SlideShare a Scribd company logo
1 of 62
Chapter 3
Determinants
3.1 The Determinant of a Matrix
3.2 Evaluation of a Determinant using
Elementary Operations
3.3 Properties of Determinants
3.4 Application of Determinants
2/62
3.1 The Determinant of a Matrix
 the determinant of a 2 × 2 matrix:
 Note:







22
21
12
11
a
a
a
a
A
12
21
22
11
|
|
)
det( a
a
a
a
A
A 










22
21
12
11
a
a
a
a
22
21
12
11
a
a
a
a
3/62
 Ex. 1: (The determinant of a matrix of order 2)
2
1
3
2 
2
4
1
2
4
2
3
0
 Note: The determinant of a matrix can be positive, zero, or negative.
)
3
(
1
)
2
(
2 

 3
4 
 7

)
1
(
4
)
2
(
2 
 4
4 
 0

)
3
(
2
)
4
(
0 
 6
0 
 6


4/62
 Minor of the entry :
The determinant of the matrix determined by deleting the ith row
and jth column of A
 Cofactor of :
ij
a
ij
j
i
ij M
C 

 )
1
(
nn
j
n
j
n
n
n
i
j
i
j
i
i
n
i
j
i
j
i
i
n
j
j
ij
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
M















)
1
(
)
1
(
1
)
1
(
)
1
)(
1
(
)
1
)(
1
(
1
)
1
(
)
1
(
)
1
)(
1
(
)
1
)(
1
(
1
)
1
(
1
)
1
(
1
)
1
(
1
12
11

















ij
a
5/62
 Ex:











33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
33
32
13
12
21
a
a
a
a
M 

21
21
1
2
21 )
1
( M
M
C 



 
33
31
13
11
22
a
a
a
a
M 
22
22
2
2
22 )
1
( M
M
C 

 
6/62



















 Notes: Sign pattern for cofactors

















































































3 × 3 matrix 4 × 4 matrix n ×n matrix
 Notes:
Odd positions (where i+j is odd) have negative signs, and
even positions (where i+j is even) have positive signs.
7/62
 Ex 2: Find all the minors and cofactors of A.
,
5
1
4
2
3
12



M
,
1
1
0
2
1
11




 M
Sol: (1) All the minors of A.
4
0
4
1
3
13



M
,
2
1
0
1
2
21


M ,
4
1
4
1
0
22



M 8
1
4
2
0
23



M
,
5
2
1
1
2
31



M ,
3
2
3
1
0
32



M 6
1
3
2
0
33




M












1
0
4
2
1
3
1
2
0
A
8/62
,
5
1
4
2
3
12



C
,
1
1
0
2
1
11





 C 4
0
4
1
3
13




C
ij
j
i
ij M
C 

 )
1
(

,
2
1
0
1
2
21




C ,
4
1
4
1
0
22




C 8
1
4
2
0
23



C
,
5
2
1
1
2
31




C ,
3
2
3
1
0
32



C 6
1
3
2
0
33





C
Sol: (2) All the cofactors of A.
9/62
 Thm 3.1: (Expansion by cofactors)








n
j
in
in
i
i
i
i
ij
ij C
a
C
a
C
a
C
a
A
A
a
1
2
2
1
1
|
|
)
det(
)
( 
(Cofactor expansion along the i-th row, i=1, 2,…, n )








n
i
nj
nj
j
j
j
j
ij
ij C
a
C
a
C
a
C
a
A
A
b
1
2
2
1
1
|
|
)
det(
)
( 
(Cofactor expansion along the j-th row, j=1, 2,…, n )
Let A is a square matrix of order n.
Then the determinant of A is given by
or
10/62
 Ex: The determinant of a matrix of order 3











33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
33
33
23
23
13
13
32
32
22
22
12
12
31
31
21
21
11
11
33
33
32
32
31
31
23
23
22
22
21
21
13
13
12
12
11
11
)
det(
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
A



















11/62
 Ex 3: The determinant of a matrix of order 3
14
)
6
)(
1
(
)
8
)(
2
(
)
4
)(
1
(
14
)
3
)(
0
(
)
4
)(
1
(
)
5
)(
2
(
14
)
5
)(
4
(
)
2
)(
3
(
)
1
)(
0
(
14
)
6
)(
1
(
)
3
)(
0
(
)
5
)(
4
(
14
)
8
)(
2
(
)
4
)(
1
(
)
2
)(
3
(
14
)
4
)(
1
(
)
5
)(
2
(
)
1
)(
0
(
)
det(
33
33
23
23
13
13
32
32
22
22
12
12
31
31
21
21
11
11
33
33
32
32
31
31
23
23
22
22
21
21
13
13
12
12
11
11





















































C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
C
a
A












1
0
4
2
1
3
1
2
0
A
6
,
3
,
5
8
,
4
,
2
4
,
5
,
1
33
32
31
23
22
21
13
12
11
2
E














C
C
C
C
C
C
C
C
C
x
Sol:
12/62
 Ex 5: (The determinant of a matrix of order 3)
?
)
det( 
 A
0 2 1
3 1 2
4 0 1
A
 
 
 
 
 
 
1
1
0
2
1
)
1
( 1
1
11 



 
C
Sol:
5
)
5
)(
1
(
1
4
2
3
)
1
( 2
1
12 




 
C
4
0
4
1
3
)
1
( 3
1
13 


 
C
14
)
4
)(
1
(
)
5
)(
2
(
)
1
)(
0
(
)
det( 13
13
12
12
11
11








 C
a
C
a
C
a
A
13/62
 Ex 4: (The determinant of a matrix of order 4)
















2
0
4
3
3
0
2
0
2
0
1
1
0
3
2
1
A ?
)
det( 
 A
 Notes:
The row (or column) containing the most zeros is the best choice
for expansion by cofactors .
14/62
Sol:
)
)(
0
(
)
)(
0
(
)
)(
0
(
)
)(
3
(
)
det( 43
33
23
13 C
C
C
C
A 



2
4
3
3
2
0
2
1
1
)
1
(
3 3
1



 
13
3C

 
39
)
13
)(
3
(
)
7
)(
1
)(
3
(
)
4
)(
1
)(
2
(
0
3
4
3
1
1
)
1
)(
3
(
2
3
2
1
)
1
)(
2
(
2
4
2
1
)
1
)(
0
(
3 3
2
2
2
1
2













 








 


15/62
 The determinant of a matrix of order 3:











33
32
31
23
22
21
13
12
11
a
a
a
a
a
a
a
a
a
A
32
31
33
32
31
22
21
23
22
21
12
11
13
12
11
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
12
21
33
11
23
32
13
22
31
32
21
13
31
23
12
33
22
11
|
|
)
det(
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
a
A
A








Add these three products.
Subtract these three products.
16/62
 Ex 5:













1
4
4
2
1
3
1
2
0
A
4
4
1
3
2
0


–4
0
2
6
0
)
4
(
12
16
0
|
|
)
det( 








 A
A
16 –12
0 6
17/62
 Upper triangular matrix:
 Lower triangular matrix:
 Diagonal matrix:
All the entries below the main diagonal are zeros.
All the entries above the main diagonal are zeros.
All the entries above and below the main diagonal are zeros.
 Note:
A matrix that is both upper and lower triangular is called diagonal.
18/62








33
23
22
13
12
11
0
0
0
a
a
a
a
a
a








33
32
31
22
21
11
0
0
0
a
a
a
a
a
a
 Ex:
upper triangular








33
22
11
0
0
0
0
0
0
a
a
a
lower triangular diagonal
19/62
 Thm 3.2: (Determinant of a Triangular Matrix)
If A is an n × n triangular matrix (upper triangular,
lower triangular, or diagonal), then its determinant is the
product of the entries on the main diagonal. That is
nn
a
a
a
a
A
A 
33
22
11
|
|
)
det( 

20/62
 Ex 6: Find the determinants of the following triangular matrices.
(a)















3
3
5
1
0
1
6
5
0
0
2
4
0
0
0
2
A (b)



















2
0
0
0
0
0
4
0
0
0
0
0
2
0
0
0
0
0
3
0
0
0
0
0
1
B
|A| = (2)(–2)(1)(3) = –12
|B| = (–1)(3)(2)(4)(–2) = 48
(a)
(b)
Sol:
21/62
Keywords in Section 3.1:
 determinant : ‫المحدد‬
 minor : ‫المختصر‬
 cofactor : ‫المعامل‬
 expansion by cofactors : ‫بالمعامالت‬ ‫التحليل‬
 upper triangular matrix: ‫سفلى‬ ‫مثلثية‬ ‫مصفوفة‬
 lower triangular matrix: ‫عليا‬ ‫مثلثية‬ ‫مصفوفة‬
 diagonal matrix: ‫قطرية‬ ‫مصفوفة‬
22/62
3.2 Evaluation of a determinant using elementary operations
 Thm 3.3: (Elementary row operations and determinants)
)
(
)
( A
r
B
a ij

Let A and B be square matrices.
)
det(
)
det( A
B 


)
(
)
( )
(
A
r
B
b k
i
 )
det(
)
det( A
k
B 

)
(
)
( )
(
A
r
B
c k
ij
 )
det(
)
det( A
B 

)
)
(
(i.e. A
A
rij 

)
)
(
(i.e. )
(
A
k
A
r k
i 
)
)
(
(i.e. )
(
A
A
r k
ij 
23/62











1
2
1
4
1
0
3
2
1
A

Ex:











1
2
1
4
1
0
12
8
4
1
A











1
2
1
3
2
1
4
1
0
2
A














1
2
1
2
3
2
3
2
1
3
A
2
)
det( 

A
8
)
2
)(
4
(
)
det(
4
))
(
det(
)
det(
)
( )
4
(
1
1
)
4
(
1
1 






 A
A
r
A
A
r
A
2
)
2
(
)
det(
))
(
det(
)
det(
)
( 12
2
12
2 







 A
A
r
A
A
r
A
2
)
det(
))
(
det(
)
det(
)
( )
2
(
12
3
)
2
(
12
3 




 

A
A
r
A
A
r
A
24/62
 Notes:
))
(
det(
)
det(
)
det(
))
(
det( A
r
A
A
A
r ij
ij 




))
(
det(
1
)
det(
)
det(
))
(
det( )
(
)
(
A
r
k
A
A
k
A
r k
i
k
i 


))
(
det(
)
det(
)
det(
))
(
det( )
(
)
(
A
r
A
A
A
r k
ij
k
ij 


25/62
Note:
A row-echelon form of a square matrix is always upper triangular.
 Ex 2: (Evaluation a determinant using elementary row operations)












3
1
0
2
2
1
10
3
2
A ?
)
det( 
 A
Sol:
3
1
0
10
3
2
2
2
1
3
1
0
2
2
1
10
3
2
)
det(
12









r
A
26/62
7
)
1
)(
1
)(
1
)(
7
(
1
0
0
2
1
0
2
2
1
7
)
1
(
23









r
3
1
0
2
1
0
2
2
1
)
1
)(
1
(
3
1
0
14
7
0
2
2
1
7
1
)
7
1
(
2
)
2
(
12









 


r
r
27/62
 Notes:
A
E
EA 
ij
R
E 
)
1
( 1



 ij
R
E
  A
E
A
R
A
A
r
EA ij
ij 





)
(
)
2
( k
i
R
E  k
R
E k
i 

 )
(
  A
E
A
R
A
k
A
r
EA k
i
k
i 



 )
(
)
(
)
(
)
3
( k
ij
R
E  1
)
(


 k
ij
R
E
  A
E
A
R
A
A
r
EA k
ij
k
ij 



 )
(
)
(
1
28/62
 Determinants and elementary column operations
)
(
)
( A
c
B
a ij

Let A and B be square matrices.
)
det(
)
det( A
B 


)
(
)
( )
(
A
c
B
b k
i
 )
det(
)
det( A
k
B 

)
(
)
( )
(
A
c
B
c k
ij
 )
det(
)
det( A
B 

)
)
(
(i.e. A
A
cij


)
)
(
(i.e. )
(
A
k
A
c k
i

)
)
(
(i.e. )
(
A
A
c k
ij

 Thm: (Elementary column operations and determinants)
29/62









 

2
0
0
1
0
4
3
1
2
A

Ex:









 

2
0
0
1
4
0
3
2
1
2
A









 

2
0
0
1
0
2
3
1
1
1
A











2
0
0
1
0
4
0
1
2
3
A
8
)
det( 

A
4
)
8
)(
2
1
(
)
det(
2
1
))
(
det(
)
det(
)
( )
4
(
1
1
)
2
1
(
1
1 






 A
A
c
A
A
c
A
8
)
8
(
)
det(
))
(
det(
)
det(
)
( 12
2
12
2 







 A
A
c
A
A
c
A
8
)
det(
))
(
det(
)
det(
)
( )
3
(
23
3
)
3
(
23
3 




 A
A
c
A
A
c
A
30/62
 Thm 3.4: (Conditions that yield a zero determinant)
(a) An entire row (or an entire column) consists of zeros.
(b) Two rows (or two columns) are equal.
(c) One row (or column) is a multiple of another row (or column).
If A is a square matrix and any of the following conditions is true,
then det (A) = 0.
31/62
0
6
5
4
0
0
0
3
2
1
 0
0
6
3
0
5
2
0
4
1
 0
6
5
4
2
2
2
1
1
1

0
2
6
1
2
5
1
2
4
1
 0
6
4
2
6
5
4
3
2
1




0
6
12
3
5
10
2
4
8
1

 Ex:
32/62
Cofactor Expansion Row Reduction
Order n Additions Multiplications Additions Multiplications
3 5 9 5 10
5 119 205 30 45
10 3,628,799 6,235,300 285 339
 Note:
33/62
 Ex 5: (Evaluating a determinant)















6
0
3
1
4
2
2
5
3
A
Sol:
3
)
1
)(
3
(
3
4
4
5
)
1
)(
3
(
0
0
3
3
4
2
4
5
3
6
0
3
1
4
2
2
5
3
)
det(
1
3
)
2
(
13




















C
A
3
)
5
3
)(
5
(
6
3
)
1
)(
5
(
6
0
3
0
2
5
3
6
0
3
1
4
2
2
5
3
)
det(
5
3
5
2
2
1
5
3
5
2
)
5
4
(
12


















r
A
34/62
 Ex 6: (Evaluating a determinant)
Sol:



















0
2
3
1
1
3
4
2
1
3
3
2
1
0
1
1
2
3
1
2
2
3
1
0
2
A
1
0
0
3
4
6
5
1
3
2
1
1
2
3
1
2
1)
(1)(
1
0
0
0
3
4
6
5
0
1
3
2
1
0
1
1
2
3
1
2
2
3
1
0
2
0
2
3
1
1
3
4
2
1
3
3
2
1
0
1
1
2
3
1
2
2
3
1
0
2
)
det(
2
2
)
1
(
25
)
1
(
24




















r
r
A
35/62
6
5
13
2
1
8
5
0
0
6
5
13
2
1
8
3
1
8
)
1
(1)(
1
0
0
0
4
6
5
13
3
2
1
8
2
3
1
8
)
1
(
21
4
4
)
3
(
41











 

r
C
135
)
27
)(
5
(
5
13
1
8
1)
5( 3
1







 
36/62
3.3 Properties of Determinants
 Notes:
)
det(
)
det(
)
det( B
A
B
A 


 Thm 3.5: (Determinant of a matrix product)
(1) det (EA) = det (E) det (A)
(2)
(3)
33
32
31
23
22
21
13
12
11
33
32
31
23
22
21
13
12
11
a
a
a
b
b
b
a
a
a
a
a
a
a
a
a
a
a
a


33
32
31
23
23
22
22
22
22
13
12
11
a
a
a
b
a
b
a
b
a
a
a
a



det (AB) = det (A) det (B)
37/62
 Ex 1: (The determinant of a matrix product)









 

1
0
1
2
3
0
2
2
1
A














2
1
3
2
1
0
1
0
2
B
7
1
0
1
2
3
0
2
2
1
|
| 



A 11
2
1
3
2
1
0
1
0
2
|
| 




B
Sol:
Find |A|, |B|, and |AB|
38/62




































 

1
1
5
10
1
6
1
4
8
2
1
3
2
1
0
1
0
2
1
0
1
2
3
0
2
2
1
AB
77
1
1
5
10
1
6
1
4
8
|
| 





 AB
|AB| = |A| |B|
 Check:
39/62
 Ex 2:
5
1
3
2
5
0
3
4
2
1
,
10
30
20
50
0
30
40
20
10


















A
Find |A|.
Sol:














1
3
2
5
0
3
4
2
1
10
A 5000
)
5
)(
1000
(
1
3
2
5
0
3
4
2
1
103






 A
 Thm 3.6: (Determinant of a scalar multiple of a matrix)
If A is an n × n matrix and c is a scalar, then
det (cA) = cn det (A)
40/62
 Ex 3: (Classifying square matrices as singular or nonsingular)

 0
A














1
2
3
1
2
3
1
2
0
A













1
2
3
1
2
3
1
2
0
B
A has no inverse (it is singular).



 0
12
B B has an inverse (it is nonsingular).
Sol:
 Thm 3.7: (Determinant of an invertible matrix)
A square matrix A is invertible (nonsingular) if and only if
det (A)  0
41/62
 Ex 4:
?
1


A












0
1
2
2
1
0
3
0
1
A
?

T
A
(a) (b)
4
0
1
2
2
1
0
3
0
1
|
| 


A
 4
1
1
1


 
A
A
4

 A
AT
Sol:
 Thm 3.8: (Determinant of an inverse matrix)
.
)
A
det(
1
)
A
det(
then
invertible
is
If 1


,
A
 Thm 3.9: (Determinant of a transpose)
).
det(
)
det(
then
matrix,
square
a
is
If T
A
A
A 
42/62
If A is an n × n matrix, then the following statements are equivalent.
(1) A is invertible.
(2) Ax = b has a unique solution for every n × 1 matrix b.
(3) Ax = 0 has only the trivial solution.
(4) A is row-equivalent to In
(5) A can be written as the product of elementary matrices.
(6) det (A)  0
 Equivalent conditions for a nonsingular matrix:
43/62
 Ex 5: Which of the following system has a unique solution?
(a)
4
2
3
4
2
3
1
2
3
2
1
3
2
1
3
2










x
x
x
x
x
x
x
x
(b)
4
2
3
4
2
3
1
2
3
2
1
3
2
1
3
2










x
x
x
x
x
x
x
x
44/62
Sol:
b
x 
A
(a)
0

A

 This system does not have a unique solution.
(b) b
x 
B
0
12 


B

 This system has a unique solution.
45/62
3.4 Introduction to Eigenvalues
 Eigenvalue problem:
If A is an nn matrix, do there exist n1 nonzero matrices x
such that Ax is a scalar multiple of x?
 Eigenvalue and eigenvector:
A:an nn matrix
:a scalar
x: a n1 nonzero column matrix
x
Ax 

Eigenvalue
Eigenvector
(The fundamental equation for
the eigenvalue problem)
46/62
 Ex 1: (Verifying eigenvalues and eigenvectors)







3
2
4
1
A 






1
1
1
x
1
1 5
1
1
5
5
5
1
1
3
2
4
1
x
Ax 



























Eigenvalue
2
2 )
1
(
1
2
1
1
2
1
2
3
2
4
1
x
Ax 































Eigenvalue
Eigenvector
Eigenvector








1
2
2
x
47/62
 Question:
Given an nn matrix A, how can you find the eigenvalues and
corresponding eigenvectors?
 Characteristic equation of AMnn:
0
)
I
(
)
I
det( 0
1
1
1 







 
 c
c
c
A
A n
n
n




 
If has nonzero solutions iff .
0
)
I
( 
 x
A
 0
)
I
det( 
 A

0
)
I
( 


 x
A
x
Ax 

 Note:
(homogeneous system)
48/62
 Ex 2: (Finding eigenvalues and eigenvectors)







3
2
4
1
A
Sol: Characteristic equation:
0
)
1
)(
5
(
5
4
3
2
4
1
I
2



















 A
Eigenvalues: 1
,
5 2
1 

 

1
,
5 

 
49/62
1
)
2
( 2 


0
,
1
2
2
0
0
4
2
4
2
)
I
(
2
1
2
1
2

















































t
t
t
t
x
x
x
x
x
A

5
)
1
( 1 

0
,
1
1
0
0
2
2
4
4
)
I
(
2
1
2
1
1













































t
t
t
t
x
x
x
x
x
A

50/62
 Ex 3: (Finding eigenvalues and eigenvectors)














0
1
1
1
2
1
2
2
1
A
Sol: Characteristic equation:
0
)
3
)(
1
)(
1
(
1
1
1
2
1
2
2
1
I 










 





 A
3
,
1
,
1
:
s
eigenvalue
The 3
2
1 


 


51/62
1
1 





























0
0
0
1
1
0
2
0
1
~
1
1
1
1
1
1
2
2
0
I
1 A

0
,
1
1
2
:
rs
eigenvecto
2
3
2
1

































t
t
t
t
t
x
x
x
1
2 











 



















0
0
0
1
1
0
2
0
1
~
1
1
1
1
3
1
2
2
2
I
2 A

0
,
1
1
2
:
rs
eigenvecto
2
3
2
1



































t
t
t
t
t
x
x
x
52/62
3
3 



























0
0
0
1
1
0
2
0
1
~
3
1
1
1
1
1
2
2
2
I
3 A

0
,
1
1
2
:
rs
eigenvecto
2
3
2
1





































t
t
t
t
t
x
x
x
53/62
3.4 Applications of Determinants
 Matrix of cofactors of A:
 













nn
n
n
n
n
ij
C
C
C
C
C
C
C
C
C
C






2
1
2
22
21
1
12
11
ij
j
i
ij M
C 

 )
1
(
 














nn
n
n
n
n
T
ij
C
C
C
C
C
C
C
C
C
C
A
adj






2
1
2
22
12
1
21
11
)
(
 Adjoint matrix of A:
54/62
 Thm 3.10: (The inverse of a matrix given by its adjoint)
bc
ad
A 

 )
det(
If A is an n × n invertible matrix, then
)
(
)
det(
1
1
A
adj
A
A 








d
c
b
a
A









a
c
b
d
A
adj )
(
 
)
(
det
1
1
A
adj
A
A 
 
 Ex:










a
c
b
d
bc
ad
1
55/62
 Ex 1 & Ex 2:
1

A














2
0
1
1
2
0
2
3
1
A
(a) Find the adjoint of A.
(b) Use the adjoint of A to find
,
4
2
0
1
2
11 




 C
Sol:
,
1
2
1
1
0
12 



C 2
0
1
2
0
13 



C
ij
j
i
ij M
C 

 )
1
(

,
6
2
0
2
3
21 


C ,
0
2
1
2
1
22 



C 3
0
1
3
1
23 



C
,
7
1
2
2
3
31 



C ,
1
1
0
2
1
32 



C 2
2
0
3
1
33 




C
56/62
cofactor matrix of A

 











2
1
7
3
0
6
2
1
4
ij
C
adjoint matrix of A

 












2
3
2
1
0
1
7
6
4
)
(
T
ij
C
A
adj











2
3
2
1
0
1
7
6
4
3
1
 inverse matrix of A
 
)
(
det
1
1
A
adj
A
A 

  3
det 
A












3
2
3
2
3
1
3
1
3
7
3
4
1
0
2
 Check: I
AA 
1
57/62
 Thm 3.11: (Cramer’s Rule)
1
1
2
12
1
11 b
x
a
x
a
x
a n
n 


 
n
n
nn
n
n
n
n
b
x
a
x
a
x
a
b
x
a
x
a
x
a











2
2
1
1
2
2
2
22
1
21
b
x 
A    
)
(
)
2
(
)
1
(
,
,
, n
n
n
ij A
A
A
a
A 

 













n
x
x
x

2
1
x













n
b
b
b

2
1
b
0
)
det(
2
1
2
22
21
1
12
11


nn
n
n
n
n
a
a
a
a
a
a
a
a
a
A






(this system has a unique solution)
58/62
 
)
(
)
1
(
)
1
(
)
2
(
)
1
(
,
,
,
,
,
,
, n
j
j
j A
A
b
A
A
A
A 
 





















nn
j
n
n
j
n
n
n
j
j
n
j
j
a
a
b
a
a
a
a
b
a
a
a
a
b
a
a









)
1
(
)
1
(
1
2
)
1
(
2
2
)
1
(
2
21
1
)
1
(
1
1
)
1
(
1
11
nj
n
j
j
j C
b
C
b
C
b
A 


 
2
2
1
1
)
det(
( i.e. )
,
)
det(
)
det(
A
A
x j
j 
 n
j ,
,
2
,
1 

59/62
 Pf:
0
)
det( 
A
A x = b,
b
x 1


 A b
)
(
)
det(
1
A
adj
A


























n
nn
n
n
n
n
b
b
b
C
C
C
C
C
C
C
C
C
A 






2
1
2
1
2
22
12
1
21
11
)
det(
1






















nn
n
n
n
n
n
n
n
C
b
C
b
C
b
C
b
C
b
C
b
C
b
C
b
C
b
A





2
2
1
1
2
22
2
12
1
1
21
2
11
1
)
det(
1
60/62
)
det(
)
det(
A
Aj

)
(
)
det(
1
2
2
1
1 nj
n
j
j
j C
b
C
b
C
b
A
x 



 
n
j ,
,
2
,
1 

61/62
 Ex 4: Use Cramer’s rule to solve the system of linear equations.
8
4
4
2
1
0
0
3
2
1
)
det( 1 



A
2
4
4
3
0
2
1
3
2









z
y
x
z
x
z
y
x
Sol:
10
4
4
3
1
0
2
3
2
1
)
det( 




A
,
15
4
2
3
1
0
2
3
1
1
)
det( 2 




A 16
2
4
3
0
0
2
1
2
1
)
det( 3 




A
5
4
)
det(
)
det( 1


A
A
x
2
3
)
det(
)
det( 2 


A
A
y
5
8
)
det(
)
det( 3 


A
A
z
62/62
Keywords in Section 3.4:
 matrix of cofactors : ‫المعامالت‬ ‫مصفوفة‬
 adjoint matrix : ‫مصاحبة‬ ‫مصفوفة‬
 Cramer’s rule : ‫كرامر‬ ‫قانون‬

More Related Content

Similar to nabil-201-chap-03.ppt

13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
nutkoon
 
Example standard result difference_partial fraction
Example standard result difference_partial fractionExample standard result difference_partial fraction
Example standard result difference_partial fraction
Rione Drevale
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
Yu Zhang
 
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docx
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docxAnalytic Geometry B Accelerated Week 5   Page 39 of 5.docx
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docx
LynellBull52
 
03 Area under the curve Ex..Module-5pdf
03 Area under the curve Ex..Module-5pdf03 Area under the curve Ex..Module-5pdf
03 Area under the curve Ex..Module-5pdf
RajuSingh806014
 

Similar to nabil-201-chap-03.ppt (19)

A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdfA Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
A Mathematical Introduction to Robotic Manipulation 輪講 第三回.pdf
 
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...Modeling and vibration Analyses of a rotor having multiple disk supported by ...
Modeling and vibration Analyses of a rotor having multiple disk supported by ...
 
Special Products and Factoring , Rational Algebraic Expressions Concept Map
Special Products and Factoring , Rational Algebraic Expressions Concept MapSpecial Products and Factoring , Rational Algebraic Expressions Concept Map
Special Products and Factoring , Rational Algebraic Expressions Concept Map
 
determinant1.pdf
determinant1.pdfdeterminant1.pdf
determinant1.pdf
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
 
Adaline and Madaline.ppt
Adaline and Madaline.pptAdaline and Madaline.ppt
Adaline and Madaline.ppt
 
finite element method for waveguide
finite element method for waveguidefinite element method for waveguide
finite element method for waveguide
 
Anuj 10mar2016
Anuj 10mar2016Anuj 10mar2016
Anuj 10mar2016
 
International journal of applied sciences and innovation vol 2015 - no 1 - ...
International journal of applied sciences and innovation   vol 2015 - no 1 - ...International journal of applied sciences and innovation   vol 2015 - no 1 - ...
International journal of applied sciences and innovation vol 2015 - no 1 - ...
 
Example standard result difference_partial fraction
Example standard result difference_partial fractionExample standard result difference_partial fraction
Example standard result difference_partial fraction
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
 
nabil-201-chap-06.ppt
nabil-201-chap-06.pptnabil-201-chap-06.ppt
nabil-201-chap-06.ppt
 
Lec5_ The Chain Rule.ppt
Lec5_ The Chain Rule.pptLec5_ The Chain Rule.ppt
Lec5_ The Chain Rule.ppt
 
MCQs Ordinary Differential Equations
MCQs Ordinary Differential EquationsMCQs Ordinary Differential Equations
MCQs Ordinary Differential Equations
 
Lec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeingLec4 State Variable Models are used for modeing
Lec4 State Variable Models are used for modeing
 
Mathematics HL and Further mathematics HL Formula Booklet Zimsec Cambridge Zi...
Mathematics HL and Further mathematics HL Formula Booklet Zimsec Cambridge Zi...Mathematics HL and Further mathematics HL Formula Booklet Zimsec Cambridge Zi...
Mathematics HL and Further mathematics HL Formula Booklet Zimsec Cambridge Zi...
 
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docx
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docxAnalytic Geometry B Accelerated Week 5   Page 39 of 5.docx
Analytic Geometry B Accelerated Week 5   Page 39 of 5.docx
 
03 Area under the curve Ex..Module-5pdf
03 Area under the curve Ex..Module-5pdf03 Area under the curve Ex..Module-5pdf
03 Area under the curve Ex..Module-5pdf
 

More from Tigabu Yaya

More from Tigabu Yaya (20)

ML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdfML_basics_lecture1_linear_regression.pdf
ML_basics_lecture1_linear_regression.pdf
 
03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf03. Data Exploration in Data Science.pdf
03. Data Exploration in Data Science.pdf
 
MOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdfMOD_Architectural_Design_Chap6_Summary.pdf
MOD_Architectural_Design_Chap6_Summary.pdf
 
MOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdfMOD_Design_Implementation_Ch7_summary.pdf
MOD_Design_Implementation_Ch7_summary.pdf
 
GER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdfGER_Project_Management_Ch22_summary.pdf
GER_Project_Management_Ch22_summary.pdf
 
lecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdflecture_GPUArchCUDA02-CUDAMem.pdf
lecture_GPUArchCUDA02-CUDAMem.pdf
 
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdflecture_GPUArchCUDA04-OpenMPHOMP.pdf
lecture_GPUArchCUDA04-OpenMPHOMP.pdf
 
6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf6_RealTimeScheduling.pdf
6_RealTimeScheduling.pdf
 
Regression.pptx
Regression.pptxRegression.pptx
Regression.pptx
 
lecture6.pdf
lecture6.pdflecture6.pdf
lecture6.pdf
 
lecture5.pdf
lecture5.pdflecture5.pdf
lecture5.pdf
 
lecture4.pdf
lecture4.pdflecture4.pdf
lecture4.pdf
 
lecture3.pdf
lecture3.pdflecture3.pdf
lecture3.pdf
 
lecture2.pdf
lecture2.pdflecture2.pdf
lecture2.pdf
 
Chap 4.ppt
Chap 4.pptChap 4.ppt
Chap 4.ppt
 
200402_RoseRealTime.ppt
200402_RoseRealTime.ppt200402_RoseRealTime.ppt
200402_RoseRealTime.ppt
 
matrixfactorization.ppt
matrixfactorization.pptmatrixfactorization.ppt
matrixfactorization.ppt
 
nnfl.0620.pptx
nnfl.0620.pptxnnfl.0620.pptx
nnfl.0620.pptx
 
L20.ppt
L20.pptL20.ppt
L20.ppt
 
The Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdfThe Jacobi and Gauss-Seidel Iterative Methods.pdf
The Jacobi and Gauss-Seidel Iterative Methods.pdf
 

Recently uploaded

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
KarakKing
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 

Recently uploaded (20)

Salient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functionsSalient Features of India constitution especially power and functions
Salient Features of India constitution especially power and functions
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptxExploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
Exploring_the_Narrative_Style_of_Amitav_Ghoshs_Gun_Island.pptx
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 

nabil-201-chap-03.ppt

  • 1. Chapter 3 Determinants 3.1 The Determinant of a Matrix 3.2 Evaluation of a Determinant using Elementary Operations 3.3 Properties of Determinants 3.4 Application of Determinants
  • 2. 2/62 3.1 The Determinant of a Matrix  the determinant of a 2 × 2 matrix:  Note:        22 21 12 11 a a a a A 12 21 22 11 | | ) det( a a a a A A            22 21 12 11 a a a a 22 21 12 11 a a a a
  • 3. 3/62  Ex. 1: (The determinant of a matrix of order 2) 2 1 3 2  2 4 1 2 4 2 3 0  Note: The determinant of a matrix can be positive, zero, or negative. ) 3 ( 1 ) 2 ( 2    3 4   7  ) 1 ( 4 ) 2 ( 2   4 4   0  ) 3 ( 2 ) 4 ( 0   6 0   6  
  • 4. 4/62  Minor of the entry : The determinant of the matrix determined by deleting the ith row and jth column of A  Cofactor of : ij a ij j i ij M C    ) 1 ( nn j n j n n n i j i j i i n i j i j i i n j j ij a a a a a a a a a a a a a a a a a M                ) 1 ( ) 1 ( 1 ) 1 ( ) 1 )( 1 ( ) 1 )( 1 ( 1 ) 1 ( ) 1 ( ) 1 )( 1 ( ) 1 )( 1 ( 1 ) 1 ( 1 ) 1 ( 1 ) 1 ( 1 12 11                  ij a
  • 5. 5/62  Ex:            33 32 31 23 22 21 13 12 11 a a a a a a a a a A 33 32 13 12 21 a a a a M   21 21 1 2 21 ) 1 ( M M C       33 31 13 11 22 a a a a M  22 22 2 2 22 ) 1 ( M M C    
  • 6. 6/62                     Notes: Sign pattern for cofactors                                                                                  3 × 3 matrix 4 × 4 matrix n ×n matrix  Notes: Odd positions (where i+j is odd) have negative signs, and even positions (where i+j is even) have positive signs.
  • 7. 7/62  Ex 2: Find all the minors and cofactors of A. , 5 1 4 2 3 12    M , 1 1 0 2 1 11      M Sol: (1) All the minors of A. 4 0 4 1 3 13    M , 2 1 0 1 2 21   M , 4 1 4 1 0 22    M 8 1 4 2 0 23    M , 5 2 1 1 2 31    M , 3 2 3 1 0 32    M 6 1 3 2 0 33     M             1 0 4 2 1 3 1 2 0 A
  • 8. 8/62 , 5 1 4 2 3 12    C , 1 1 0 2 1 11       C 4 0 4 1 3 13     C ij j i ij M C    ) 1 (  , 2 1 0 1 2 21     C , 4 1 4 1 0 22     C 8 1 4 2 0 23    C , 5 2 1 1 2 31     C , 3 2 3 1 0 32    C 6 1 3 2 0 33      C Sol: (2) All the cofactors of A.
  • 9. 9/62  Thm 3.1: (Expansion by cofactors)         n j in in i i i i ij ij C a C a C a C a A A a 1 2 2 1 1 | | ) det( ) (  (Cofactor expansion along the i-th row, i=1, 2,…, n )         n i nj nj j j j j ij ij C a C a C a C a A A b 1 2 2 1 1 | | ) det( ) (  (Cofactor expansion along the j-th row, j=1, 2,…, n ) Let A is a square matrix of order n. Then the determinant of A is given by or
  • 10. 10/62  Ex: The determinant of a matrix of order 3            33 32 31 23 22 21 13 12 11 a a a a a a a a a A 33 33 23 23 13 13 32 32 22 22 12 12 31 31 21 21 11 11 33 33 32 32 31 31 23 23 22 22 21 21 13 13 12 12 11 11 ) det( C a C a C a C a C a C a C a C a C a C a C a C a C a C a C a C a C a C a A                   
  • 11. 11/62  Ex 3: The determinant of a matrix of order 3 14 ) 6 )( 1 ( ) 8 )( 2 ( ) 4 )( 1 ( 14 ) 3 )( 0 ( ) 4 )( 1 ( ) 5 )( 2 ( 14 ) 5 )( 4 ( ) 2 )( 3 ( ) 1 )( 0 ( 14 ) 6 )( 1 ( ) 3 )( 0 ( ) 5 )( 4 ( 14 ) 8 )( 2 ( ) 4 )( 1 ( ) 2 )( 3 ( 14 ) 4 )( 1 ( ) 5 )( 2 ( ) 1 )( 0 ( ) det( 33 33 23 23 13 13 32 32 22 22 12 12 31 31 21 21 11 11 33 33 32 32 31 31 23 23 22 22 21 21 13 13 12 12 11 11                                                      C a C a C a C a C a C a C a C a C a C a C a C a C a C a C a C a C a C a A             1 0 4 2 1 3 1 2 0 A 6 , 3 , 5 8 , 4 , 2 4 , 5 , 1 33 32 31 23 22 21 13 12 11 2 E               C C C C C C C C C x Sol:
  • 12. 12/62  Ex 5: (The determinant of a matrix of order 3) ? ) det(   A 0 2 1 3 1 2 4 0 1 A             1 1 0 2 1 ) 1 ( 1 1 11       C Sol: 5 ) 5 )( 1 ( 1 4 2 3 ) 1 ( 2 1 12        C 4 0 4 1 3 ) 1 ( 3 1 13      C 14 ) 4 )( 1 ( ) 5 )( 2 ( ) 1 )( 0 ( ) det( 13 13 12 12 11 11          C a C a C a A
  • 13. 13/62  Ex 4: (The determinant of a matrix of order 4)                 2 0 4 3 3 0 2 0 2 0 1 1 0 3 2 1 A ? ) det(   A  Notes: The row (or column) containing the most zeros is the best choice for expansion by cofactors .
  • 14. 14/62 Sol: ) )( 0 ( ) )( 0 ( ) )( 0 ( ) )( 3 ( ) det( 43 33 23 13 C C C C A     2 4 3 3 2 0 2 1 1 ) 1 ( 3 3 1      13 3C    39 ) 13 )( 3 ( ) 7 )( 1 )( 3 ( ) 4 )( 1 )( 2 ( 0 3 4 3 1 1 ) 1 )( 3 ( 2 3 2 1 ) 1 )( 2 ( 2 4 2 1 ) 1 )( 0 ( 3 3 2 2 2 1 2                           
  • 15. 15/62  The determinant of a matrix of order 3:            33 32 31 23 22 21 13 12 11 a a a a a a a a a A 32 31 33 32 31 22 21 23 22 21 12 11 13 12 11 a a a a a a a a a a a a a a a 12 21 33 11 23 32 13 22 31 32 21 13 31 23 12 33 22 11 | | ) det( a a a a a a a a a a a a a a a a a a A A         Add these three products. Subtract these three products.
  • 17. 17/62  Upper triangular matrix:  Lower triangular matrix:  Diagonal matrix: All the entries below the main diagonal are zeros. All the entries above the main diagonal are zeros. All the entries above and below the main diagonal are zeros.  Note: A matrix that is both upper and lower triangular is called diagonal.
  • 19. 19/62  Thm 3.2: (Determinant of a Triangular Matrix) If A is an n × n triangular matrix (upper triangular, lower triangular, or diagonal), then its determinant is the product of the entries on the main diagonal. That is nn a a a a A A  33 22 11 | | ) det(  
  • 20. 20/62  Ex 6: Find the determinants of the following triangular matrices. (a)                3 3 5 1 0 1 6 5 0 0 2 4 0 0 0 2 A (b)                    2 0 0 0 0 0 4 0 0 0 0 0 2 0 0 0 0 0 3 0 0 0 0 0 1 B |A| = (2)(–2)(1)(3) = –12 |B| = (–1)(3)(2)(4)(–2) = 48 (a) (b) Sol:
  • 21. 21/62 Keywords in Section 3.1:  determinant : ‫المحدد‬  minor : ‫المختصر‬  cofactor : ‫المعامل‬  expansion by cofactors : ‫بالمعامالت‬ ‫التحليل‬  upper triangular matrix: ‫سفلى‬ ‫مثلثية‬ ‫مصفوفة‬  lower triangular matrix: ‫عليا‬ ‫مثلثية‬ ‫مصفوفة‬  diagonal matrix: ‫قطرية‬ ‫مصفوفة‬
  • 22. 22/62 3.2 Evaluation of a determinant using elementary operations  Thm 3.3: (Elementary row operations and determinants) ) ( ) ( A r B a ij  Let A and B be square matrices. ) det( ) det( A B    ) ( ) ( ) ( A r B b k i  ) det( ) det( A k B   ) ( ) ( ) ( A r B c k ij  ) det( ) det( A B   ) ) ( (i.e. A A rij   ) ) ( (i.e. ) ( A k A r k i  ) ) ( (i.e. ) ( A A r k ij 
  • 24. 24/62  Notes: )) ( det( ) det( ) det( )) ( det( A r A A A r ij ij      )) ( det( 1 ) det( ) det( )) ( det( ) ( ) ( A r k A A k A r k i k i    )) ( det( ) det( ) det( )) ( det( ) ( ) ( A r A A A r k ij k ij   
  • 25. 25/62 Note: A row-echelon form of a square matrix is always upper triangular.  Ex 2: (Evaluation a determinant using elementary row operations)             3 1 0 2 2 1 10 3 2 A ? ) det(   A Sol: 3 1 0 10 3 2 2 2 1 3 1 0 2 2 1 10 3 2 ) det( 12          r A
  • 27. 27/62  Notes: A E EA  ij R E  ) 1 ( 1     ij R E   A E A R A A r EA ij ij       ) ( ) 2 ( k i R E  k R E k i    ) (   A E A R A k A r EA k i k i      ) ( ) ( ) ( ) 3 ( k ij R E  1 ) (    k ij R E   A E A R A A r EA k ij k ij      ) ( ) ( 1
  • 28. 28/62  Determinants and elementary column operations ) ( ) ( A c B a ij  Let A and B be square matrices. ) det( ) det( A B    ) ( ) ( ) ( A c B b k i  ) det( ) det( A k B   ) ( ) ( ) ( A c B c k ij  ) det( ) det( A B   ) ) ( (i.e. A A cij   ) ) ( (i.e. ) ( A k A c k i  ) ) ( (i.e. ) ( A A c k ij   Thm: (Elementary column operations and determinants)
  • 29. 29/62             2 0 0 1 0 4 3 1 2 A  Ex:             2 0 0 1 4 0 3 2 1 2 A             2 0 0 1 0 2 3 1 1 1 A            2 0 0 1 0 4 0 1 2 3 A 8 ) det(   A 4 ) 8 )( 2 1 ( ) det( 2 1 )) ( det( ) det( ) ( ) 4 ( 1 1 ) 2 1 ( 1 1         A A c A A c A 8 ) 8 ( ) det( )) ( det( ) det( ) ( 12 2 12 2          A A c A A c A 8 ) det( )) ( det( ) det( ) ( ) 3 ( 23 3 ) 3 ( 23 3       A A c A A c A
  • 30. 30/62  Thm 3.4: (Conditions that yield a zero determinant) (a) An entire row (or an entire column) consists of zeros. (b) Two rows (or two columns) are equal. (c) One row (or column) is a multiple of another row (or column). If A is a square matrix and any of the following conditions is true, then det (A) = 0.
  • 31. 31/62 0 6 5 4 0 0 0 3 2 1  0 0 6 3 0 5 2 0 4 1  0 6 5 4 2 2 2 1 1 1  0 2 6 1 2 5 1 2 4 1  0 6 4 2 6 5 4 3 2 1     0 6 12 3 5 10 2 4 8 1   Ex:
  • 32. 32/62 Cofactor Expansion Row Reduction Order n Additions Multiplications Additions Multiplications 3 5 9 5 10 5 119 205 30 45 10 3,628,799 6,235,300 285 339  Note:
  • 33. 33/62  Ex 5: (Evaluating a determinant)                6 0 3 1 4 2 2 5 3 A Sol: 3 ) 1 )( 3 ( 3 4 4 5 ) 1 )( 3 ( 0 0 3 3 4 2 4 5 3 6 0 3 1 4 2 2 5 3 ) det( 1 3 ) 2 ( 13                     C A 3 ) 5 3 )( 5 ( 6 3 ) 1 )( 5 ( 6 0 3 0 2 5 3 6 0 3 1 4 2 2 5 3 ) det( 5 3 5 2 2 1 5 3 5 2 ) 5 4 ( 12                   r A
  • 34. 34/62  Ex 6: (Evaluating a determinant) Sol:                    0 2 3 1 1 3 4 2 1 3 3 2 1 0 1 1 2 3 1 2 2 3 1 0 2 A 1 0 0 3 4 6 5 1 3 2 1 1 2 3 1 2 1) (1)( 1 0 0 0 3 4 6 5 0 1 3 2 1 0 1 1 2 3 1 2 2 3 1 0 2 0 2 3 1 1 3 4 2 1 3 3 2 1 0 1 1 2 3 1 2 2 3 1 0 2 ) det( 2 2 ) 1 ( 25 ) 1 ( 24                     r r A
  • 36. 36/62 3.3 Properties of Determinants  Notes: ) det( ) det( ) det( B A B A     Thm 3.5: (Determinant of a matrix product) (1) det (EA) = det (E) det (A) (2) (3) 33 32 31 23 22 21 13 12 11 33 32 31 23 22 21 13 12 11 a a a b b b a a a a a a a a a a a a   33 32 31 23 23 22 22 22 22 13 12 11 a a a b a b a b a a a a    det (AB) = det (A) det (B)
  • 37. 37/62  Ex 1: (The determinant of a matrix product)             1 0 1 2 3 0 2 2 1 A               2 1 3 2 1 0 1 0 2 B 7 1 0 1 2 3 0 2 2 1 | |     A 11 2 1 3 2 1 0 1 0 2 | |      B Sol: Find |A|, |B|, and |AB|
  • 39. 39/62  Ex 2: 5 1 3 2 5 0 3 4 2 1 , 10 30 20 50 0 30 40 20 10                   A Find |A|. Sol:               1 3 2 5 0 3 4 2 1 10 A 5000 ) 5 )( 1000 ( 1 3 2 5 0 3 4 2 1 103        A  Thm 3.6: (Determinant of a scalar multiple of a matrix) If A is an n × n matrix and c is a scalar, then det (cA) = cn det (A)
  • 40. 40/62  Ex 3: (Classifying square matrices as singular or nonsingular)   0 A               1 2 3 1 2 3 1 2 0 A              1 2 3 1 2 3 1 2 0 B A has no inverse (it is singular).     0 12 B B has an inverse (it is nonsingular). Sol:  Thm 3.7: (Determinant of an invertible matrix) A square matrix A is invertible (nonsingular) if and only if det (A)  0
  • 41. 41/62  Ex 4: ? 1   A             0 1 2 2 1 0 3 0 1 A ?  T A (a) (b) 4 0 1 2 2 1 0 3 0 1 | |    A  4 1 1 1     A A 4   A AT Sol:  Thm 3.8: (Determinant of an inverse matrix) . ) A det( 1 ) A det( then invertible is If 1   , A  Thm 3.9: (Determinant of a transpose) ). det( ) det( then matrix, square a is If T A A A 
  • 42. 42/62 If A is an n × n matrix, then the following statements are equivalent. (1) A is invertible. (2) Ax = b has a unique solution for every n × 1 matrix b. (3) Ax = 0 has only the trivial solution. (4) A is row-equivalent to In (5) A can be written as the product of elementary matrices. (6) det (A)  0  Equivalent conditions for a nonsingular matrix:
  • 43. 43/62  Ex 5: Which of the following system has a unique solution? (a) 4 2 3 4 2 3 1 2 3 2 1 3 2 1 3 2           x x x x x x x x (b) 4 2 3 4 2 3 1 2 3 2 1 3 2 1 3 2           x x x x x x x x
  • 44. 44/62 Sol: b x  A (a) 0  A   This system does not have a unique solution. (b) b x  B 0 12    B   This system has a unique solution.
  • 45. 45/62 3.4 Introduction to Eigenvalues  Eigenvalue problem: If A is an nn matrix, do there exist n1 nonzero matrices x such that Ax is a scalar multiple of x?  Eigenvalue and eigenvector: A:an nn matrix :a scalar x: a n1 nonzero column matrix x Ax   Eigenvalue Eigenvector (The fundamental equation for the eigenvalue problem)
  • 46. 46/62  Ex 1: (Verifying eigenvalues and eigenvectors)        3 2 4 1 A        1 1 1 x 1 1 5 1 1 5 5 5 1 1 3 2 4 1 x Ax                             Eigenvalue 2 2 ) 1 ( 1 2 1 1 2 1 2 3 2 4 1 x Ax                                 Eigenvalue Eigenvector Eigenvector         1 2 2 x
  • 47. 47/62  Question: Given an nn matrix A, how can you find the eigenvalues and corresponding eigenvectors?  Characteristic equation of AMnn: 0 ) I ( ) I det( 0 1 1 1            c c c A A n n n       If has nonzero solutions iff . 0 ) I (   x A  0 ) I det(   A  0 ) I (     x A x Ax    Note: (homogeneous system)
  • 48. 48/62  Ex 2: (Finding eigenvalues and eigenvectors)        3 2 4 1 A Sol: Characteristic equation: 0 ) 1 )( 5 ( 5 4 3 2 4 1 I 2                     A Eigenvalues: 1 , 5 2 1      1 , 5    
  • 49. 49/62 1 ) 2 ( 2    0 , 1 2 2 0 0 4 2 4 2 ) I ( 2 1 2 1 2                                                  t t t t x x x x x A  5 ) 1 ( 1   0 , 1 1 0 0 2 2 4 4 ) I ( 2 1 2 1 1                                              t t t t x x x x x A 
  • 50. 50/62  Ex 3: (Finding eigenvalues and eigenvectors)               0 1 1 1 2 1 2 2 1 A Sol: Characteristic equation: 0 ) 3 )( 1 )( 1 ( 1 1 1 2 1 2 2 1 I                    A 3 , 1 , 1 : s eigenvalue The 3 2 1       
  • 51. 51/62 1 1                               0 0 0 1 1 0 2 0 1 ~ 1 1 1 1 1 1 2 2 0 I 1 A  0 , 1 1 2 : rs eigenvecto 2 3 2 1                                  t t t t t x x x 1 2                                  0 0 0 1 1 0 2 0 1 ~ 1 1 1 1 3 1 2 2 2 I 2 A  0 , 1 1 2 : rs eigenvecto 2 3 2 1                                    t t t t t x x x
  • 53. 53/62 3.4 Applications of Determinants  Matrix of cofactors of A:                nn n n n n ij C C C C C C C C C C       2 1 2 22 21 1 12 11 ij j i ij M C    ) 1 (                 nn n n n n T ij C C C C C C C C C C A adj       2 1 2 22 12 1 21 11 ) (  Adjoint matrix of A:
  • 54. 54/62  Thm 3.10: (The inverse of a matrix given by its adjoint) bc ad A    ) det( If A is an n × n invertible matrix, then ) ( ) det( 1 1 A adj A A          d c b a A          a c b d A adj ) (   ) ( det 1 1 A adj A A     Ex:           a c b d bc ad 1
  • 55. 55/62  Ex 1 & Ex 2: 1  A               2 0 1 1 2 0 2 3 1 A (a) Find the adjoint of A. (b) Use the adjoint of A to find , 4 2 0 1 2 11       C Sol: , 1 2 1 1 0 12     C 2 0 1 2 0 13     C ij j i ij M C    ) 1 (  , 6 2 0 2 3 21    C , 0 2 1 2 1 22     C 3 0 1 3 1 23     C , 7 1 2 2 3 31     C , 1 1 0 2 1 32     C 2 2 0 3 1 33      C
  • 56. 56/62 cofactor matrix of A               2 1 7 3 0 6 2 1 4 ij C adjoint matrix of A                2 3 2 1 0 1 7 6 4 ) ( T ij C A adj            2 3 2 1 0 1 7 6 4 3 1  inverse matrix of A   ) ( det 1 1 A adj A A     3 det  A             3 2 3 2 3 1 3 1 3 7 3 4 1 0 2  Check: I AA  1
  • 57. 57/62  Thm 3.11: (Cramer’s Rule) 1 1 2 12 1 11 b x a x a x a n n      n n nn n n n n b x a x a x a b x a x a x a            2 2 1 1 2 2 2 22 1 21 b x  A     ) ( ) 2 ( ) 1 ( , , , n n n ij A A A a A                  n x x x  2 1 x              n b b b  2 1 b 0 ) det( 2 1 2 22 21 1 12 11   nn n n n n a a a a a a a a a A       (this system has a unique solution)
  • 58. 58/62   ) ( ) 1 ( ) 1 ( ) 2 ( ) 1 ( , , , , , , , n j j j A A b A A A A                         nn j n n j n n n j j n j j a a b a a a a b a a a a b a a          ) 1 ( ) 1 ( 1 2 ) 1 ( 2 2 ) 1 ( 2 21 1 ) 1 ( 1 1 ) 1 ( 1 11 nj n j j j C b C b C b A      2 2 1 1 ) det( ( i.e. ) , ) det( ) det( A A x j j   n j , , 2 , 1  
  • 59. 59/62  Pf: 0 ) det(  A A x = b, b x 1    A b ) ( ) det( 1 A adj A                           n nn n n n n b b b C C C C C C C C C A        2 1 2 1 2 22 12 1 21 11 ) det( 1                       nn n n n n n n n C b C b C b C b C b C b C b C b C b A      2 2 1 1 2 22 2 12 1 1 21 2 11 1 ) det( 1
  • 61. 61/62  Ex 4: Use Cramer’s rule to solve the system of linear equations. 8 4 4 2 1 0 0 3 2 1 ) det( 1     A 2 4 4 3 0 2 1 3 2          z y x z x z y x Sol: 10 4 4 3 1 0 2 3 2 1 ) det(      A , 15 4 2 3 1 0 2 3 1 1 ) det( 2      A 16 2 4 3 0 0 2 1 2 1 ) det( 3      A 5 4 ) det( ) det( 1   A A x 2 3 ) det( ) det( 2    A A y 5 8 ) det( ) det( 3    A A z
  • 62. 62/62 Keywords in Section 3.4:  matrix of cofactors : ‫المعامالت‬ ‫مصفوفة‬  adjoint matrix : ‫مصاحبة‬ ‫مصفوفة‬  Cramer’s rule : ‫كرامر‬ ‫قانون‬