SlideShare une entreprise Scribd logo
1  sur  12
Active Filter Design
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1
Design Services
Contents
Slide
#
1. Filter Design
Category..............................................................................
2. Active Filter Design Flow-Chart.............................................................
3. Passive Low Pass Filter
Design...............................................................
3.1
Specifications : ..................................................................................
3.2
Calculation : ......................................................................................
.
3.3
Verification : ......................................................................................
.
3.4
Optimization : ....................................................................................
3.5 Elements
test : ...................................................................................
3
4
5
5
6
7
8-9
10-11
12
2All Rights Reserved Copyright (C) Bee Technologies Corporation 2009
1.Filter Design Category
Available Filter Types
• Low Pass Filter
• High Pass Filter
• Band Pass Filter
• Band Reject Filter
Approximation
• Butterworth
- No ripple
- Smooth roll-off (rate of 20dB/decade for every pole)
• Chebyshev
- Pass-band ripple specification would be required.
- Steeper roll-of
Topology
• Passive
- High frequency range (> 1 MHz)
- Source and load impedance specifications would be required
• Active
- Low frequency range (1 Hz to 1 MHz)
- Unity-Gain Sallen-Key configuration (see Figure 1.0)
Number of Order
• 2nd
-10th
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3
R 1 R 2
C 2
0
C 1
in
+
-
U 1
A M P S I M P
o u t
Fig.1.0 Unity-Gain Sallen-Key Active Filter (2nd
-Order Active LPF)
2.Active Filter Design Flow Chart
All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4
2. Circuit design and calculation2. Circuit design and calculation
3. Verification3. Verification
4. Optimize with standard capacitor value4. Optimize with standard capacitor value
5. Elements test (± 5%)5. Elements test (± 5%)
Meet the spec?Meet the spec?
No
Yes
Satisfy?Satisfy?
Yes
YESYES
Result :
Filter circuit with all element values
Result :
Filter circuit with all element values
Use 1% CapacitorUse 1% Capacitor
1.Customer’s
specification
1.Customer’s
specification
No
Fr equenc y
100Hz 1. 0KHz 10KHz
db( v ( out ) )
- 40
- 30
- 20
- 10
0
3.Active Low Pass Filter Design (1/5)
3.1 Specifications :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5
Figure 2 Low-pass filter response and specification
Pass-band Region
Stop-band Region
Pass-band edge frequency = 1 MHz
Pass-band gain = -3 dB
Stop-band edge frequency = 2.5 MHz
Stop-band gain = -30 dB
•Pass-band edge frequency : 1 kHz (fCutoff)
- Pass-band gain : -3 dB
•Stop-band edge frequency : 2.5 kHz
- Stop-band gain : -30 dB
•Load and Source Condition :
- Source Type : Voltage
- Filter Load Impedance : 50 Ω
- Resistance in the filter : 5 kΩ
STEP1.Customer’s
specification
STEP1.Customer’s
specification
R 1
5 k
R 2
5 k
R 5
5 0
0
C 1
2 9 . 4 2 n F
0
C 2
3 4 . 4 4 n F
R 3
5 k
R 4
5 k
C 3
1 2 . 1 8 n F
0
C 4
8 3 . 1 7 n F
+
-
U 2
A M P S I M P
o u tV s o u r c e
0
in
+
-
U 1
A M P S I M P
3. Active Low Pass Filter Design (2/5)
3.2 Calculation :
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6
Figure 3.1 Low-pass filter circuit with calculated element-values
(Butterworth approximation).
Figure 3.2 Low-pass filter circuit with calculated element-values
(Chebyshev approximation).
•R1 = R2 = R3 = R4 = 5kΩ
•C1 = 29.42nF
•C2 = 34.44nF
•C3 = 83.17nF
•C4 = 12.18nF
STEP2. Circuit
design and
calculation
STEP2. Circuit
design and
calculation
•R1 = R2 = R3 = R4 = 5kΩ
•C1 = 47nF
•C2 = 82nF
•C3 = 5.1nF
•C4 = 220nF
R 1
5 k
R 2
5 k
R 5
5 0
0
C 1
4 7 n F
0
C 2
8 2 n F
R 3
5 k
R 4
5 k
0
C 3
5 . 1 n F
C 4
2 2 0 n F
+
-
U 3
A M P S I M P
o u t 2
+
-
U 4
A M P S I M P
Fr equenc y
100Hz 1. 0KHz 10KHz
db( v ( out ) ) db ( v ( out 2) )
- 60
- 40
- 20
- 0
3. Active Low Pass Filter Design (3/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 7
Figure 4 Response and specification of the calculated circuits.
Butterworth (1MHz,-3.013dB)
Chebyshev : (1MHz,-2.818dB)
(2.5MHz,-44dB)
(2.5MHz,-31.858dB)
3.3 Verification :
• Frequency Response Simulation
Pass-band Ripple (-1.23dB) •Pass-band edge frequencies : 1 MHz
•Pass-band gains : -3 dB 
•Stop-band edge frequencies : 2.5 MHz
•Stop-band gains : < -30 dB 
•Butterworth Approximation
- No ripple 
- Roll-off rate is 80dB/decade 
•Chebyshev Approximation
- Pass-band ripple : -1.23dB 
- Steeper roll-of 
— Butterworth Approximation
— Butterworth Approximation
STEP3.
Verification
STEP3.
Verification
3.4 Optimization :
- Use standard capacitor values (E-24 Capacitor Values)
- Optimize inductor values
R 1
5 k
R 2
5 k
R 5
5 0
0
C 1
3 0 n F
0
C 2
3 3 n F
R 3
5 k
R 4
5 k
C 3
1 2 n F
0
C 4
8 2 n F
+
-
U 2
A M P S I M P
o u tV s o u r c e
0
in
+
-
U 1
A M P S I M P
3.Passive Low Pass Filter Design (4/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8
Figure 5.1 Low-pass filter circuit with optimized element-values (Butterworth approximation).
Figure 5.2 Low-pass filter circuit with calculated element-values (Chebyshev approximation).
STEP4. Optimize with
standard capacitor value
(then verify)
STEP4. Optimize with
standard capacitor value
(then verify)
•R1 = R2 = R3 = R4 = 5kΩ
•C1 = 47nF
•C2 = 82nF
•C3 = 5.1nF
•C4 = 220nF
R 1
5 k
R 2
5 k
R 5
5 0
0
C 1
4 7 n F
0
C 2
8 2 n F
R 3
5 k
R 4
5 k
0
C 3
5 . 1 n F
C 4
2 2 0 n F
+
-
U 3
A M P S I M P
o u t 2
+
-
U 4
A M P S I M P
•R1 = R2 = R3 = R4 = 5kΩ
•C1 = 30nF
•C2 = 33nF
•C3 = 12nF
•C4 = 82nF
Fr equenc y
100Hz 1. 0KHz 10KHz
db( v ( out ) ) db ( v ( out 2) )
- 60
- 40
- 20
- 0
3.Passive Low Pass Filter Design (4/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9
Figure 6 Response and specification of the optimized circuits.
3.4 Optimization :
• Frequency Response Simulation
•Pass-band edge frequencies : 1 MHz
•Pass-band gains : -3 dB 
•Stop-band edge frequencies : 2.5 MHz
•Stop-band gains : < -30 dB 
•Butterworth Approximation
- No ripple 
- Roll-off rate is 80dB/decade 
•Chebyshev Approximation
- Pass-band ripple : -1.23dB 
- Steeper roll-of 
Butterworth (1MHz,-3.06dB)
Chebyshev : (1MHz,-2.818dB)
(2.5MHz,-44dB)
(2.5MHz,-31.521dB)
Pass-band Ripple (-1.23dB)
— Butterworth Approximation
— Butterworth Approximation
3.5 Elements test :
- ± 5% test for each capacitor value.
R 1
5 k
R 2
5 k
R 5
5 0
0
C 1
4 7 n F
0
C 2
8 2 n F
R 3
5 k
R 4
5 k
0
C 3
5 . 1 n F
C 4
2 2 0 n F
+
-
U 3
A M P S I M P
o u t 2
+
-
U 4
A M P S I M P
R 1
5 k
R 2
5 k
R 5
5 0
0
C 1
3 0 n F
0
C 2
3 3 n F
R 3
5 k
R 4
5 k
C 3
1 2 n F
0
C 4
8 2 n F
+
-
U 2
A M P S I M P
o u tV s o u r c e
0
in
+
-
U 1
A M P S I M P
3. Active Low Pass Filter Design (5/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10
Figure 7.1 Low-pass filter circuit with ± 5% of the capacitance-values (Butterworth approximation).
Figure 7.1 Low-pass filter circuit with ± 5% of the capacitance-values (Chebyshev approximation).
STEP5. Elements test
(± 5%)
STEP5. Elements test
(± 5%)
•R1 = R2 = R3 = R4 = 5kΩ
•C1 = 47nF (± 5%)
•C2 = 82nF (± 5%)
•C3 = 5.1nF (± 5%)
•C4 = 220nF (± 5%)
•R1 = R2 = R3 = R4 = 5kΩ
•C1 = 30nF (± 5%)
•C2 = 33nF (± 5%)
•C3 = 12nF (± 5%)
•C4 = 82nF (± 5%)
Fr eque nc y
1 00Hz 1. 0KHz 1 0KHz
db( v ( o ut 2 ) )
- 6 0
- 4 0
- 2 0
- 0
Fr eq ue nc y
1 00 Hz 1. 0KHz 10 KHz
db ( v ( ou t ) )
- 60
- 40
- 20
- 0
3.Passive Low Pass Filter Design (5/5)
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11
Figure 8 Response and specification when the element values are error with ±5%.
3.5 Elements test :
• Frequency Response Simulation, compare to -5% and +5% of all element values.
Butterworth
— +5%
— standard values
— -5%
Pass-band gain (-3 dB)
Cutoff frequency : 0.9486M, 1M, 1.0485M
Chebyshev
— +5%
— standard values
— -5%
Cutoff frequency : 0.9564M, 1M, 1.0567M
Pass-band gain (-3 dB)
R 1
5 k
R 2
5 k
R 5
5 0
0
C 1
4 7 n F
0
C 2
8 2 n F
R 3
5 k
R 4
5 k
0
C 3
5 . 1 n F
C 4
2 2 0 n F
+
-
U 3
A M P S I M P
o u t 2
+
-
U 4
A M P S I M P
R 1
5 k
R 2
5 k
R 5
5 0
0
C 1
3 0 n F
0
C 2
3 3 n F
R 3
5 k
R 4
5 k
C 3
1 2 n F
0
C 4
8 2 n F
+
-
U 2
A M P S I M P
o u tV s o u r c e
0
in
+
-
U 1
A M P S I M P
•R1 = R2 = R3 = R4 = 5kΩ
•C1 = 47nF (± 5%)
•C2 = 82nF (± 5%)
•C3 = 5.1nF (± 5%)
•C4 = 220nF (± 5%)
•R1 = R2 = R3 = R4 = 5kΩ
•C1 = 30nF (± 5%)
•C2 = 33nF (± 5%)
•C3 = 12nF (± 5%)
•C4 = 82nF (± 5%)
3.Passive Low Pass Filter Design
3.6 Result :
• Low-pass filter circuit with all element values.
All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12
Figure 8.1 Low-pass filter circuit with all element-values (Butterworth approximation).
Figure 8.1 Low-pass filter circuit all element-values (Chebyshev approximation).
± 5%
± 5%
± 5%
± 5%
± 5%
± 5%
± 5%
Result : Filter circuit
with all element values
Result : Filter circuit
with all element values
± 5%

Contenu connexe

Tendances

B.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-RaysB.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-RaysAbhi Hirpara
 
Sesión de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y Diodos
Sesión de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y DiodosSesión de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y Diodos
Sesión de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y DiodosJavier García Molleja
 
Radioactivity and nuclear transformation
Radioactivity and nuclear transformationRadioactivity and nuclear transformation
Radioactivity and nuclear transformationShahid Younas
 
Basics of Nuclear physics
Basics of Nuclear physicsBasics of Nuclear physics
Basics of Nuclear physicsJaya Yadav
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitTsuyoshi Horigome
 
R b lohani thyristor
R b lohani thyristorR b lohani thyristor
R b lohani thyristorssuser4b487e1
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Gallian394
 
Load line analysis
Load line analysisLoad line analysis
Load line analysissarunkutti
 
ELECTROSTATICS:Coulomb's law, Electric field & problems
ELECTROSTATICS:Coulomb's law, Electric field & problemsELECTROSTATICS:Coulomb's law, Electric field & problems
ELECTROSTATICS:Coulomb's law, Electric field & problemsDr.SHANTHI K.G
 
Capacitance
CapacitanceCapacitance
Capacitancestooty s
 
Circuit Simulation of LTC3105+Solar Cell(SPICE Model) Using LTspice
Circuit Simulation of LTC3105+Solar Cell(SPICE Model) Using LTspiceCircuit Simulation of LTC3105+Solar Cell(SPICE Model) Using LTspice
Circuit Simulation of LTC3105+Solar Cell(SPICE Model) Using LTspiceTsuyoshi Horigome
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manualamnahnura
 
The photoelectric effect and compton effect
The photoelectric effect and compton effectThe photoelectric effect and compton effect
The photoelectric effect and compton effectkrithika8184
 
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics ICHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics IThepsatri Rajabhat University
 

Tendances (20)

B.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-RaysB.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
B.Tech sem I Engineering Physics U-IV Chapter 2-X-Rays
 
Sesión de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y Diodos
Sesión de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y DiodosSesión de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y Diodos
Sesión de Laboratorio 3: Leyes de Kirchhoff, Circuitos RC y Diodos
 
Radioactivity and nuclear transformation
Radioactivity and nuclear transformationRadioactivity and nuclear transformation
Radioactivity and nuclear transformation
 
Wave particle duality
Wave particle dualityWave particle duality
Wave particle duality
 
CM [014] The Phonon
CM [014] The PhononCM [014] The Phonon
CM [014] The Phonon
 
4. Rectifier.pptx
4. Rectifier.pptx4. Rectifier.pptx
4. Rectifier.pptx
 
Quarks
QuarksQuarks
Quarks
 
Active filter
Active filterActive filter
Active filter
 
Basics of Nuclear physics
Basics of Nuclear physicsBasics of Nuclear physics
Basics of Nuclear physics
 
Critical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC CircuitCritical Conduction Mode (CRM) PFC Circuit
Critical Conduction Mode (CRM) PFC Circuit
 
R b lohani thyristor
R b lohani thyristorR b lohani thyristor
R b lohani thyristor
 
Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...Solutions manual for microelectronic circuits analysis and design 3rd edition...
Solutions manual for microelectronic circuits analysis and design 3rd edition...
 
Load line analysis
Load line analysisLoad line analysis
Load line analysis
 
ELECTROSTATICS:Coulomb's law, Electric field & problems
ELECTROSTATICS:Coulomb's law, Electric field & problemsELECTROSTATICS:Coulomb's law, Electric field & problems
ELECTROSTATICS:Coulomb's law, Electric field & problems
 
Capacitance
CapacitanceCapacitance
Capacitance
 
Gamma rays
Gamma raysGamma rays
Gamma rays
 
Circuit Simulation of LTC3105+Solar Cell(SPICE Model) Using LTspice
Circuit Simulation of LTC3105+Solar Cell(SPICE Model) Using LTspiceCircuit Simulation of LTC3105+Solar Cell(SPICE Model) Using LTspice
Circuit Simulation of LTC3105+Solar Cell(SPICE Model) Using LTspice
 
Kittel c. introduction to solid state physics 8 th edition - solution manual
Kittel c.  introduction to solid state physics 8 th edition - solution manualKittel c.  introduction to solid state physics 8 th edition - solution manual
Kittel c. introduction to solid state physics 8 th edition - solution manual
 
The photoelectric effect and compton effect
The photoelectric effect and compton effectThe photoelectric effect and compton effect
The photoelectric effect and compton effect
 
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics ICHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
CHAPTER 5 Wave Properties of Matter and Quantum Mechanics I
 

Similaire à Active Filter Design Using PSpice

Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)aicdesign
 
Introduction to Memory Effects
Introduction to Memory EffectsIntroduction to Memory Effects
Introduction to Memory EffectsSohail Khanifar
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovablesJordi Cusido
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsSimen Li
 
MagneTag Presentation Winter Quarter V3.0
MagneTag Presentation Winter Quarter V3.0MagneTag Presentation Winter Quarter V3.0
MagneTag Presentation Winter Quarter V3.0John-Paul Petersen
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Finalimranbashir
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09imranbashir
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End ArchitectureSHIV DUTT
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxSaiGouthamSunkara
 

Similaire à Active Filter Design Using PSpice (20)

AD8351.pdf
AD8351.pdfAD8351.pdf
AD8351.pdf
 
Lect2 up400 (100329)
Lect2 up400 (100329)Lect2 up400 (100329)
Lect2 up400 (100329)
 
Butterworth filter
Butterworth filterButterworth filter
Butterworth filter
 
Introduction to Memory Effects
Introduction to Memory EffectsIntroduction to Memory Effects
Introduction to Memory Effects
 
Presentació renovables
Presentació renovablesPresentació renovables
Presentació renovables
 
RF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked LoopsRF Module Design - [Chapter 8] Phase-Locked Loops
RF Module Design - [Chapter 8] Phase-Locked Loops
 
Exp passive filter (6)
Exp passive filter (6)Exp passive filter (6)
Exp passive filter (6)
 
MagneTag Presentation Winter Quarter V3.0
MagneTag Presentation Winter Quarter V3.0MagneTag Presentation Winter Quarter V3.0
MagneTag Presentation Winter Quarter V3.0
 
Exp passive filter (9)
Exp passive filter (9)Exp passive filter (9)
Exp passive filter (9)
 
RM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_FinalRM03D-3_DCOBISC_06_07_09_Final
RM03D-3_DCOBISC_06_07_09_Final
 
Exp passive filter (5)
Exp passive filter (5)Exp passive filter (5)
Exp passive filter (5)
 
All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09All Digital Phase Lock Loop 03 12 09
All Digital Phase Lock Loop 03 12 09
 
Analog RF Front End Architecture
Analog RF Front End ArchitectureAnalog RF Front End Architecture
Analog RF Front End Architecture
 
Exp passive filter (3)
Exp passive filter (3)Exp passive filter (3)
Exp passive filter (3)
 
11750882_01.PDF
11750882_01.PDF11750882_01.PDF
11750882_01.PDF
 
Real 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptxReal 2nd order LC PLL loop analysis.pptx
Real 2nd order LC PLL loop analysis.pptx
 
16971168.ppt
16971168.ppt16971168.ppt
16971168.ppt
 
Exp passive filter (4)
Exp passive filter (4)Exp passive filter (4)
Exp passive filter (4)
 
Active filters
Active filtersActive filters
Active filters
 
Exp passive filter (7)
Exp passive filter (7)Exp passive filter (7)
Exp passive filter (7)
 

Plus de Tsuyoshi Horigome

Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Tsuyoshi Horigome
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )Tsuyoshi Horigome
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Tsuyoshi Horigome
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )Tsuyoshi Horigome
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Tsuyoshi Horigome
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )Tsuyoshi Horigome
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Tsuyoshi Horigome
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Tsuyoshi Horigome
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspiceTsuyoshi Horigome
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is ErrorTsuyoshi Horigome
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintTsuyoshi Horigome
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsTsuyoshi Horigome
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hiresTsuyoshi Horigome
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Tsuyoshi Horigome
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Tsuyoshi Horigome
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)Tsuyoshi Horigome
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモTsuyoshi Horigome
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?Tsuyoshi Horigome
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Tsuyoshi Horigome
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)Tsuyoshi Horigome
 

Plus de Tsuyoshi Horigome (20)

Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
Update 22 models(Schottky Rectifier ) in SPICE PARK(APR2024)
 
SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )SPICE PARK APR2024 ( 6,747 SPICE Models )
SPICE PARK APR2024 ( 6,747 SPICE Models )
 
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
Update 31 models(Diode/General ) in SPICE PARK(MAR2024)
 
SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )SPICE PARK MAR2024 ( 6,725 SPICE Models )
SPICE PARK MAR2024 ( 6,725 SPICE Models )
 
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)Update 29 models(Solar cell) in SPICE PARK(FEB2024)
Update 29 models(Solar cell) in SPICE PARK(FEB2024)
 
SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )SPICE PARK FEB2024 ( 6,694 SPICE Models )
SPICE PARK FEB2024 ( 6,694 SPICE Models )
 
Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)Circuit simulation using LTspice(Case study)
Circuit simulation using LTspice(Case study)
 
Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)Mindmap of Semiconductor sales business(15FEB2024)
Mindmap of Semiconductor sales business(15FEB2024)
 
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
2-STAGE COCKCROFT-WALTON [SCHEMATIC] using LTspice
 
PSpice simulation of power supply for TI is Error
PSpice simulation of power supply  for TI is ErrorPSpice simulation of power supply  for TI is Error
PSpice simulation of power supply for TI is Error
 
IGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or RgintIGBT Simulation of Results from Rgext or Rgint
IGBT Simulation of Results from Rgext or Rgint
 
Electronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposalsElectronic component sales method centered on alternative proposals
Electronic component sales method centered on alternative proposals
 
Electronic component sales method focused on new hires
Electronic component sales method focused on new hiresElectronic component sales method focused on new hires
Electronic component sales method focused on new hires
 
Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)Mindmap(electronics parts sales visions)
Mindmap(electronics parts sales visions)
 
Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出Chat GPTによる伝達関数の導出
Chat GPTによる伝達関数の導出
 
伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)伝達関数の理解(Chatgpt)
伝達関数の理解(Chatgpt)
 
DXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモDXセミナー(2024年1月17日開催)のメモ
DXセミナー(2024年1月17日開催)のメモ
 
0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?0Ω抵抗を評価ボードで採用する理由は何ですか?
0Ω抵抗を評価ボードで採用する理由は何ですか?
 
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
Update 40 models(Schottky Rectifier ) in SPICE PARK(JAN2024)
 
SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)SPICE PARK JAN2024 (6,665 SPICE Models)
SPICE PARK JAN2024 (6,665 SPICE Models)
 

Dernier

办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree 毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree ttt fff
 
Design principles on typography in design
Design principles on typography in designDesign principles on typography in design
Design principles on typography in designnooreen17
 
306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social MediaD SSS
 
澳洲UQ学位证,昆士兰大学毕业证书1:1制作
澳洲UQ学位证,昆士兰大学毕业证书1:1制作澳洲UQ学位证,昆士兰大学毕业证书1:1制作
澳洲UQ学位证,昆士兰大学毕业证书1:1制作aecnsnzk
 
How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIyuj
 
General Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptxGeneral Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptxmarckustrevion
 
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...Yantram Animation Studio Corporation
 
Design and Managing Service in the field of tourism and hospitality industry
Design and Managing Service in the field of tourism and hospitality industryDesign and Managing Service in the field of tourism and hospitality industry
Design and Managing Service in the field of tourism and hospitality industryrioverosanniejoy
 
韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作7tz4rjpd
 
Iconic Global Solution - web design, Digital Marketing services
Iconic Global Solution - web design, Digital Marketing servicesIconic Global Solution - web design, Digital Marketing services
Iconic Global Solution - web design, Digital Marketing servicesIconic global solution
 
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改yuu sss
 
FiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfFiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfShivakumar Viswanathan
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一Fi L
 
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证nhjeo1gg
 
西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造kbdhl05e
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdfvaibhavkanaujia
 
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCRdollysharma2066
 

Dernier (20)

办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
 
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree 毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
毕业文凭制作#回国入职#diploma#degree澳洲弗林德斯大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
Design principles on typography in design
Design principles on typography in designDesign principles on typography in design
Design principles on typography in design
 
306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media
 
澳洲UQ学位证,昆士兰大学毕业证书1:1制作
澳洲UQ学位证,昆士兰大学毕业证书1:1制作澳洲UQ学位证,昆士兰大学毕业证书1:1制作
澳洲UQ学位证,昆士兰大学毕业证书1:1制作
 
How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AI
 
General Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptxGeneral Knowledge Quiz Game C++ CODE.pptx
General Knowledge Quiz Game C++ CODE.pptx
 
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...
Unveiling the Future: Columbus, Ohio Condominiums Through the Lens of 3D Arch...
 
Design and Managing Service in the field of tourism and hospitality industry
Design and Managing Service in the field of tourism and hospitality industryDesign and Managing Service in the field of tourism and hospitality industry
Design and Managing Service in the field of tourism and hospitality industry
 
韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作
 
Iconic Global Solution - web design, Digital Marketing services
Iconic Global Solution - web design, Digital Marketing servicesIconic Global Solution - web design, Digital Marketing services
Iconic Global Solution - web design, Digital Marketing services
 
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改
1比1办理美国北卡罗莱纳州立大学毕业证成绩单pdf电子版制作修改
 
FiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdfFiveHypotheses_UIDMasterclass_18April2024.pdf
FiveHypotheses_UIDMasterclass_18April2024.pdf
 
Call Girls in Pratap Nagar, 9953056974 Escort Service
Call Girls in Pratap Nagar,  9953056974 Escort ServiceCall Girls in Pratap Nagar,  9953056974 Escort Service
Call Girls in Pratap Nagar, 9953056974 Escort Service
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
 
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
 
西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdf
 
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
 

Active Filter Design Using PSpice

  • 1. Active Filter Design All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 1 Design Services
  • 2. Contents Slide # 1. Filter Design Category.............................................................................. 2. Active Filter Design Flow-Chart............................................................. 3. Passive Low Pass Filter Design............................................................... 3.1 Specifications : .................................................................................. 3.2 Calculation : ...................................................................................... . 3.3 Verification : ...................................................................................... . 3.4 Optimization : .................................................................................... 3.5 Elements test : ................................................................................... 3 4 5 5 6 7 8-9 10-11 12 2All Rights Reserved Copyright (C) Bee Technologies Corporation 2009
  • 3. 1.Filter Design Category Available Filter Types • Low Pass Filter • High Pass Filter • Band Pass Filter • Band Reject Filter Approximation • Butterworth - No ripple - Smooth roll-off (rate of 20dB/decade for every pole) • Chebyshev - Pass-band ripple specification would be required. - Steeper roll-of Topology • Passive - High frequency range (> 1 MHz) - Source and load impedance specifications would be required • Active - Low frequency range (1 Hz to 1 MHz) - Unity-Gain Sallen-Key configuration (see Figure 1.0) Number of Order • 2nd -10th All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 3 R 1 R 2 C 2 0 C 1 in + - U 1 A M P S I M P o u t Fig.1.0 Unity-Gain Sallen-Key Active Filter (2nd -Order Active LPF)
  • 4. 2.Active Filter Design Flow Chart All Rights Reserved Copyright (C) Bee Technologies Corporation 2010 4 2. Circuit design and calculation2. Circuit design and calculation 3. Verification3. Verification 4. Optimize with standard capacitor value4. Optimize with standard capacitor value 5. Elements test (± 5%)5. Elements test (± 5%) Meet the spec?Meet the spec? No Yes Satisfy?Satisfy? Yes YESYES Result : Filter circuit with all element values Result : Filter circuit with all element values Use 1% CapacitorUse 1% Capacitor 1.Customer’s specification 1.Customer’s specification No
  • 5. Fr equenc y 100Hz 1. 0KHz 10KHz db( v ( out ) ) - 40 - 30 - 20 - 10 0 3.Active Low Pass Filter Design (1/5) 3.1 Specifications : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 5 Figure 2 Low-pass filter response and specification Pass-band Region Stop-band Region Pass-band edge frequency = 1 MHz Pass-band gain = -3 dB Stop-band edge frequency = 2.5 MHz Stop-band gain = -30 dB •Pass-band edge frequency : 1 kHz (fCutoff) - Pass-band gain : -3 dB •Stop-band edge frequency : 2.5 kHz - Stop-band gain : -30 dB •Load and Source Condition : - Source Type : Voltage - Filter Load Impedance : 50 Ω - Resistance in the filter : 5 kΩ STEP1.Customer’s specification STEP1.Customer’s specification
  • 6. R 1 5 k R 2 5 k R 5 5 0 0 C 1 2 9 . 4 2 n F 0 C 2 3 4 . 4 4 n F R 3 5 k R 4 5 k C 3 1 2 . 1 8 n F 0 C 4 8 3 . 1 7 n F + - U 2 A M P S I M P o u tV s o u r c e 0 in + - U 1 A M P S I M P 3. Active Low Pass Filter Design (2/5) 3.2 Calculation : All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 6 Figure 3.1 Low-pass filter circuit with calculated element-values (Butterworth approximation). Figure 3.2 Low-pass filter circuit with calculated element-values (Chebyshev approximation). •R1 = R2 = R3 = R4 = 5kΩ •C1 = 29.42nF •C2 = 34.44nF •C3 = 83.17nF •C4 = 12.18nF STEP2. Circuit design and calculation STEP2. Circuit design and calculation •R1 = R2 = R3 = R4 = 5kΩ •C1 = 47nF •C2 = 82nF •C3 = 5.1nF •C4 = 220nF R 1 5 k R 2 5 k R 5 5 0 0 C 1 4 7 n F 0 C 2 8 2 n F R 3 5 k R 4 5 k 0 C 3 5 . 1 n F C 4 2 2 0 n F + - U 3 A M P S I M P o u t 2 + - U 4 A M P S I M P
  • 7. Fr equenc y 100Hz 1. 0KHz 10KHz db( v ( out ) ) db ( v ( out 2) ) - 60 - 40 - 20 - 0 3. Active Low Pass Filter Design (3/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 7 Figure 4 Response and specification of the calculated circuits. Butterworth (1MHz,-3.013dB) Chebyshev : (1MHz,-2.818dB) (2.5MHz,-44dB) (2.5MHz,-31.858dB) 3.3 Verification : • Frequency Response Simulation Pass-band Ripple (-1.23dB) •Pass-band edge frequencies : 1 MHz •Pass-band gains : -3 dB  •Stop-band edge frequencies : 2.5 MHz •Stop-band gains : < -30 dB  •Butterworth Approximation - No ripple  - Roll-off rate is 80dB/decade  •Chebyshev Approximation - Pass-band ripple : -1.23dB  - Steeper roll-of  — Butterworth Approximation — Butterworth Approximation STEP3. Verification STEP3. Verification
  • 8. 3.4 Optimization : - Use standard capacitor values (E-24 Capacitor Values) - Optimize inductor values R 1 5 k R 2 5 k R 5 5 0 0 C 1 3 0 n F 0 C 2 3 3 n F R 3 5 k R 4 5 k C 3 1 2 n F 0 C 4 8 2 n F + - U 2 A M P S I M P o u tV s o u r c e 0 in + - U 1 A M P S I M P 3.Passive Low Pass Filter Design (4/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 8 Figure 5.1 Low-pass filter circuit with optimized element-values (Butterworth approximation). Figure 5.2 Low-pass filter circuit with calculated element-values (Chebyshev approximation). STEP4. Optimize with standard capacitor value (then verify) STEP4. Optimize with standard capacitor value (then verify) •R1 = R2 = R3 = R4 = 5kΩ •C1 = 47nF •C2 = 82nF •C3 = 5.1nF •C4 = 220nF R 1 5 k R 2 5 k R 5 5 0 0 C 1 4 7 n F 0 C 2 8 2 n F R 3 5 k R 4 5 k 0 C 3 5 . 1 n F C 4 2 2 0 n F + - U 3 A M P S I M P o u t 2 + - U 4 A M P S I M P •R1 = R2 = R3 = R4 = 5kΩ •C1 = 30nF •C2 = 33nF •C3 = 12nF •C4 = 82nF
  • 9. Fr equenc y 100Hz 1. 0KHz 10KHz db( v ( out ) ) db ( v ( out 2) ) - 60 - 40 - 20 - 0 3.Passive Low Pass Filter Design (4/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 9 Figure 6 Response and specification of the optimized circuits. 3.4 Optimization : • Frequency Response Simulation •Pass-band edge frequencies : 1 MHz •Pass-band gains : -3 dB  •Stop-band edge frequencies : 2.5 MHz •Stop-band gains : < -30 dB  •Butterworth Approximation - No ripple  - Roll-off rate is 80dB/decade  •Chebyshev Approximation - Pass-band ripple : -1.23dB  - Steeper roll-of  Butterworth (1MHz,-3.06dB) Chebyshev : (1MHz,-2.818dB) (2.5MHz,-44dB) (2.5MHz,-31.521dB) Pass-band Ripple (-1.23dB) — Butterworth Approximation — Butterworth Approximation
  • 10. 3.5 Elements test : - ± 5% test for each capacitor value. R 1 5 k R 2 5 k R 5 5 0 0 C 1 4 7 n F 0 C 2 8 2 n F R 3 5 k R 4 5 k 0 C 3 5 . 1 n F C 4 2 2 0 n F + - U 3 A M P S I M P o u t 2 + - U 4 A M P S I M P R 1 5 k R 2 5 k R 5 5 0 0 C 1 3 0 n F 0 C 2 3 3 n F R 3 5 k R 4 5 k C 3 1 2 n F 0 C 4 8 2 n F + - U 2 A M P S I M P o u tV s o u r c e 0 in + - U 1 A M P S I M P 3. Active Low Pass Filter Design (5/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 10 Figure 7.1 Low-pass filter circuit with ± 5% of the capacitance-values (Butterworth approximation). Figure 7.1 Low-pass filter circuit with ± 5% of the capacitance-values (Chebyshev approximation). STEP5. Elements test (± 5%) STEP5. Elements test (± 5%) •R1 = R2 = R3 = R4 = 5kΩ •C1 = 47nF (± 5%) •C2 = 82nF (± 5%) •C3 = 5.1nF (± 5%) •C4 = 220nF (± 5%) •R1 = R2 = R3 = R4 = 5kΩ •C1 = 30nF (± 5%) •C2 = 33nF (± 5%) •C3 = 12nF (± 5%) •C4 = 82nF (± 5%)
  • 11. Fr eque nc y 1 00Hz 1. 0KHz 1 0KHz db( v ( o ut 2 ) ) - 6 0 - 4 0 - 2 0 - 0 Fr eq ue nc y 1 00 Hz 1. 0KHz 10 KHz db ( v ( ou t ) ) - 60 - 40 - 20 - 0 3.Passive Low Pass Filter Design (5/5) All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 11 Figure 8 Response and specification when the element values are error with ±5%. 3.5 Elements test : • Frequency Response Simulation, compare to -5% and +5% of all element values. Butterworth — +5% — standard values — -5% Pass-band gain (-3 dB) Cutoff frequency : 0.9486M, 1M, 1.0485M Chebyshev — +5% — standard values — -5% Cutoff frequency : 0.9564M, 1M, 1.0567M Pass-band gain (-3 dB)
  • 12. R 1 5 k R 2 5 k R 5 5 0 0 C 1 4 7 n F 0 C 2 8 2 n F R 3 5 k R 4 5 k 0 C 3 5 . 1 n F C 4 2 2 0 n F + - U 3 A M P S I M P o u t 2 + - U 4 A M P S I M P R 1 5 k R 2 5 k R 5 5 0 0 C 1 3 0 n F 0 C 2 3 3 n F R 3 5 k R 4 5 k C 3 1 2 n F 0 C 4 8 2 n F + - U 2 A M P S I M P o u tV s o u r c e 0 in + - U 1 A M P S I M P •R1 = R2 = R3 = R4 = 5kΩ •C1 = 47nF (± 5%) •C2 = 82nF (± 5%) •C3 = 5.1nF (± 5%) •C4 = 220nF (± 5%) •R1 = R2 = R3 = R4 = 5kΩ •C1 = 30nF (± 5%) •C2 = 33nF (± 5%) •C3 = 12nF (± 5%) •C4 = 82nF (± 5%) 3.Passive Low Pass Filter Design 3.6 Result : • Low-pass filter circuit with all element values. All Rights Reserved Copyright (C) Bee Technologies Corporation 2009 12 Figure 8.1 Low-pass filter circuit with all element-values (Butterworth approximation). Figure 8.1 Low-pass filter circuit all element-values (Chebyshev approximation). ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% ± 5% Result : Filter circuit with all element values Result : Filter circuit with all element values ± 5%