Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Clustaar chatbot intervention for Crédit Agricole 19/05/2017

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Chargement dans…3
×

Consultez-les par la suite

1 sur 34 Publicité

Plus De Contenu Connexe

Diaporamas pour vous (20)

Similaire à Clustaar chatbot intervention for Crédit Agricole 19/05/2017 (20)

Publicité

Plus récents (20)

Clustaar chatbot intervention for Crédit Agricole 19/05/2017

  1. 1. AI & CHATBOTS Automating customer relation
  2. 2. 20 people in 2017 7 people in R&D 13 people in the Account & Project team 100% excellency 2 Who are we?
  3. 3. Introduction Defining the concept of AI ✓ Data-powered ✓ Algorithmic science ✓ Machine Learning
  4. 4. Introduction The notion of chatbots is nothing new ✓ Eliza in 1964 ✓ Cleverbot in 1997 ✓ Bots for Messenger in April 2016
  5. 5. Plan I. Chatbots: state of the art II. What does a chatbot project entail? III. In the future
  6. 6. Chatbots: State of the art
  7. 7. Plan 1. Intro 2. AI and current Chatbots 3. Hopes vs reality 4. Natural Language Understanding 5. Our approach
  8. 8. “30 or 40% of our clients’ messages are recurrent and could be partly automated. ” Axa France In China, a brand will create a bot on WeChat before creating a website. 3 billion users An indeniable trend
  9. 9. An indeniable trend
  10. 10. Conversation Platforms Online Chat Messaging apps (FB Messenger, Slack...) Intercom iAdvize (Q2 2017) Zendesk (Q2 2017) SMS Vocal Twilio Phone Alexa / Google Assistant (Q3 2017) Current integrations
  11. 11. Problem
  12. 12. AI and current Chatbots An undeniable trend April 2016: 30 000 bots created in 3 months but… « Bots right now are in the trough of despair. To industry observers, it feels like they are overhyped and under-delivering. » Greg John, CEO of Burner Current chatbot technology is nothing new. It becomes interesting when chatbots meet AI.
  13. 13. Hopes vs Reality Understanding the limits of AI Chatbots ✓ Bots are not yet intelligent (language, context) ✓ Questions need to be predicted ✓ Answers need to be written in advance ✓ Complicated features take time to develop Some bad examples Х Tay: Microsoft’s error in 2016 Х M: Facebook’s perfect bot
  14. 14. Natural Language Understanding The basics To build a chatbot able to converse with human, you need NLU technology. ✓ Data-powered ✓ Detecting intentions ✓ Focused on keywords and trigger words ✓ Understanding words in contexts
  15. 15. Our approach Data-based chatbots ✓ We analyze historical datasets ✓ We detect FAQs ✓ We map those questions and detect intentions ✓ We input this data in the bot
  16. 16. Example 16
  17. 17. 17 Bot Admin & Analytics Your Data Pull Data Push API Your Data Push Data Webhook Trigger actions and answers (Conversation Management platform) Intent detection (Clustaar Deep Query) User input Integration with data
  18. 18. Log analysis ✓ After a few days in production, then once a month, unanswered questions go through our algorithm Deep Query©. ✓ New “intents” are identified and made accessible to the bot. They need to be then associated with the appropriate actions. ✓ The bot becomes can handle more and more cases on its own.
  19. 19. What does a chatbot project entail?
  20. 20. Plan 1. How to envision a bot project? 2. Use cases 3. How to make it great?
  21. 21. Envision a chatbot project Designing a new user experience ✓ Define the objectives of the bot ✓ Adapt to the target ✓ Recreate user habit ✓ Transform them into conversation ✓ Imagine client reactions
  22. 22. Possible use cases All recurrent interactions Internal (ex: Nexity) - HR - Knowledge management - Search in databases - FAQ Client acquisition (ex: Cortex) - Integrated to a website - Automatic lead generation - FAQ - Available 24/7 Service (ex: Hachette) - Playful features - Geolocalisation / Store locator - Promotional offers or news Push - FAQ Customer service (ex: 20 Minutes) - Integrated to a website or Messenger - Automatic FAQ in Natural Language - Available 24/7
  23. 23. Client acquisition Customer service
  24. 24. How to make it great Put a smile on the client’s face ✓ Smalltalk: simulating human interaction and setting a tone ✓ Fallback: building a fluid conversation ✓Playful features: jokes, quiz… Find the detail that will make the user say « thank you! »
  25. 25. Data import Bot training Put the bot online Run, manage & improve Internal sources (FAQ, conversations) and external sources (Google Queries) Intent detection Connexion with internal data Writing scenarios and answers UX & integration Publication Fine tuning Machine learning improvement & Analytics Improving response scenarios 25 Project phases
  26. 26. In the future
  27. 27. Plan 1. Outstanding Conversation 2. Understanding emotions 3. Personnalized insurance
  28. 28. Outstanding conversation Flawless automated client interaction ✓ Understanding complex questions ✓ Automatically generated answers ✓ 100% automated customer care ✓No interface ?
  29. 29. No interface All vocal conversation
  30. 30. Understanding emotions Mesuring client satisfaction automatically ✓ Live sentiment analysis ✓ Emotionaly appropriate response ✓ Automatic report on client satisfaction
  31. 31. Personnalized insurance Data collection to a new level ✓ Perfect perception of clients’ profiles ✓ Automatic daily personnalization
  32. 32. Personnalized insurance It’s all about data
  33. 33. Personnalized insurance It’s all about data
  34. 34. www.clustaar.com/en Mail nicolas@clustaar.com philippe@clustaar.com Phone Nicolas Chollet +33 (0) 6 51 42 79 05 Philippe Duhamel +33 (0) 6 84 33 76 23 Offices 28 rue du faubourg poissonnière 75010, Paris France

×