Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
Actividad 2. Números Complejos.
G. Edgar Mata Ortiz
Números naturales, enteros,
racionales, irracionales, reales y
complej...
Los Números Complejos
http://licmata-math.blogspot.mx/ 2
Los números han acompañado al ser humano desde su aparición sobre...
Los Números Complejos
http://licmata-math.blogspot.mx/ 3
Introducción.
La numeración que actualmente empleamos recibe el n...
Los Números Complejos
http://licmata-math.blogspot.mx/ 4
Otros sistemas de numeración no posicionales.
Realiza una investi...
Los Números Complejos
http://licmata-math.blogspot.mx/ 5
Los números racionales.
Los números racionales incluyen a los ent...
Los Números Complejos
http://licmata-math.blogspot.mx/ 6
Los números complejos.
En forma similar a la forma en que se han ...
Los Números Complejos
http://licmata-math.blogspot.mx/ 7
Operaciones con números complejos.
Las operaciones aritméticas co...
Los Números Complejos
http://licmata-math.blogspot.mx/ 8
Suma y resta de números complejos.
Las sumas, restas y cualquier ...
Los Números Complejos
http://licmata-math.blogspot.mx/ 9
En ocasiones es necesario, antes de efectuar operaciones, obtener...
Los Números Complejos
http://licmata-math.blogspot.mx/ 10
Aplicaciones de los números complejos.
Los números complejos apa...
Prochain SlideShare
Chargement dans…5
×

Actividad 2 Números Complejos

1 009 vues

Publié le

Homework

Publié dans : Formation
  • Soyez le premier à commenter

Actividad 2 Números Complejos

  1. 1. Actividad 2. Números Complejos. G. Edgar Mata Ortiz Números naturales, enteros, racionales, irracionales, reales y complejos.
  2. 2. Los Números Complejos http://licmata-math.blogspot.mx/ 2 Los números han acompañado al ser humano desde su aparición sobre la tierra. En un primer momento solamente para contar. Posteriormente fue necesario efectuar operaciones aritméticas y, al preguntarse cómo y porqué se podían efectuar dichas operaciones, se produce conocimiento matemático. En el presente material se hará un rápido recorrido por los diferentes tipos de números que ha empleado el ser humano hasta llegar a los números complejos. Contenido Introducción............................................................................................................................................................................................................................. 3 Importancia del cero. ......................................................................................................................................................................................................... 3 Sistemas de numeración no posicionales. ............................................................................................................................................................................... 3 Otros sistemas de numeración no posicionales. ................................................................................................................................................................ 4 Sistemas de numeración posicional......................................................................................................................................................................................... 4 Los números naturales. ...................................................................................................................................................................................................... 4 Propiedades de los números naturales......................................................................................................................................................................... 4 La resta en los números naturales. ............................................................................................................................................................................... 4 Los números enteros.......................................................................................................................................................................................................... 4 Propiedades de los números enteros............................................................................................................................................................................ 4 La división en los números naturales y números enteros. ............................................................................................................................................ 4 Los números racionales...................................................................................................................................................................................................... 5 Propiedades de los números racionales........................................................................................................................................................................ 5 La raíz cuadrada de un número racional. ...................................................................................................................................................................... 5 Los números reales............................................................................................................................................................................................................. 5 Propiedades de los números reales. ............................................................................................................................................................................. 5 La raíz cuadrada de un número real.............................................................................................................................................................................. 5 Los números complejos...................................................................................................................................................................................................... 6 Los números imaginarios. ............................................................................................................................................................................................. 6 Propiedades de los números imaginarios. .................................................................................................................................................................... 6 Concepto de números complejos.................................................................................................................................................................................. 6 Operaciones con números complejos. ............................................................................................................................................................................... 7 Multiplicaciones y potencias del número i.................................................................................................................................................................... 7 Suma y resta de números complejos. ........................................................................................................................................................................... 8 Multiplicación de números complejos. ......................................................................................................................................................................... 8 División de números complejos. ................................................................................................................................................................................... 9 Aplicaciones de los números complejos...................................................................................................................................................................... 10
  3. 3. Los Números Complejos http://licmata-math.blogspot.mx/ 3 Introducción. La numeración que actualmente empleamos recibe el nombre de numeración indo-arábiga debido a su origen. Con base en la información que se muestra a la izquierda acerca del origen de este sistema de numeración escribe un ensayo de 600 palabras acerca del tema. Importancia del cero. Para que pudieran existir los sistemas de numeración posicional, el uso del cero fue fundamental, explica por qué: ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ ___________________________________________________________ Sistemas de numeración no posicionales. No todos los sistemas de numeración empleados por el ser humano han sido posicionales, un ejemplo conocido es la numeración romana. Entre muchas otras desventajas, este sistema de numeración dificulta la realización de operaciones aritméticas, sin embargo, es posible resolver sumas y restas. Anota, en el siguiente espacio, tres ejemplos de suma y tres de resta con números romanos. El origen de los números. Existen varias explicaciones y teorías acerca del origen del sistema de numeración que empleamos actualmente. Es generalmente aceptado que la numeración indo- arábiga fue desarrollada en la India y difundida por los árabes en occidente. Simultáneamente, otras culturas elaboraron sus propios sistemas de numeración y los emplearon durante siglos; finalmente, las indudables ventajas del sistema de numeración posicional base 10 hicieron que, poco a poco, se convirtiera en el único sistema de numeración empleado por los seres humanos. Las computadoras emplean un sistema de numeración posicional, pero de base dos, es decir, solamente existen dos dígitos (0, 1) y, de acuerdo a la posición que ocupan, toman diferentes valores: 1, 2, 4, 8, 16, etc. El cero es el unico real que no puede expresarse como divisor, ya que da como como resultado un valor no real. En el sistema logico actual, el sistema binario en el que se basan todos los sistemas digitales, el cero es uno de los dos estados posibles. VI + IV = X XII + VII = XIX X + XV = XXV IX - III= VI XXI - VII = XIV III - I = II
  4. 4. Los Números Complejos http://licmata-math.blogspot.mx/ 4 Otros sistemas de numeración no posicionales. Realiza una investigación y explica otros dos sistemas de numeración no posicional. Elabora un reporte de 400 palabras en el que expliques los símbolos empleados en esos sistemas de numeración, su origen histórico y, en caso de que sea posible, algunas operaciones aritméticas. Sistemas de numeración posicional. Los sistemas de numeración posicional presentan grandes ventajas sobre los no posicionales, especialmente la facilidad para efectuar operaciones aritméticas. Un ejemplo ampliamente conocido es el de la numeración maya, que utiliza el cero y es posicional. Los números naturales. Se les llama así al conjunto: N = {1, 2, 3,…} El cero es un caso aparte. En muchos libros se le considera un número natural y en otros no, por ello, para evitar confusiones, si estamos considerando que el cero forme parte de un conjunto de números se emplea la expresión: “Enteros no negativos”, y si no deseamos incluir al cero: “Enteros positivos”. Propiedades de los números naturales. Los números naturales presentan diversas propiedades que hacen referencia a las operaciones aritméticas que se realizan con ellos. Realiza una investigación y elabora un reporte de 200 palabras acerca de dichas propiedades. La resta en los números naturales. Cuando efectuamos cualquier suma de números naturales el resultado es otro número natural, sin embargo, al efectuar una sustracción de dos números naturales, no siempre se obtiene como resultado otro número natural: 3 – 5 = – 2. Es obvio que el – 2 no es un número natural. Cuando esto sucede, se amplía el conjunto de los números naturales para que incluya al cero y a los números negativos. Se obtiene así un nuevo conjunto de números: Los números enteros. Se les llama así al conjunto: Z = {…, -3, -2, -1, 0, 1, 2, 3,…} Este conjunto de números incluye los naturales, el cero, y los enteros negativos. Propiedades de los números enteros. Los números enteros presentan diversas propiedades que hacen referencia a las operaciones aritméticas que se realizan con ellos. Realiza una investigación y elabora un reporte de 200 palabras acerca de la diferencia entre las propiedades de los números enteros y los naturales. La división en los números naturales y números enteros. Cuando efectuamos cualquier suma o multiplicación de números naturales o enteros el resultado es otro número natural o entero, sin embargo, al efectuar una división de dos números naturales o enteros, no siempre se obtiene como resultado otro número natural o entero: 𝟑 ÷ 𝟓 = 𝟎. 𝟔 Es evidente que 0.6 no es un número natural ni entero. Nuevamente se amplía el conjunto de los números enteros para que incluya resultados fraccionarios. A este conjunto de números se le llama:
  5. 5. Los Números Complejos http://licmata-math.blogspot.mx/ 5 Los números racionales. Los números racionales incluyen a los enteros y a cualquier número que pueda expresarse como una fracción. A diferencia de los números naturales y enteros, no existe el consecutivo de un número racional ya que entre un racional y otro, existen infinidad de números racionales. En este conjunto de números se incluyen racionales positivos y negativos Propiedades de los números racionales. Los números racionales, al ser una ampliación de los números enteros, presentan algunas propiedades similares a aquellos y otras diferentes. Realiza una investigación y elabora un reporte de 200 palabras acerca de la diferencia entre las propiedades de los números enteros y los racionales. La raíz cuadrada de un número racional. Tal como ha ocurrido con otros conjuntos de números, al efectuar alguna operación aritmética, el resultado no pertenece al conjunto de números en estudio, por lo que se hace necesario ampliar ese conjunto y formar así, un nuevo conjunto. En este caso, la operación aritmética es la raíz cuadrada. Al obtener a raíz cuadrada de diversos números racionales el resultado es otro número racional, sin embargo, existen números racionales cuya raíz es un número irracional, por ejemplo: √2 ó √3 En esta ocasión no resulta tan evidente como en los ejemplos anteriores, por ello realiza una consulta acerca de los números irracionales y elabora un reporte de 200 palabras acerca de las propiedades de dichos números. Se obtiene así el conjunto de: Los números reales. Este conjunto de números contiene a los racionales y a los irracionales. Pueden expresarse como números enteros, decimales o fracciones comunes. La representación más común de los números reales es la recta numérica. Propiedades de los números reales. Los números reales también tienen sus propiedades. Realiza una investigación y elabora un reporte de 200 palabras acerca de la diferencia entre las propiedades de los números reales y los racionales. La raíz cuadrada de un número real. Al extraer raíz cuadrada de un número real, a veces se obtiene un número real, pero no siempre. Específicamente la raíz cuadrada de un número negativo no es un número real: √−𝟏 =? Para poder resolver situaciones como esta, se amplía nuevamente el conjunto de los números reales.
  6. 6. Los Números Complejos http://licmata-math.blogspot.mx/ 6 Los números complejos. En forma similar a la forma en que se han resuelto las situaciones anteriores vamos a agregar elementos al conjunto de los números reales para obtener los números complejos. Los nuevos elementos del conjunto son: Los números imaginarios. Por lo que hemos aprendido hasta ahora, no es posible obtener la raíz cuadrada de un número negativo, debido a que no existe ningún número real que, elevado al cuadrado, produzca un resultado negativo, es decir, cualquier número real; positivo o negativo, al elevarlo al cuadrado, da como resultado un número positivo. Para poder extraer la raíz cuadrada a un número negativo necesitamos un número que, al elevarlo al cuadrado, produzca un resultado negativo, entonces se define el número i como la raíz cuadrada de meno uno. 𝑖 = √−1 Ahora sí, existe un número, llamado i, que al elevarse al cuadrado da como resultado un número negativo: -1. 𝑖 = √−1 → 𝑖2 = (√−1) 2 → 𝒊 𝟐 = −𝟏 Este procedimiento de ampliar conjuntos de números parece un tanto artificial, tal vez lo es, pero tiene la ventaja de que hemos “inventado” un número (i) que tiene propiedades sumamente útiles; especialmente la obtención de la raíz cuadrada de números negativos. Por ejemplo: √−4 = √(4)(−1) = √4√−1 = 2𝑖 Es posible que, para muchas personas, la idea de obtener la raíz cuadrada de un número negativo suene absurda, sin sentido, y sin ninguna aplicación útil. No debemos olvidar que, durante mucho tiempo se opinó lo mismo de los números negativos e irracionales, e incluso del cero. Son un concepto matemático que ha probado ser útil en diversas ramas de la ciencia y la tecnología, especialmente en electricidad y magnetismo. Naturalmente la incorporación de este número, ocasiona que algunas propiedades de los números reales no se puedan aplicar y, en cambio, aparezcan otras propiedades que los números reales no tenían. Propiedades de los números imaginarios. Al igual que otros conjuntos de números, los imaginarios tienen sus propiedades. Realiza una investigación y elabora un reporte de 200 palabras acerca de las propiedades de los números imaginarios. Concepto de números complejos. A partir de la existencia del número i, podemos construir los números complejos que constan de dos partes; un número real y un número imaginario. Generalmente se representan escribiendo primero la parte real y luego la imaginaria: a + bi. Dado que cualquiera de los dos elementos del número complejo puede ser cero, todos los números reales se consideran complejos con parte imaginaria igual a cero, y los imaginarios se consideran complejos con parte real igual a cero: 5 = 5 + 0i, 2i = 0 + 2i.
  7. 7. Los Números Complejos http://licmata-math.blogspot.mx/ 7 Operaciones con números complejos. Las operaciones aritméticas con números naturales, enteros, racionales, irracionales y reales se estudian durante toda la educación básica. Debido a la incorporación del número i, las operaciones con números complejos presentan algunas diferencias que es necesario estudiar. Multiplicaciones y potencias del número i. Al elevar a una potencia el número i, debemos tener en cuenta que las propiedades que se aplican a los números reales no funcionan con los números complejos. Un error ocasionado por la aplicación de propiedades de los números reales a números imaginarios es: 𝑖 = √−1 → 𝑖2 = (√−1) 2 → 𝑖2 = √(−1)2 𝑖2 = √(−1)2 → 𝑖2 = √1 → 𝒊 𝟐 = 𝟏 La forma correcta de elevar el número i a una potencia o multiplicarlo es la siguiente: 𝒊 = √−𝟏 𝑖2 = (√−1) 2 → 𝒊 𝟐 = −𝟏 𝑖3 = 𝑖2 ∙ 𝑖 → 𝒊 𝟑 = (−𝟏) ∙ 𝒊 → 𝒊 𝟑 = −𝒊 𝑖4 = 𝑖2 ∙ 𝑖2 → 𝒊 𝟒 = (−𝟏) ∙ (−𝟏) → 𝒊 𝟒 = 𝟏 𝑖5 = 𝑖4 ∙ 𝑖 → 𝒊 𝟓 = ( 𝟏) ∙ 𝒊 → 𝒊 𝟓 = 𝒊 𝑖6 = 𝑖4 ∙ 𝑖2 → 𝒊 𝟔 = ( 𝟏) ∙ (−𝟏) → 𝒊 𝟔 = −𝟏 𝑖7 = 𝑖4 ∙ 𝑖3 → 𝒊 𝟕 = ( 𝟏) ∙ (−𝒊) → 𝒊 𝟕 = −𝒊 𝑖8 = 𝑖4 ∙ 𝑖4 → 𝒊 𝟖 = ( 𝟏) ∙ ( 𝟏) → 𝒊 𝟖 = 𝟏 Es evidente que existe una regla empírica que nos permite simplificar los cálculos, anótala en seguida: __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ Cuando se eleva número par es positivo, por el contrario cuando es impar este tiende a ser negativo.
  8. 8. Los Números Complejos http://licmata-math.blogspot.mx/ 8 Suma y resta de números complejos. Las sumas, restas y cualquier combinación de ellas, pueden resolverse aplicando las reglas algebraicas de reducción de términos semejantes: se suman y restan por separado las partes real e imaginaria. Ejemplos: 1. (2 + 3𝑖) + (5 − 4𝑖) = 2 + 3𝑖 + 5 − 4𝑖 = (2 + 5) + (3 − 4)𝑖 = 7 − 1𝑖 = 𝟕 − 𝒊 2. (6 − 9𝑖) − (7 − 4𝑖) = 6 − 9𝑖 − 7 + 4𝑖 = (6 − 7) + (−9 + 4)𝑖 = −𝟏 − 𝟓𝒊 Ejercicio: Resuelve las siguientes operaciones: 1. (6 + 5𝑖) + (3 − 9𝑖) = 2. (−8 + 2𝑖) − (−5 − 4𝑖) = 3. (−1 + 8𝑖) − (−7 − 3𝑖) = 4. (−2 − 4𝑖) + (−6 + 7𝑖) = 5. (−5 − 6𝑖) + (3 + 9𝑖) − (−7 + 2𝑖) = Multiplicación de números complejos. Para efectuar multiplicaciones se trata como cualquier multiplicación algebraica, con la consideración de que al elevar el número i, a alguna potencia, debemos tomar en cuenta que se puede simplificar. Ejemplos: El resultado se simplifica utilizando la equivalencia de i2. 10 + 7𝑖 − 12𝑖2 = 10 + 7𝑖 − 12(−1) = 10 + 7𝑖 + 12 = 𝟐𝟐 + 𝟕𝒊 Ejercicio: Resuelve las siguientes multiplicaciones. 1. (3 + 4𝑖)(2 − 7𝑖) = 2. (−5 + 2𝑖)(−6 − 2𝑖) = 3. (−1 + 9𝑖)(−4 − 3𝑖) = 4. (−7 − 𝑖)(−8 + 2𝑖) = 5. (−3 − 2𝑖)(5 + 3𝑖)(−6 + 7𝑖) = 6 - 21i + 8i - 28i2 = 6 - 13i - 28(-1) = 34 -13i 30 + 10i - 12i - 4i2 = 34 -2i 4 + 3i - 36i - 18i2 = 22 -33i 56 - 14i + 8i - 2i2 = 58 - 6i -9 - 19i = (-9 - 19i)(-6 +7i)= 54 - 63i + 114i - 133i2 = 187 + 51i 9 - 4i -3 + 6i 6 + 11i -8 + 3i 5 - i
  9. 9. Los Números Complejos http://licmata-math.blogspot.mx/ 9 En ocasiones es necesario, antes de efectuar operaciones, obtener el número complejo debido a la presencia de raíces cuadradas de números negativos. Ejercicio: Resuelve las siguientes multiplicaciones. 1. (5 + √−9)(3 − √−4) = 2. (−1 + √−16)(−4 − √−36) = 3. (−1 + √−121)(−1 − √−121) = 4. (−2 − √−1)(−2 + √−1) = 5. (−4 − √−49)(−4 + √−49)(−3 + √−25) = Observa los ejercicios 3 y 4. Se trata de números complejos conjugados, es decir, solamente difieren en el signo. Explica lo que sucede al multiplicar números complejos conjugados: __________________________________________________________________________________________ __________________________________________________________________________________________ __________________________________________________________________________________________ División de números complejos. La multiplicación de números complejos conjugados es importante porque se emplea en la división de números complejos. Para dividir dos números complejos se multiplica el dividendo y el divisor por el conjugado del divisor como se muestra en el siguiente ejemplo (Completa las operaciones faltantes): Dividir 2 + 2𝑖 entre 2 − 2𝑖: 2+2𝑖 2−2𝑖 = (2+2𝑖)×(2+2𝑖) (2−2𝑖)×(2+2𝑖) = = Ejercicio: Efectúa las siguientes operaciones. 1. (4 + 3𝑖) ÷ (2 − 3𝑖) = 2. (−1 + 2𝑖) ÷ (−1 − 2𝑖) = 3. (−1 + 9𝑖) ÷ (1 − 3𝑖) = 4. (−4 − 𝑖) ÷ (−8 + 2𝑖) = 5. [(−3 − 2𝑖) × (5 + 3𝑖)] ÷ (−6 + 7𝑖) = 6. [(−3 − 2𝑖) ÷ (5 + 3𝑖)] × (−6 + 7𝑖) = 7. [(−1 − 2𝑖) × (1 + 3𝑖)] ÷ [(−3 + 2𝑖)(2 − 3𝑖)] 8. [(2 − 𝑖) × (1 − 2𝑖)] ÷ [(−2 + 2𝑖)(2 − 𝑖)] 0.07 - 1.38i -0.6 - 0.8i -2.6 + 0.6i 0.44 + 0.23i -0.92 + 2.08i 3.86 - 4.04i 4.1 - 0.6i 0.46 - 1.5i 8 + i 28 + 10i 23 - i 3 - 2i -50 + 80i Se obtiene mediante el resultado al hacer la multiplicación de los números complejos conjugando un numero real. 4 + 8i - 4i2 4 + 4i - 4i - 4i2 8 + 8i _____ 8
  10. 10. Los Números Complejos http://licmata-math.blogspot.mx/ 10 Aplicaciones de los números complejos. Los números complejos aparecieron desde muy temprano en la historia de la matemática, pero fueron ignorados debido a que no tenían sentido ni se podían representar. Una de las primeras referencias de que se tiene noticia es la de Herón de Alejandría. Es hasta el siglo XVI cuando los matemáticos italianos investigaron y emplearon estos números en la resolución de ecuaciones de segundo y tercer grado: 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0 Son particularmente reconocidos los trabajos de Cardano, Tartaglia, Descartes y sobre todo Euler quien introdujo el símbolo i llamándolos números imaginarios. Las principales aplicaciones de los números complejos se encuentran en la electricidad y magnetismo, sin embargo, un área relativamente nueva y muy interesante es la de los fractales. Realiza una investigación y elabora un reporte de 600 palabras acerca de los fractales. Ejemplos de fractales: Fractal de Mandelbrot. Triángulo de Sierpinski. El atractor de Lorentz. Lecturas complementarias recomendadas.

×