World Electr. Veh. J., vol. 1, no. 1, 
      pp. 161–164, 2007.
12.   K. Xu, B. Deveney, K. Nechev, Y. Lam, T. R. Jow, “Evaluating LiBOB/Lactone electrolytes in large‐format lithium‐ion cells based on 
      nickelate and iron phosphate,” J. Electrochem. Soc., vol. 155, no. 12, pp. A959–A964, 2008.
13.   C. Doh et al., “Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test,” J. Power Sources, vol. 175, no. 2, pp. 881–
      885, January 2008.
14.   R. Liang et al., “Fabrication and electrochemical properties of lithium‐ion batteries for power tools,” J. Power Sources, vol. 184, no. 2, 
      pp. 598–603, October 2008.
15.   H. Maleki and J. N. Howard, “Internal short circuit in Li‐ion cells,” J. Power Sources, vol. 191, no. 2, pp 568–574, June 2009.
16.   W. Josefowitz, et. al. “Assessment and Testing of Advanced Energy Storage Systems for Propulsion–European Testing Report,” in 
      Proceedings of the 21st Worldwide Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition, Monaco, 2005, p. 6.
      Proceedings of the 21st Worldwide Battery Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Monaco 2005 p 6



                                                                                                                                             29

More Related Content

What's hot

Energy storage technologies
Energy storage technologiesEnergy storage technologies
Energy storage technologiessrikanth reddy
 
Workshop on high efficiency and low-cost drivetrains for electric vehicles
Workshop on high efficiency and low-cost drivetrains for electric vehiclesWorkshop on high efficiency and low-cost drivetrains for electric vehicles
Workshop on high efficiency and low-cost drivetrains for electric vehiclesLeonardo ENERGY
 
Energy storage Summit 2018 - day 2
Energy storage Summit 2018 - day 2Energy storage Summit 2018 - day 2
Energy storage Summit 2018 - day 2Jill Kirkpatrick
 
Comparison of one and two time constant models for lithium ion battery
Comparison of one and two time constant models for lithium ion battery Comparison of one and two time constant models for lithium ion battery
Comparison of one and two time constant models for lithium ion battery IJECEIAES
 
LIQUID PENETRANT TEST & ACOUSTIC EMISSION TEST
LIQUID PENETRANT TEST & ACOUSTIC EMISSION TESTLIQUID PENETRANT TEST & ACOUSTIC EMISSION TEST
LIQUID PENETRANT TEST & ACOUSTIC EMISSION TESTPRAVEEN KUMAR YADAV
 
FEM and it's applications
FEM and it's applicationsFEM and it's applications
FEM and it's applicationsChetan Mahatme
 
Lecture 2 construction of lead acid battery 2
Lecture 2 construction of lead acid battery   2Lecture 2 construction of lead acid battery   2
Lecture 2 construction of lead acid battery 2manfredhaule
 
Materials for Engineering 20ME11T Unit V HEAT TREATMENT PROCESSES
Materials for Engineering 20ME11T Unit V HEAT TREATMENT PROCESSESMaterials for Engineering 20ME11T Unit V HEAT TREATMENT PROCESSES
Materials for Engineering 20ME11T Unit V HEAT TREATMENT PROCESSESTHANMAY JS
 
NON DESTRUCTIVE TESTING
NON DESTRUCTIVE TESTINGNON DESTRUCTIVE TESTING
NON DESTRUCTIVE TESTINGHarshal Varade
 
Status of Advanced Packaging - 2017 Report by Yole Developpement
Status of Advanced Packaging - 2017 Report by Yole DeveloppementStatus of Advanced Packaging - 2017 Report by Yole Developpement
Status of Advanced Packaging - 2017 Report by Yole DeveloppementYole Developpement
 
Innovation in energy for a sustainable future
Innovation in energy for a sustainable futureInnovation in energy for a sustainable future
Innovation in energy for a sustainable futureLondon Business School
 
Status and Opportunities in EV/HEV Power Electronics
Status and Opportunities in EV/HEV Power Electronics Status and Opportunities in EV/HEV Power Electronics
Status and Opportunities in EV/HEV Power Electronics Yole Developpement
 

What's hot (20)

Orbital arc welding
Orbital arc weldingOrbital arc welding
Orbital arc welding
 
Energy storage technologies
Energy storage technologiesEnergy storage technologies
Energy storage technologies
 
Underwater welding 1[1]
Underwater welding 1[1]Underwater welding 1[1]
Underwater welding 1[1]
 
Workshop on high efficiency and low-cost drivetrains for electric vehicles
Workshop on high efficiency and low-cost drivetrains for electric vehiclesWorkshop on high efficiency and low-cost drivetrains for electric vehicles
Workshop on high efficiency and low-cost drivetrains for electric vehicles
 
Energy storage Summit 2018 - day 2
Energy storage Summit 2018 - day 2Energy storage Summit 2018 - day 2
Energy storage Summit 2018 - day 2
 
Comparison of one and two time constant models for lithium ion battery
Comparison of one and two time constant models for lithium ion battery Comparison of one and two time constant models for lithium ion battery
Comparison of one and two time constant models for lithium ion battery
 
Solid-state Battery
Solid-state BatterySolid-state Battery
Solid-state Battery
 
ESS for Utility
ESS for UtilityESS for Utility
ESS for Utility
 
Btme 402 part-1, Material Science
Btme 402 part-1, Material ScienceBtme 402 part-1, Material Science
Btme 402 part-1, Material Science
 
FEA Using Ansys
FEA Using AnsysFEA Using Ansys
FEA Using Ansys
 
LIQUID PENETRANT TEST & ACOUSTIC EMISSION TEST
LIQUID PENETRANT TEST & ACOUSTIC EMISSION TESTLIQUID PENETRANT TEST & ACOUSTIC EMISSION TEST
LIQUID PENETRANT TEST & ACOUSTIC EMISSION TEST
 
Tig welding
Tig weldingTig welding
Tig welding
 
functionally graded material
functionally graded materialfunctionally graded material
functionally graded material
 
FEM and it's applications
FEM and it's applicationsFEM and it's applications
FEM and it's applications
 
Lecture 2 construction of lead acid battery 2
Lecture 2 construction of lead acid battery   2Lecture 2 construction of lead acid battery   2
Lecture 2 construction of lead acid battery 2
 
Materials for Engineering 20ME11T Unit V HEAT TREATMENT PROCESSES
Materials for Engineering 20ME11T Unit V HEAT TREATMENT PROCESSESMaterials for Engineering 20ME11T Unit V HEAT TREATMENT PROCESSES
Materials for Engineering 20ME11T Unit V HEAT TREATMENT PROCESSES
 
NON DESTRUCTIVE TESTING
NON DESTRUCTIVE TESTINGNON DESTRUCTIVE TESTING
NON DESTRUCTIVE TESTING
 
Status of Advanced Packaging - 2017 Report by Yole Developpement
Status of Advanced Packaging - 2017 Report by Yole DeveloppementStatus of Advanced Packaging - 2017 Report by Yole Developpement
Status of Advanced Packaging - 2017 Report by Yole Developpement
 
Innovation in energy for a sustainable future
Innovation in energy for a sustainable futureInnovation in energy for a sustainable future
Innovation in energy for a sustainable future
 
Status and Opportunities in EV/HEV Power Electronics
Status and Opportunities in EV/HEV Power Electronics Status and Opportunities in EV/HEV Power Electronics
Status and Opportunities in EV/HEV Power Electronics
 

Viewers also liked

NASA Presentation
NASA PresentationNASA Presentation
NASA PresentationGerry Flood
 
Execute to Win
Execute to WinExecute to Win
Execute to Winaliparnian
 
10 Things Mentally Strong People Don't Do
10 Things Mentally Strong People Don't Do10 Things Mentally Strong People Don't Do
10 Things Mentally Strong People Don't DoAlex Noudelman
 
Поваренная книга презентатора | presuniversity.com
Поваренная книга презентатора | presuniversity.comПоваренная книга презентатора | presuniversity.com
Поваренная книга презентатора | presuniversity.comVera Kovaleva
 
Social Media Use in Higher Education
Social Media Use in Higher EducationSocial Media Use in Higher Education
Social Media Use in Higher EducationMichael Wilder
 
Social Media Advocacy
Social Media AdvocacySocial Media Advocacy
Social Media AdvocacyLee Aase
 
Ipsos MORI Political Monitor April 2015
Ipsos MORI Political Monitor April 2015Ipsos MORI Political Monitor April 2015
Ipsos MORI Political Monitor April 2015Ipsos UK
 
2013 2014 ikasturteko guraso batzarra
2013 2014 ikasturteko guraso batzarra2013 2014 ikasturteko guraso batzarra
2013 2014 ikasturteko guraso batzarraMarisol Atxurra
 
Facebook live
Facebook liveFacebook live
Facebook liveAna Sek
 
Venture transaction multiples france 2016
Venture transaction multiples france 2016Venture transaction multiples france 2016
Venture transaction multiples france 2016Ian Beckett
 
Presentation for Changellenge Moscow - 2013
Presentation for Changellenge Moscow - 2013Presentation for Changellenge Moscow - 2013
Presentation for Changellenge Moscow - 2013Sofya Latkina
 

Viewers also liked (20)

Video Exposure Monitoring – Reducing Peak Exposures
Video Exposure Monitoring – Reducing Peak ExposuresVideo Exposure Monitoring – Reducing Peak Exposures
Video Exposure Monitoring – Reducing Peak Exposures
 
NASA Presentation
NASA PresentationNASA Presentation
NASA Presentation
 
Execute to Win
Execute to WinExecute to Win
Execute to Win
 
10 Things Mentally Strong People Don't Do
10 Things Mentally Strong People Don't Do10 Things Mentally Strong People Don't Do
10 Things Mentally Strong People Don't Do
 
ASHOK THIRUVEEDULA-V3 (1)
ASHOK THIRUVEEDULA-V3 (1)ASHOK THIRUVEEDULA-V3 (1)
ASHOK THIRUVEEDULA-V3 (1)
 
Поваренная книга презентатора | presuniversity.com
Поваренная книга презентатора | presuniversity.comПоваренная книга презентатора | presuniversity.com
Поваренная книга презентатора | presuniversity.com
 
Social Media Use in Higher Education
Social Media Use in Higher EducationSocial Media Use in Higher Education
Social Media Use in Higher Education
 
Social Media Advocacy
Social Media AdvocacySocial Media Advocacy
Social Media Advocacy
 
Ipsos MORI Political Monitor April 2015
Ipsos MORI Political Monitor April 2015Ipsos MORI Political Monitor April 2015
Ipsos MORI Political Monitor April 2015
 
Slideshare
SlideshareSlideshare
Slideshare
 
About lanco
About lancoAbout lanco
About lanco
 
IOSH MS UK
IOSH MS UKIOSH MS UK
IOSH MS UK
 
2013 2014 ikasturteko guraso batzarra
2013 2014 ikasturteko guraso batzarra2013 2014 ikasturteko guraso batzarra
2013 2014 ikasturteko guraso batzarra
 
8 mai 2012
8 mai 20128 mai 2012
8 mai 2012
 
Xcellity Smart Home Module
Xcellity Smart Home ModuleXcellity Smart Home Module
Xcellity Smart Home Module
 
Facebook live
Facebook liveFacebook live
Facebook live
 
Venture transaction multiples france 2016
Venture transaction multiples france 2016Venture transaction multiples france 2016
Venture transaction multiples france 2016
 
Proy de aula fep (1)
Proy de aula fep (1)Proy de aula fep (1)
Proy de aula fep (1)
 
Presentation for Changellenge Moscow - 2013
Presentation for Changellenge Moscow - 2013Presentation for Changellenge Moscow - 2013
Presentation for Changellenge Moscow - 2013
 
Test
TestTest
Test
 

Similar to Lithium Ion Abuse Test Methods Improvement [Presentation Slides]

A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation E...
A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation E...A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation E...
A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation E...IRJET Journal
 
POC To Product: 8 Key Processes in Design Path
POC To Product: 8 Key Processes in Design PathPOC To Product: 8 Key Processes in Design Path
POC To Product: 8 Key Processes in Design Pathfuturewardcentral
 
Whitepaper Series Part 1 - Underwater Connectivity
Whitepaper Series Part 1 - Underwater ConnectivityWhitepaper Series Part 1 - Underwater Connectivity
Whitepaper Series Part 1 - Underwater ConnectivityNorthwireCable
 
CCCA and UL Presentation at IWCS2009
CCCA and UL Presentation  at IWCS2009CCCA and UL Presentation  at IWCS2009
CCCA and UL Presentation at IWCS2009kevinressler
 
Executive Technologist
Executive TechnologistExecutive Technologist
Executive TechnologistRahmatul Alam
 
Non Destructive Testing
Non Destructive TestingNon Destructive Testing
Non Destructive TestingSukesh O P
 
Seawater Immersion release
Seawater Immersion releaseSeawater Immersion release
Seawater Immersion releaseTCI
 
Automotive components and material testing
Automotive components and material testingAutomotive components and material testing
Automotive components and material testingvijaiemec
 
EV CHARGING CABLE – STANDARDS, TESTING, AND CERTIFICATION
EV CHARGING CABLE – STANDARDS, TESTING, AND CERTIFICATIONEV CHARGING CABLE – STANDARDS, TESTING, AND CERTIFICATION
EV CHARGING CABLE – STANDARDS, TESTING, AND CERTIFICATIONiQHub
 
Edinburgh | May-16 | Energy Storage Technologies for Climate Change Mitigation
Edinburgh | May-16 | Energy Storage Technologies for Climate Change MitigationEdinburgh | May-16 | Energy Storage Technologies for Climate Change Mitigation
Edinburgh | May-16 | Energy Storage Technologies for Climate Change MitigationSmart Villages
 
RME-085_TQM Unit-4 Part 4
RME-085_TQM Unit-4  Part 4RME-085_TQM Unit-4  Part 4
RME-085_TQM Unit-4 Part 4ssuserf6c4bd
 
Electrical FM Compiled.pdf
Electrical  FM Compiled.pdfElectrical  FM Compiled.pdf
Electrical FM Compiled.pdfSyed Atif Naseem
 
Battery Qualification 101
Battery Qualification 101Battery Qualification 101
Battery Qualification 101Anirudh Ramesh
 
NDT_Introduction & Visual InspectionModule-1
 NDT_Introduction & Visual InspectionModule-1  NDT_Introduction & Visual InspectionModule-1
NDT_Introduction & Visual InspectionModule-1 Sukesh O P
 
Investigating the Corrosion Resistance of Reinforced Concrete Structures
Investigating the Corrosion Resistance of Reinforced Concrete StructuresInvestigating the Corrosion Resistance of Reinforced Concrete Structures
Investigating the Corrosion Resistance of Reinforced Concrete StructuresIRJET Journal
 

Similar to Lithium Ion Abuse Test Methods Improvement [Presentation Slides] (20)

A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation E...
A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation E...A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation E...
A Review Comprehension: Guideline for Testing of HV, EHV and UHV Substation E...
 
POC To Product: 8 Key Processes in Design Path
POC To Product: 8 Key Processes in Design PathPOC To Product: 8 Key Processes in Design Path
POC To Product: 8 Key Processes in Design Path
 
Whitepaper Series Part 1 - Underwater Connectivity
Whitepaper Series Part 1 - Underwater ConnectivityWhitepaper Series Part 1 - Underwater Connectivity
Whitepaper Series Part 1 - Underwater Connectivity
 
CCCA and UL Presentation at IWCS2009
CCCA and UL Presentation  at IWCS2009CCCA and UL Presentation  at IWCS2009
CCCA and UL Presentation at IWCS2009
 
Why rayovac us vs import
Why rayovac us vs importWhy rayovac us vs import
Why rayovac us vs import
 
Electrical inspection-checklists
Electrical inspection-checklistsElectrical inspection-checklists
Electrical inspection-checklists
 
Executive Technologist
Executive TechnologistExecutive Technologist
Executive Technologist
 
Non Destructive Testing
Non Destructive TestingNon Destructive Testing
Non Destructive Testing
 
Selling Safe Consumer Electrical Products In The United States
Selling Safe Consumer Electrical Products In The United States Selling Safe Consumer Electrical Products In The United States
Selling Safe Consumer Electrical Products In The United States
 
Seawater Immersion release
Seawater Immersion releaseSeawater Immersion release
Seawater Immersion release
 
Automotive components and material testing
Automotive components and material testingAutomotive components and material testing
Automotive components and material testing
 
EV CHARGING CABLE – STANDARDS, TESTING, AND CERTIFICATION
EV CHARGING CABLE – STANDARDS, TESTING, AND CERTIFICATIONEV CHARGING CABLE – STANDARDS, TESTING, AND CERTIFICATION
EV CHARGING CABLE – STANDARDS, TESTING, AND CERTIFICATION
 
Edinburgh | May-16 | Energy Storage Technologies for Climate Change Mitigation
Edinburgh | May-16 | Energy Storage Technologies for Climate Change MitigationEdinburgh | May-16 | Energy Storage Technologies for Climate Change Mitigation
Edinburgh | May-16 | Energy Storage Technologies for Climate Change Mitigation
 
UL Listing for Electric Meters
UL Listing for Electric MetersUL Listing for Electric Meters
UL Listing for Electric Meters
 
RME-085_TQM Unit-4 Part 4
RME-085_TQM Unit-4  Part 4RME-085_TQM Unit-4  Part 4
RME-085_TQM Unit-4 Part 4
 
Electrical FM Compiled.pdf
Electrical  FM Compiled.pdfElectrical  FM Compiled.pdf
Electrical FM Compiled.pdf
 
Battery Qualification 101
Battery Qualification 101Battery Qualification 101
Battery Qualification 101
 
NDT_Introduction & Visual InspectionModule-1
 NDT_Introduction & Visual InspectionModule-1  NDT_Introduction & Visual InspectionModule-1
NDT_Introduction & Visual InspectionModule-1
 
Investigating the Corrosion Resistance of Reinforced Concrete Structures
Investigating the Corrosion Resistance of Reinforced Concrete StructuresInvestigating the Corrosion Resistance of Reinforced Concrete Structures
Investigating the Corrosion Resistance of Reinforced Concrete Structures
 
Safety Issues for Lithium-Ion Batteries
Safety Issues for Lithium-Ion BatteriesSafety Issues for Lithium-Ion Batteries
Safety Issues for Lithium-Ion Batteries
 

More from TÜV SÜD America

Value of Accredited Certification
Value of Accredited CertificationValue of Accredited Certification
Value of Accredited Certification TÜV SÜD America
 
PetroChem Essentials december 2012
PetroChem Essentials december 2012PetroChem Essentials december 2012
PetroChem Essentials december 2012 TÜV SÜD America
 
An Approach to Robust, No Surprises Design Verification Testing [Presentation...
An Approach to Robust, No Surprises Design Verification Testing [Presentation...An Approach to Robust, No Surprises Design Verification Testing [Presentation...
An Approach to Robust, No Surprises Design Verification Testing [Presentation... TÜV SÜD America
 
Medical Devices E-ssential Newsletter_sep_2012
Medical Devices E-ssential Newsletter_sep_2012Medical Devices E-ssential Newsletter_sep_2012
Medical Devices E-ssential Newsletter_sep_2012 TÜV SÜD America
 
TUV SUD America 25th anniversary
TUV SUD America 25th anniversaryTUV SUD America 25th anniversary
TUV SUD America 25th anniversary TÜV SÜD America
 
Food Safety E-ssential February2012
Food Safety E-ssential February2012Food Safety E-ssential February2012
Food Safety E-ssential February2012 TÜV SÜD America
 
TÜV SÜD Design Dossiers_Med info
 TÜV SÜD Design Dossiers_Med info TÜV SÜD Design Dossiers_Med info
TÜV SÜD Design Dossiers_Med info TÜV SÜD America
 

More from TÜV SÜD America (7)

Value of Accredited Certification
Value of Accredited CertificationValue of Accredited Certification
Value of Accredited Certification
 
PetroChem Essentials december 2012
PetroChem Essentials december 2012PetroChem Essentials december 2012
PetroChem Essentials december 2012
 
An Approach to Robust, No Surprises Design Verification Testing [Presentation...
An Approach to Robust, No Surprises Design Verification Testing [Presentation...An Approach to Robust, No Surprises Design Verification Testing [Presentation...
An Approach to Robust, No Surprises Design Verification Testing [Presentation...
 
Medical Devices E-ssential Newsletter_sep_2012
Medical Devices E-ssential Newsletter_sep_2012Medical Devices E-ssential Newsletter_sep_2012
Medical Devices E-ssential Newsletter_sep_2012
 
TUV SUD America 25th anniversary
TUV SUD America 25th anniversaryTUV SUD America 25th anniversary
TUV SUD America 25th anniversary
 
Food Safety E-ssential February2012
Food Safety E-ssential February2012Food Safety E-ssential February2012
Food Safety E-ssential February2012
 
TÜV SÜD Design Dossiers_Med info
 TÜV SÜD Design Dossiers_Med info TÜV SÜD Design Dossiers_Med info
TÜV SÜD Design Dossiers_Med info
 

Lithium Ion Abuse Test Methods Improvement [Presentation Slides]

  • 1. Lithium Ion Abuse Test Methods  Lithium Ion Abuse Test Methods Improvement Erik J Spek,  Dr. Mehdi Hosseinifar, TÜV SÜD  Portland 5 – 7 November  2012 Oregon http://www.psessymposium.org/ 1
  • 2. Abuse Testing of Lithium Ion Cells • Summary y • Introduction Abuse Testing • Role of Standards Role of Standards • Standardization of Test Methods • Response to Abuse Tests Response to Abuse Tests • Survey of TÜV SÜD Nail Penetration Tests since 2009 2
  • 3. Summary y The increasing use of high energy, high power lithium ion batteries for electric and hybrid vehicles has progressed to the point of commercial introduction introduction. Nevertheless, these cells are yet to show strong resistance to thermal, mechanical and electrical abuse. Despite the availability of test recommended procedures and standards for characterizing the cell response to abuse stimuli, b h ii h ll b i li better engineered and i d d robust test methods need to be developed within the context of these standards. Attempts to improve the nail penetration abuse test procedure are described p p p p in this presentation. The effects of various parameters on the hazard response level of Li‐ion cells have been evaluated. It is concluded that Li ion technologies are generally becoming less sensitive Li‐ion to abuse conditions. 3
  • 4. Introduction‐1 • Expectation: survivability in accidents and benign response  under abuse conditions.  • Standards help support the expectation that electrified vehicles  are subject to at least the same expectations.  • Standards for ICE based vehicles developed over 100 years – are effective in ensuring vehicles are robust & hazards are managed  – occupants can survive accident scenarios that are survivable.  • These standards have been augmented to account for the  electrification component that comes with elevated voltage and  significant amounts of stored electrical energy.  • New risks in these electrified vehicles need to be considered in  the design and development • The task of writing and then proving out these standards – slow and laborious process with stakeholders coming together,  putting aside individual interests putting aside individual interests – publish a tool that is effective but flexible enough to consider  different technologies 4
  • 5. Introduction‐2 • Standards documents for batteries and other vehicle  electrification components.  electrification components • Issues to improve standards robustness, consistency and  universality.  • American National Standards Institute (ANSI) through the Electric  Vehicles Standards Panel  (EVSP) has identified gaps ( ) • Standards only effective if test methods satisfy intent consistently.  • Some of the first organizations to encounter this issue while  implementing new test methods are third party test agencies.  p g p y g – build or acquire the specialized equipment – develop the skills and methods that minimize test risk, and develop  consistent and effective testing.  – test method shortcomings and opportunities for improvement are  g pp p discovered • Issues TÜV SÜD has resolved to make nail penetration abuse  testing effective. • Large format cells of many descriptions analyzed for the effects of  Large format cells of many descriptions analyzed for the effects of parameters on the reaction to abuse test conditions.  5
  • 6. Abuse Testing of Lithium‐Ion Cells g Role of TÜV SÜD   • Third party, ISO 17025 certified, global testing company. Third party, ISO 17025 certified, global testing company. • Abuse tests establish reaction of cells, modules or complete batteries to  conditions exceeding those expected to be encountered in normal use. • Data used by battery manufacturers and OEMs for design decision making • Lithium‐ion energy storage devices need to prove compliance, – little operational track record over many years of service, under abuse  conditions.  • TÜV SÜD, is privy to an overview of cell technology trends that cell, battery  and OEM organizations may not see due to their focused efforts.  • Individual companies are often immersed in one technology family Individual companies are often immersed in one technology family. • Would be loath to change direction based only on reports of more progress  with competing technologies.  • Reports from independent testing agencies from a general point of view. – the technology is improving the technology is improving,  – boost overall confidence for the electric vehicle market and customers. 6
  • 7. Available Standards & Practices‐1 • Many tests covering electrical, mechanical and thermal/environmental abuse that are used to gauge  product robustness.  • Mechanical abuse tests cover mechanisms as nail penetration, crush, drop, impact or shock and vibration.  Mechanical abuse tests cover mechanisms as nail penetration, crush, drop, impact or shock and vibration. • Simulate the actual use and abuse conditions that may be beyond the normal safe operating limits [2].  • Nail penetration is typically the most reactive of all the mechanical abuse tests • Frequently used to assess cell robustness with short test turnaround time.  • Three principle nail penetration test standards:  Three principle nail penetration test standards: – United States Advanced Battery Consortium (USABC),  – Society of Automotive Engineers (SAE),  – Automotive Industry Standard of the People’s Republic of China. • Most commonly requested nail penetration tests for automotive batteries: os co o y eques ed a pe e a o es s o au o o e ba e es – SAE J2464 section 4.3.3 [3] and FreedomCAR through SAND 2005‐3123 section 3.2 [2].  • Nail penetration testing is also described in QC/T 743‐2006, Lithium‐ion Batteries for Electric Vehicles,  Automotive Industry Standard of the People’s Republic of China [4].  • The Japan Storage Battery Association (JSBA) has a Guideline for Safety Evaluation on Secondary Lithium  Cells [5].  – primarily for small size portable electrical appliances which use cells smaller than 5 Ah.  – In contrast, most cells for automotive PHEV and EV applications are greater than 5 Ah and reach as high as 75 Ah.  – Nail diameter in JSBA is specified as between 2.5 to 5 mm with no nail material nor nail speed specified.  – In contrast, both SAE J2464 section 4.3.3 and SAND 2005‐3123 section 3.2 specify one nail diameter and mild steel  I t t b th SAE J2464 ti 4 3 3 d SAND 2005 3123 ti 3 2 if il di t d ild t l with nail speed greater than 8 cm/s for single cells.  7
  • 8. Available Standards & Practices‐2 • SAE and SAND tests do not present pass and fail criteria,  • SBA requires that no explosion and no fire result from the test.  q p • QC/T 743‐2006 section 6.2.12.7 provides for two nail diameters of 10 and 40 mm and no nail speed  but it also requires no explosion and no fire. • Test specifications are open to interpretation in methodology due to: – the short history of lithium ion battery development,  – large ampere‐hour and pouch prismatic cells large ampere‐hour and pouch prismatic cells • Test methods were standardized at TUV SUD driven by significant uncontrolled variations • Since 2009, TÜV SÜD, has pursued a path of continuous test methodology improvement for the cell  penetration testing.  • Accredited TÜV SÜD test procedure used to test hundreds of large format lithium ion cells. • Scope does not begin to cover all cells from all manufacturers ‐ it is a snapshot of a population of  nail penetration tests conducted at TÜV SÜD. • This work is different from what is typically found in literature [6‐15] in that it covers commercial  large format cells rather than experimental low capacity cells.  • The equipment and safe practices used have been developed specifically and exclusively for these  q p p p p y y tests.  • A large number of tests are carried out on a variety of cells as opposed to a few tests. 8
  • 9. Drive to Standardize • Failed cell or battery tests in 3rd party testing ‐> subsequent ripple effect.  – Ripple effect for phone call or email that implies that ‘The product failed the  test so the test method must be wrong’ or ‘another test organization did the  h h d b ’ ‘ h dd h same test and the product passed there so you must be wrong’.  – Resolution consumes significant resources to explain test results – Most test organizations work hard to ensure test equipment, methods and  facilities are robust and consistent.  – The benefit is that proving competence when called upon is easily and  The benefit is that proving competence when called upon is easily and confidently carried out.  • The SAE/FreedomCAR cell penetration test was selected as an ideal early  candidate for this kind of improvement effort.  • TÜV SÜD performs tests to customer requirements.  • The tests conducted have been selected by the customer as being  The tests conducted have been selected by the customer as being application relevant.   • When standard tests are not deemed application relevant, TÜV SÜD  works with customers to develop tests that are suited to the  requirements.  • It is not the role of TÜV SÜD to pass judgment on cell or battery designs. I i h l f TÜV SÜD j d ll b d i 9
  • 10. Table 1: EUCAR Hazard Severity Levels (HSL) TABLE I EUCAR HAZARD SEVERITY LEVELS (HSL) HAZARD SEVERITY DESCRIPTION CLASSIFICATION CRITERIA AND EFFECT LEVEL 0 No Effect No effect. No loss of functionality No damage or hazard; reversible loss of function. Replacement or re- 1 Passive Protection Activated setting of protection device is sufficient to restore normal functionality No hazard but damage to RESS*; irreversible loss of function. 2 g Defect/Damage Replacement or repair needed. R l t i d d Evidence of cell leakage or venting with RESS weight loss < 50% of 3 Minor Leakage/Venting electrolyte weight. Evidence of cell leakage or venting with RESS weight loss > 50% of 4 Major Leakage/Venting electrolyte weight. Loss of mechanical integrity of the RESS container, resulting in 5 Rupture release of contents. The kinetic energy of released material is not contents sufficient to cause physical damage external to the RESS. Ignition and sustained combustion of flammable gas or liquid 6 Fire or Flame (approximately more than one second). Sparks are not flames. Very fast release of energy sufficient to cause pressure waves and/or projectiles that may cause considerable structural and/or bodily 7 Explosion p damage, depending on the size of the RESS. The kinetic energy of g , p g gy flying debris from the RESS may be sufficient to cause damage as well. 10
  • 11. Testing Response ‐ 1 g p • Cells that are abused may react in a number of ways from  no reaction to total and violent destruction.  no reaction to total and violent destruction • Both Sandia National Labs [2] and SAE J2464 [3] use the  EUCAR Hazard Severity Levels [16] to describe to what  extent a cell can react to a specific abuse.  extent a cell can react to a specific abuse • Table I depicts the Hazard Severity Levels as in SAE J2464.  Levels 5 and 6 are reversed in the Sandia table. • A cell undergoing a level 7 reaction is more than a designer A cell undergoing a level 7 reaction is more than a designer  would want to cope with in any battery pack.  • Most OEM and battery companies look for level 2 as a  worst case response with level 3 as acceptable in some  worst case response with level 3 as acceptable in some circumstances.  • There is no ‘pass’ or ‘fail’ criteria yet for this test.  11
  • 12. Testing Response ‐ 2 g p • The risk of personal injury  with this level of testing is  ith thi l l f t ti i high and is therefore  conducted in purpose‐ designed chambers.  designed chambers • 3 chambers used at TÜV SÜD  in Newmarket, Ontario,  Canada for cell abuse testing.  C d f ll b t ti • Pressure vessel style for single  cell tests up to hazard severity  level (HSL) 7.  • ISO Style chambers used in  Auburn Hills, MI for pack tests , p 12
  • 13. Testing Response ‐ 3 g p • one of 3 concrete  bunkers at TÜV  b k TÜV SÜD in Garching,  Germany designed  to withstand HSL  ih d up to 7 for up to  full packs.  • fully equipped  with gas cleaning,  p p multiple pressure  relief features and  blast proof  p viewports. 13
  • 14. Test Methodology‐Development History gy p y Table 2: SAE J2464 Cell Penetration Test  Variables Parameter P t Measured value M d l Value V l Nail material mild steel diameter 3 mm (no tolerance) Point taper Point taper No values for length, included  No values for length included angle or surface finish Surface finish No value specified Straightness No value specified orientation Perpendicular to electrodes Penetration Rate ≥8 cm/s depth Through cell Constraints Preload None specified Supporting scheme None specified Electrical Resistance of path from DUT to ground Resistance of path from DUT to ground None specified None specified 14
  • 15. Test Methodology‐Development History gy p y • For both cylindrical and prismatic cells. • However, most have been soft prismatic (pouch) cells for  nail penetration.   nail penetration • First TÜV SÜD test device was an air driven pneumatic  cylinder (see Figure 3) set at 100 cm/sec.  • High value for speed used to ensure that the minimum  nail velocity occurring during the ‘through the thickness’   il l i i d i h ‘h h h hi k ’ penetra on of cells as thick as 12 mm would be ˃  specified 8 cm/sec.  • This value pales in comparison to the 2,780 cm/sec that a  nail might be launched at when a vehicle travelling at 100  km/h impacts a nail.  • It is not the purpose of this presentation to comment on the relevancy of this test velocity but  it is helpful to consider that a single cell, similar to a vehicle occupant, is not expected to be  it is helpful to consider that a single cell, similar to a vehicle occupant, is not expected to be subjected to a projectile hurled at that velocity.  • Battery and vehicle as a system designed to protect an individual cell from this event.  • May be achieved by crumple zones, energy absorbing layers or shielding materials or as part of  the vehicle. 15
  • 16. Test Methodology‐Development History gy p y • Since pneumatic cylinder force was considered substantial at 1.7 kN, there was little  concern for a slowing down of the nail through the cell thickness to ˂8 cm/sec.  • An initial group of cells were tested in this manner but results could not be  An initial group of cells were tested in this manner but results could not be correlated to the cell suppliers’ similar penetration test data.  • Parameters in Table 2 were compared: between the TUV SUD values and cell  supplier’s values.  • The comparison showed that, like the SAE Recommended Practice, most of the  Th i h d h lik h SAE R d dP i f h parameters including the actual nail penetration speed were not measured at the  cell supplier.  • Several such as nail diameter and material were not in line with the SAE  requirements.: – Specifically, nail diameter was 5 mm where SAE J2464 specified 3mm  – Material was stainless steel where SAE J2464 specified mild steel. • To establish a starting point for those parameters lacking values, a review of the  To establish a starting point for those parameters lacking values a review of the tests conducted to date that for those with HSL response values of <5   16
  • 17. Test Methodology‐Development History gy p y • Note that the HSL <5 was chosen since the test population size was small  with high HSL variability.  • The starting values listed in Table 3 were assigned. Th t ti l li t d i T bl 3 i d • With these starting values adopted, more cells were tested of selected  anode and cathode chemistries, % state of charge (SOC) and capacities.  • Mild steel nails had a high incidence of buckling in thicker cells. This was  Mild steel nails had a high incidence of buckling in thicker cells This was resolved by using high carbon steel nails made from commercial drill rod.  The resistivity of the high carbon steel is similar to the specified mild steel. 17
  • 18. Test Methodology‐Development History gy p y Table 3: TUV SUD Values for SAE J2464 Cell Penetration Test  Variables Parameter P t Measured value M d l Value V l Nail material Tool steel (C1090) diameter 3 mm (no tolerance) Point taper Point taper 28o included angle included angle Surface finish Ra<1.6 Straightness Within 0.5mm within 100mm length orientation Perpendicular to test bed within  Perpendicular to test bed within 0.5mm Penetration Rate ≥8 cm/s, ˂8.5 c/s measured in free  space depth d th Through cell Th h ll Constraints Preload Customer selected Supporting scheme None specified Electrical Resistance of path from DUT to  Nail electrically isolated from DUT ground 18
  • 19. Test Methodology‐Development History gy p y • Pneumatic nail driving system was capable for thin pouch type cells,  but questionable for thicker cells • Pneumatic system replaced with a hydraulically driven system • Capable of delivering 45 kN with more precise and accurate control  of velocity, acceleration and depth of penetration.  • This set of measurements was then used on a further set of cells to  determine if the HSL was the same for pneumatic and hydraulic  p y systems.  • Discrepancies were found under otherwise apparently identical  parameters.  • Key differences in methodologies studied • In spite of all these test improvement efforts, the hydraulic system  In spite of all these test improvement efforts the hydraulic system HSLs were markedly different from that of the pneumatic system.  • Further analysis was carried out to verify the velocities of the air  system and the hydraulic system using independent test methods.  • High force of the hydraulic system was sufficient to overcome the  resistance of cells in up to 1 cm of cell thickness without loss of  resistance of cells in up to 1 cm of cell thickness without loss of velocity while pneumatic slowed down by up to 3cm/sec • Hydraulic system is the most robust and consistent for nail  penetration tests on pouch cells.  19
  • 20. Penetration Test to Date • A total of over 250 cells have been subjected to the TUV SUD standard cell  p penetration test to date.  • This paper examines the results of the tests as conducted.  • In recognition of the proprietary nature of some of the data, no information about  cell manufacturer, specific size or electrochemistry is referenced.  • The sample cells in these tests had the following attributes: The sample cells in these tests had the following attributes: – Soft and hard pouch prismatic – Cylindrical  – Nameplate capacity from 8 Ah to 60 Ah – %SOC from 60 to 100 %SOC from 60 to 100 – Undisclosed cathode, anode, separator and electrolyte formulations • The test method and equipment include: – Both pneumatic (earlier method) and hydraulic – Standard nail configuration (material, diameter, point angle & finish, alignment) g ( , ,p g , g ) – Standard apparatus to support the DUT – Both restrained and unrestrained cell fixturing – 10,000 liter abuse chamber – Multi channel data acquisition system for DUT parameters (voltage, temperatures, internal  pressure) and abuse apparatus parameters such as nail velocity. ) d b t t h il l it 20
  • 21. Penetration Test to Date • The data from all of these tests have been analyzed to search for trends and influencing factors on  HSL.  • Reporting of HSL in each test is not an exact takeoff of the 0‐7 rating EUCAR system.  – For example, the range 0‐2 is used to report any HSL in that range.  • In order to distinguish between the individual values in the range, a post abuse test functional test  would be required and this rarely requested. Objectively, the reasoning may be that whether a cell  is a 0, 1 or 2 HSL has little influence on the criteria for the pack engineer regarding safety when  , p g g g y compared to HSL > 3.  • Similarly, the range 3‐5 represents any of the three individual HSLs in that range.  – Since 3 and 4 are a function of the electrolyte weight loss and electrolyte weight is seldom disclosed,  distinguishing between them is not definitively possible.  – Similarly HSL 5 calls for rupture which can be argued to have happened for both 3 and 4.  y p g pp – HSLs 6 and 7 also present judgment quandaries since explosions have occurred with no flames and large  vapor clouds have ignited and burned out in fractions of a second. • Independent spark source was not used in any of these tests.  • All tests in this population were conducted at room temperature.  • It is known from other TUV SUD abuse tests conducted at 55oC that HSLs can be significantly higher It is known from other TUV SUD abuse tests conducted at 55 C, that HSLs can be significantly higher  than at room temperature. Accordingly, running these tests at the recommended maximum cell  operating temperature may be instructive.  21
  • 22. Results • As a first indicator of confidence in the test method and cell quality,  data was sorted to search for the time dependent trend in HSL.  data was sorted to search for the time dependent trend in HSL • Acceptable HSL was selected as HSL≤3.   • Rationale for HSL≤3 => a largely favorable result while HSL>3  indicates more cell development work required if cell behavior at  indicates more cell development work required if cell behavior at HSL>3 cannot be managed by pack design or pack management.  • Note HSL≤3 is a convenient decision level but does not take into  account that HSL=3 may in fact in some tests be an actual HSL=4  due to the possible interpretation latitude of the test result. • The penetration tests database makes possible analysis for more  questions such as: i) what effect does %SOC have on HSL, ii) what  effect does restraining the sample have versus unrestrained, iii) is  effect does restraining the sample have versus unrestrained iii) is there a difference between pneumatic and hydraulic methods, and  iv) how does nail velocity affect HSL.  22
  • 23. Fig 5: HSL Trend over Time g • population of 182  p p 100 penetration test cells  90 selected for HSL less than  80 % of samples showing  HSL  ≤ 3 30-40 Ah, or equal to 3.  70 restrained, std test spec. 60 • Except for the last data Except for the last data  50 point, trend of HSL for  40 HSL ≤ 3 HSL< 3 is favorable  30 direction over last 12  20 % quarters.  10 • This trend is encouraging  0 10-1 10-2 10-3 10-4 11-1 11-2 11-3 11-4 12-1 12-2 and supports the  Year‐Quarter improvements made in the  improvements made in the test method.  23
  • 24. Fig 6a: Effect of SOC on HSL _ restrained g _ • %SOC at a selected cell  range of 30‐40 Ah on HSL  for restrained cells for a  population of 173  samples.  samples. • At 100% SOC in this cell  capacity range, from this  data, it is more likely that  the cell, when penetrated  h ll h d will have a >3 HSL  reaction than HSL<3. This  likelihood declines as SOC  declines and for this  population, all cells at  70% SOC had an HSL<3. 24
  • 25. Fig 6b: Effect of SOC on HSL _ unrestrained g _ • SOC on HSL for 44  unrestrained cells over  unrestrained cells over range of 8‐60 Ah.  • For SOC of 100%, the  likelihood of HSL>3 is  almost the same as for  the larger population  in figure 6a while an  SOC of 60% had all 8  SOC of 60% had all 8 samples react with an  HSL<3.  • Note 8 samples from a  population of 2 mfgrs,  4 Ah capacities and  similar chemistries.   25
  • 26. Fig 7: Effect of Nail Speed on HSL g p • population of 258 samples.  • 30‐40 Ah in the restrained  state and at >80% SOC.  • All samples tested at 100  cm/s had an HSL >3.  • Two thirds of the samples Two thirds of the samples  tested at 8 cm/s had an HSL  <3.  • All the samples at 5.5 cm/s  had an HSL ≤ 3 • However, the small lot of 4  samples tested at the very  slow 1.1 cm/s showed  slow 1 1 cm/s showed unexpected behavior in  that the lot had HSL>3.  26
  • 27. Conclusion • The shortcomings of the standardized nail penetration abuse test are addressed  and a robust procedure has been developed.  p p • This method is utilized for abuse testing of hundreds of Li‐ion cells and the  following results are obtained: – In general, cells are exhibiting a trend of increasing robustness to abuse as measured by HSL  values over the last two and one half years in the TÜV SÜD population of nail penetration  tests. – Cells tested at lower SOCs of 60‐70% in this population are strongly showing HSLs < 3. – Nail velocity at 100 cm/s shows a strong tendency to produce HSLs > 3. • As a guideline for battery pack design it can be concluded that until cells are robust  enough to withstand high velocity projectiles, packs need to be designed to  enough to withstand high velocity projectiles packs need to be designed to protect the cells from these events.  • From the population in these tests, there appears to be an opportunity for risk  reduction in the area of penetration abuse at high SOCs (90‐100%). • As a third party, ISO 17025 testing agency, TÜV SÜD is committed to help develop  As a third party ISO 17025 testing agency TÜV SÜD is committed to help develop robust and reliable testing processes for the advanced battery industry.  27
  • 28. Acknowledgement g • The Authors would like to thank the personnel of  p TÜV SÜD Canada, Newmarket, ON, for their role in  conducting the tests.  • The invaluable comments of Mr. Malcolm Shemmans  are also greatly appreciated.  • The work was supported in part by the Natural  Sciences and Engineering Research Council of Canada  (NSERC) 28
  • 29. References 1. Standardization Roadmap for Electric Vehicles, ANSI EVSP ver. 1, 2012. Available:  http://www.ansi.org/standards_activities/standards_boards_panels/evsp/overview.aspx?menuid=3 2. FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications, Sandia  FreedomCAR Electrical Energy Storage System Abuse Test Manual for Electric and Hybrid Electric Vehicle Applications, Sandia National Laboratories SAND2005‐3123, 2005. Available: http://prod.sandia.gov/techlib/access‐control.cgi/2005/053123.pdf 3. Electric and Hybrid Electric Vehicle Rechargeable Energy Storage System (RESS) Safety and Abuse Testing, SAE International J2464,  2009.  4. Lithium‐ion Batteries for Electric Vehicles, Automotive Industry Standard of the People's Republic of China QC/T 743, 2006.   5. Guideline for Safety Evaluation on Secondary Lithium Cells, The Japan Storage Battery Association SBA G 1101, 1995. 6. R. Spotnitz and J. Franklin, “Abuse behavior of high‐power, lithium‐ion cells,” J. Power Sources, vol. 113, no. 1, pp. 81–100, January  2003. 7. M. Takahashi, H. Ohtsuka, K. Akuto, and Y. Sakurai, “Confirmation of long‐term cyclability and high thermal stability of LiFePO4 in  prismatic lithium‐ion cells,” J. Electrochem. Soc., vol. 152, no. 5, pp. A899–A904, May 2005. 8. T. Sato, K. Banno, T. Maruo, and R. Nozu, “New design for a safe lithium‐ion gel polymer battery,” J. Power Sources, vol. 152, no. 1‐2,   pp. 264–271, December 2005. 9. C. Hu, and X. Li, Non‐flammable electrolytes based on trimethyl phosphate solvent for lithium‐ion batteries,” Trans. Nonferrous Met.  Soc. China, vol. 15, no. 6, pp. 1380 1387, December 2005. Soc China vol 15 no 6 pp 1380–1387 December 2005 10. H.  Lee, M. G. Kim, and J. Cho, “Olivine LiCoPO4 phase grown LiCoO2 cathode material for high density Li batteries,” Electrochem.  Commun., vol. 9, no. 1, pp 149–154, January 2007. 11. M. Yang, B. Lin, S. Yeh, and J. Tsai, “Design of high power lithium ion battery for HEV application,” World Electr. Veh. J., vol. 1, no. 1,  pp. 161–164, 2007. 12. K. Xu, B. Deveney, K. Nechev, Y. Lam, T. R. Jow, “Evaluating LiBOB/Lactone electrolytes in large‐format lithium‐ion cells based on  nickelate and iron phosphate,” J. Electrochem. Soc., vol. 155, no. 12, pp. A959–A964, 2008. 13. C. Doh et al., “Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test,” J. Power Sources, vol. 175, no. 2, pp. 881– 885, January 2008. 14. R. Liang et al., “Fabrication and electrochemical properties of lithium‐ion batteries for power tools,” J. Power Sources, vol. 184, no. 2,  pp. 598–603, October 2008. 15. H. Maleki and J. N. Howard, “Internal short circuit in Li‐ion cells,” J. Power Sources, vol. 191, no. 2, pp 568–574, June 2009. 16. W. Josefowitz, et. al. “Assessment and Testing of Advanced Energy Storage Systems for Propulsion–European Testing Report,” in  Proceedings of the 21st Worldwide Battery, Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition, Monaco, 2005, p. 6. Proceedings of the 21st Worldwide Battery Hybrid and Fuel Cell Electric Vehicle Symposium & Exhibition Monaco 2005 p 6 29