Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.

HiPEAC 2019 Workshop - Hardware Starter Kit Agri

55 vues

Publié le

TULIPP's workshop presentation about the Hardware Starter kit "Agri"

Publié dans : Périphériques & matériel
  • Login to see the comments

  • Soyez le premier à aimer ceci

HiPEAC 2019 Workshop - Hardware Starter Kit Agri

  1. 1. TULIPP - Energy Efficient Embedded Image Processing: Architectures, Tools and Operating Systems Sundance Multiprocessor Technology, Ltd. Pedro Machado pedro.m@sundance.com Flemming Christensen Flemming.c@sundance.com
  2. 2. Overview • Overview • Hardware Features • Sensors compatibility • Software compatibility • Deep Learning • Example of an application • Open software and firmware • Discussion
  3. 3. This project has received funding from the European Union’s Horizon 20 20 research and innovation programme under grant agreement No 688403 Zynq® UltraScale+™ MPSoC devices provide 64-bit Arm A53 processor scalability while combining real-time control with soft and hard engines for graphics, video, waveform, and packet processing. The target device is the XCZU4EV. Overview
  4. 4. Hardware Features TSK-Agri features: • 15x Digital I/Os [DB9] • 12x Analogue Inputs [DB9] • 8x Analogue Outputs [DB9] • 1x Expansion [SEIC] • 4x USB3.0 [USB-c] • 28x GPIO [40-pin GPIO]
  5. 5. The TSK-Agri is compatible with a wide range of sensors. Depth sensor (up to 20m). Interface USB3.0 Thermal imaging Interface: Eth Movidius Neural Compute Stick Interface: USB3.0 Sensors compatibility
  6. 6. Compatibility TSK-Agri compatibility: • Raspberry PI and Arduino compatible; • Compatible with most of the Arduino/RPI sensors and actuators; • 4x USB3.0 ports for interfacing with a wide range of sensors; • MQTT and OpenCV compatible • ROS compatible • ROS2 ready • HIPPEROS ready
  7. 7. The TSK-Agri will be fully compatible with the Xilinx xfOpenCV. • Includes support for the most popular neural networks including AlexNet, GoogleNet, VGG, SSD, and FCN. • Optimized implementations for CNN network layers, required to build custom neural networks (DNN/CNN) Xilinx reVISION stack Deep learning
  8. 8. Open source software and firmware Open Source hardware/software and online documentation: • Open Hardware Repository https://www.ohwr.org/projects/emc2-dp • Microsoft Windows/Linux 64-bit SDK https://github.com/SundanceMultiprocessorTechnology/VCS-1_FM191_Windows_SDK • FM191 ARM SDK https://github.com/SundanceMultiprocessorTechnology/VCS-1_FM191_SDK • FM191 Firmware https://github.com/SundanceMultiprocessorTechnology/VCS-1_FM191_FW • EMC2 ROS https://github.com/SundanceMultiprocessorTechnology/VCS-1_emc2_ros
  9. 9. A custom enclosure was specially designed for accommodating the TSK-Agri. Enclosure
  10. 10. Example of an application
  11. 11. Discussion The TSK-Agri has the following characteristics: 1. Low power consumption (24V@1.1A) 2. High performance 3. Highly compatible with a wide range of commercially available sensors and actuators 4. Highly optimised for computer vision applications 5. Fully reconfigurable
  12. 12. Questions? Sundance Multiprocessor Technology, Ltd. Pedro Machado pedro.m@sundance.com Flemming Christensen flemming.c@sundance.com

×