Publicité
Publicité

Contenu connexe

Publicité

PRESENTACION DE MATEMATICAS

  1. ESTUDIANTE : Vicheria Víctor Sección : 113 Grupo : A PRESENTACION MATEMATICAS
  2. ¿Qué es un conjunto? Un conjunto es la agrupación de diferentes elementos que comparten entre sí características y propiedades semejantes. Estos elementos pueden ser sujetos u objetos, tales como números, canciones, meses, personas, etc. Por ejemplo: el conjunto de números primos o el conjunto de planetas del sistema solar. A su vez, un conjunto puede convertirse también en un elemento. Por ejemplo: en el caso de un ramo de flores, en principio una flor sería el primer elemento, pero al conjunto de flores se lo puede considerar luego como un ramo de flores, convirtiéndose así, en un nuevo elemento. Para graficar un conjunto se utilizan corchetes para delimitar los elementos que lo conforman, que se separan entre sí mediante comas. Por ejemplo: Se define a “S” como el conjunto de los días de la semana, por lo tanto, S= [lunes, martes, miércoles, jueves, viernes, sábado, domingo
  3. Operaciones con conjuntos. Las operaciones con conjuntos también conocidas como álgebra de conjuntos, nos permiten realizar operaciones sobre los conjuntos para obtener otro conjunto. De las operaciones con conjuntos veremos las siguientes unión, intersección, diferencia, diferencia simétrica y complemento. ‒ Unión o reunión de conjuntos. Es la operación que nos permite unir dos o más conjuntos para formar otro conjunto que contendrá a todos los elementos que queremos unir pero sin que se repitan. Es decir dado un conjunto A y un conjunto B, la unión de los conjuntos A y B será otro conjunto formado por todos los elementos de A, con todos los elementos de B sin repetir ningún elemento. El símbolo que se usa para indicar la operación de unión es el siguiente: ∪. Cuando usamos diagramas de Ven, para representar la unión de conjuntos, se sombrean los conjuntos que se unen o se forma uno nuevo. Luego se escribe por fuera la operación de unión.
  4. Ejemplo: Dados dos conjuntos A={1,2,3,4,5,6,7,} y B={8,9,10,11} la unión de estos conjuntos será A∪B={1,2,3,4,5,6,7,8,9,10,11}. Usando diagramas de Venn se tendría lo siguiente:
  5. Tambiénse puede graficar del siguientemodo:
  6. Intersección de conjuntos. Es la operación que nos permite formar un conjunto, sólo con los elementos comunes involucrados en la operación. Es decir dados dos conjuntos A y B, la de intersección de los conjuntos A y B, estará formado por los elementos de A y los elementos de B que sean comunes, los elementos no comunes A y B, será excluidos. El símbolo que se usa para indicar la operación de intersección es el siguiente.
  7. Ejemplo de Intersección de Conjuntos Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la intersección de estos conjuntos será A∩B={4,5}. Usando diagramas de Venn se tendría lo siguiente:
  8. Diferencia de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que pertenecen al primero pero no al segundo. Es decir dados dos conjuntos A y B, la diferencia de los conjuntos entra A y B, estará formado por todos los elementos de A que no pertenezcan a B. El símbolo que se usa para esta operación es el mismo que se usa para la resta o sustracción, que es el siguiente: -. Ejemplo: Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia de estos conjuntos será A- B={1,2,3}. Usando diagramas de Venn se tendría lo siguiente;
  9. Diferencia de simetrica de conjuntos. Es la operación que nos permite formar un conjunto, en donde de dos conjuntos el conjunto resultante es el que tendrá todos los elementos que no sean comunes a ambos conjuntos. Es decir dados dos conjuntos A y B, la diferencia simétrica estará formado por todos los elementos no comunes a los conjuntos A y B. El símbolo que se usa para indicar la operación de diferencia simétrica es el siguiente: △. Ejemplo: Dados dos conjuntos A={1,2,3,4,5} y B={4,5,6,7,8,9} la diferencia simétrica de estos conjuntos será A △ B={1,2,3,6,7,8,9}. Usando diagramas de Venn se tendría lo siguiente:
  10. Complemento de un conjunto. Es la operación que nos permite formar un conjunto con todos los elementos del conjunto de referencia o universal, que no están en el conjunto. Es decir dado un conjunto A que esta incluido en el conjunto universal U, entonces el conjunto complemento de A es el conjunto formado por todos los elementos del conjunto universal pero sin considerar a los elementos que pertenezcan al conjunto A. En esta operación el complemento de un conjunto se denota con un apostrofe sobre el conjunto que se opera, algo como esto A' en donde el el conjunto A es el conjunto del cual se hace la operación de complemento. Ejemplo Dado el conjunto Universal U={1,2,3,4,5,6,7,8,9} y el conjunto A={1,2,9}, el conjunto A' estará formado por los siguientes elementos A'={3,4,5,6,7,8}. Usando diagramas de Venn se tendría lo siguiente:
  11. Números reales Los números reales son cualquier número que corresponda a un punto en la recta real y pueden clasificarse en núme naturales, enteros, racionales e irracionales. En otras palabras, cualquier número real está comprendido entre menos infinito y más infinito y podemos representarl en la recta real. Los números reales se representan mediante la letra R ↓ Ejemplos de números reales En el siguiente ejemplo sobre los números reales, comprueba que los siguientes números corresponden a punto en la recta real. Números naturales: 1,2,3,4… Números enteros: …,-4,-3,-2,-1, 0, 1, 2, 3, 4… Números racionales: cualquier fracción de números enteros. Números irracionales
  12. Desigualdad matemática La desigualdad matemática es aquella proposición que relaciona dos expresiones algebraicas cuyos valores son distintos. Se trata de una proposición de relación entre dos elementos diferentes, ya sea por desigualdad mayor, menor, mayor o igual, o bien menor o igual. Cada una de las distintas tipologías de desigualdad debe ser expresada con diferente signo (> o <, etcétera) y tendrá una reacción a operaciones matemáticas diferente según su naturaleza. Por lo tanto, si queremos explicar cuál es la finalidad de este concepto con el menor número de palabras posibles diremos que; el objetivo de la desigualdad matemática es mostrar que dos sujetos matemáticos expresan valores diferentes.
  13. Ejemplos de signos de desigualdad Las desigualdades matemáticas están formadas, en la mayoría de ocasiones, por dos miembros o componentes. Un miembro se encontrará a la izquierda del símbolo y el otro a la derecha. Un ejemplo sería expresar: 4x – 2 > 9. Lo leeríamos diciendo que “cuatro veces nuestra incógnita menos dos es superior a nueve”. Siendo el elemento 4x-2 el elemento A y 9 el elemento B. La resolución nos mostraría que (en números naturales) la desigualdad se cumple si x es igual o superior a 3 (x≥3).
  14. Valor absoluto El valor absoluto es un concepto que está presente en diversos contextos de la Física y las Matemáticas, por ejemplo en las nociones de magnitud, distancia, y norma. En casos más complejos es un concepto muy útil, como en las definiciones de cuaterniones, anillos ordenados, cuerpos o espacios vectoriales. El valor absoluto o módulo de un número real cualquiera es el mismo número pero con signo positivo. En otras palabras, es el valor numérico sin tener en cuenta su signo, ya sea positivo o negativo.
  15. EJEMPLO DE VALOR ABSOLUTO El valor absoluto del número −4−4 se representa como |−4||−4| y equivale a 44, y el valor absoluto de 44 se representa como |4||4|, lo cual también equivale a 44. En la recta numérica se representa como valor absoluto a la distancia que existe de un punto al origen. Por ejemplo, si se recorren 4 unidades del cero hacia la izquierda o hacia la derecha, llegamos a −4−4 o a 44, respectivamente; el valor absoluto de cualquiera de dichos valores es 44. Formalmente, el valor absoluto de todo número real está definido por: |a|={a,−a,sisia≥0a<0
  16. ¿Qué son las desigualdades con valor absoluto Empecemos con la definición: el valor absoluto de un número es la distancia de un valor desde el origen sin importar la dirección. El valor absoluto está denotado por dos líneas verticales que encierran al número o expresión. Por ejemplo, el valor absoluto de � x es expresado como ∣�∣=�∣x∣=a, lo cual significa que �=+�x=+a y �=−�x=−a. Ahora veamos lo que significan las desigualdades con valor absoluto.
  17. Ejemplos resueltos EJEMPLO 1 Resuelve la desigualdad ∣�+4∣−6<9∣x+4∣−6<9. Paso 1: Despeja el valor absoluto: ∣�+4∣−6<9∣x+4∣−6<9 ∣�+4∣<9+6∣x+4∣<9+6 ∣�+4∣<15∣x+4∣<15
  18. Paso 2: ¿Es el número en el otro lado negativo? No, es un número positivo, 15. Nos movemos al paso 3. Paso 3: Forma una desigualdad compuesta: El signo de desigualdad en este problema es un signo menor que, por lo que formamos una desigualdad de tres partes:−15<�+4<15−15<x+4<15 Paso 4: Resuelve la desigualdad: −15−4<�<15−4−15−4<x<15−4 −19<�<11−19<x<11
  19. FIN
Publicité