SlideShare a Scribd company logo
1 of 86
Ph.D. Colloquium
Effects of Design Parameters on Performance of
Dual Octal Load Cells
By
Mr. Vijay A. Kamble
USN : 2GI15PMJ14
Under the Guidance of
Prof.(Dr.) Jayant K. Kittur
Prof. (Dr.) Vasudev D. Shinde
Research center
Kls Gogte Institute of Technology,
Belgaum
Visvesvaraya Technological University
Belagavi-590018
2
Outline of the presentation
• Introduction
• Literature survey
• Problem Statement and Objectives
• Retrospective study of load cells
• Introduction of Dual octal ring load cell
• DOE for Dual octal ring load cell
• Effect of geometric parameter on response variables
• Grey relational analysis of Dual octal ring load cell
• Manufacturing and testing of Dual octal ring load cell
• Conclusion
• References
• Publications
3
Introduction
Force is that produces resistance or obstruction to any moving
body, or changes the motion of a body, or tends to produce these effects
• Previously levers and rollers were used for multiplying force
generated by the muscle.
• Sir Isaac Newton, did pioneer work for force measurement and
formulated laws
• Force,
where g is the local acceleration due to gravity , ρa and ρm are
densities of air and material of the mass respectively.
• Force measurement is required in applications like material testing
instruments, weighing machines, force measurement in various
manufacturing processes, thrust measurement in Aeronautics,
calibration of hardness and strength testing machines
4
Sensor associated with force indicating instrument
Dial Gauged Load cell (Commonly called, Proving Ring)
5
Strain gauge load cell
• strain gauges mounted on elastic element
connected in Wheatstone bridge circuit.
• converts force or weight into an electrical signal.
strain gauges
6
Load cell types
a) Compression cylinder (50 kN to 50 MN) b) Compression cylinder (hollow) (10 kN to 50 MN)
c) Toroid ring (1 kN to 5 MN) d) Ring (1 kN to 1 MN)
e) S-beam (200 N to 50 kN) f) double-ended shear beam (20 kN to 2 MN)
g) double-bending beam (500 N to 50 kN) h) Shear beam (1 kN to 500 kN)
i) double-bending beam (100 N to 10 kN) j) Tension cylinder (50 kN to 50 MN)
Problem Statement and Objectives
“Effects of Design Parameters on Performance of
Dual Octal Load Cells”
Objectives :
• Investigation of the effect of variability of design
parameters of load cell on the variability of design relevant
response quantities
• Design of experiment for carrying simulation studies.
• Geometric optimization of critical parameters of load cell
using GRA
• Validation of the results by using experimental work
Author Research area Focus on
Kuhnel M. , Hilbrunner F., Buchner H. ,
Jager G .,Manske E., Frohlich T. (2014)
double bending beam
force transducers
Traceable measurement of
mechanical parameters
according to EN ISO 376
Stefanescu D.M., Stefanescu A., (2006) Force Transducers Criteria for Choosing the
Elastic Elements
Kumar, H., Sharma, C., Kumar, A., &
Arora, P. K. (2015)
force measurement Retrospective
investigations
Bulent Aydemir , Erdinc Kaluc , Sinan
Fank (2006)
force transducers
manufactured from 17-
4PH stainless steel
Influence of heat treatment
on hysteresis error
Gauri Ranadive, Anindya Deb (2012) impact load cell Evaluation of the accuracy
using lumped parameter
modeling and analysis
Robinson, Gordon M. (1995) load cell geometry Genetic algorithm
optimisation by finite
element analysis
Literature review (Load cell)
Author Research area Focus on
Surasith Piyasi (2002) Hollow Clevis-pin Type
Load Cells
Detail Design
Sudhir Kumar, Nabi Hasan, Harish
Kumar and Anil Kumar (2011)
force transducer Finite element analysis
Harb, A. M. (2013) dynamic weighing systems Enhancing the performance
using Kalman filter
Samuel Tileston Whittemore (2014) Application Specific Force
Sensor for Snowpack
Assessment
Development and Testing
John Van Tuyl (2014) force sensing insole Development to quantify
impact loading to the foot in
various postures
Rakesh Kolhapure ⇑, Vasudev
Shinde, Vijay Kamble(2017)
strain gauge force transducer Geometrical optimization
using GRA method
Randall M. Schoonover (1979) Load Cell Mass Comparator Precision
Literature review (Load cell)
Author Research area Focus on
Kamlesh H. Thakkar, Vipul.
M.Prajapati, Bipin D. Patel (2013)
Strain Gauge Based Load
Cell
Performance Evaluation to
Improve Weighing
Accuracy
A. Abu-Sinna, Yon-Kyu Park , Dae-Im
Kang, Min-Seok Kim (2009)
load cell–deadweight
force machine interaction
The influence of loading
frame stiffness
Jean-Marc Drouet and Yvan
Champoux(2014)
Strain Gauge Transducer
for Dynamic Load
Measurement in Cycling
Designing using numerical
simulation
JacekPiskorowski,, Tomasz Barcinski
(2008)
load cell response Dynamic compensation
Robert M. Williams (2014) Beam Load Cell Evaluation of Base
Reaction and Force
Collision Detection on
Industrial Robots
G.M. Robinson(1997) load cell hysteresis Finite element modelling
Er. Dharmendra Kumar Dubey Dr. R. L.
Yadav Manoj Kumar(2015)
Force Transducers Calibration
Literature review (Load cell)
Author Research area Focus on
Ted Kopczynski,(2011) Weighing System’s Accuracy Five Factors That Can Affect
GardarPáll Gíslason (2011) Load cell optimization
Chung Ket Thein (2013) load cell Structural sizing and shape
optimization
A Karaus, H Paul Hottinger
Baldwin Messtechnik GmbH,
Darmstadt, Germany(1962)
Load cells with small nominal
load based on strain gauges
thin-film techniques
Robert Zwijze(2000) High Capacity Silicon Load
Cells
Micro-Machining
Brent J. Maranzano , Bruno C.
Hancock (2016)
dynamic load cells Quantitative analysis of impact
measurements
Er Dharmendra Kumar Dubey,
Dr. R. L. Yadav (2016)
Force Transducers Retrospective Study for
Comprehensive Design
Literature review (Load cell)
Author Research area Focus on
Aravind Russel, Jugal Karda,
Piyush Jain,Shalmali Kale
Pallavi Khaire(2016)
‘S’ Type Load Cell Simulation and Experimental
Study for Selection of Gauge
Area Cross-Section
Meng Chun-Ling,Zheng Wei-
Zhi, Lin Mei-Hong(2002)
double-shear beam load cell Finite element analysis
Prof. Kamlesh H. Thakkar,
Prof. Vipul M.Prajapati, Prof.
Bipin D.Patel (2013)
Strain Gauge Based Load Cell Performance Evaluation to
Improve Weighing Accuracy
Rakesh Kolhapure, Vasudev
Shinde, Vijay Kamble (2015)
Strain Gauge Transducer for
Weighing Application
Optimization of using GRA
Method
Rakesh Kolhapure , Vasudev
Shinde, VijayKamble (2016)
Load Cell Optimization using Grey
Relational Analysis Method
VaibhavVarne, VasudeShinde,
Vijay Kamble(2016)
Rectangular Beam Force
Transducer
Effect of Geometrical
Parameters on Sensitivity and
Volume
Literature review (Load cell)
Author Research area Focus on
VaibhavVarne, VasudeShinde,
Vijay Kamble (2016)
Pancake Type Load Cell Parametric Optimization using
Response Surface
Methodology
Rakesh Kolhapure , Vasudev
Shinde, VijayKamble (2017)
force transducer Geometrical optimization using
GRA method
Shreyas S. Pandit , Vijay A.
Kamble (2018)
Multi-stage Strain gauge based
load cell
Review
Literature review (Load cell)
Author Research area Focus on
Mikael J. Hvorslev (1972) Proving Rings And Frames For
Soil Testing Equipment
Details
Madhuban Prasad ,NabiHasan
, Anil Kumar , Harish Kumar
(2011)
square ring shaped force sensor Design studies
R. A. Mitchell (1968) n-Degree Elliptical Elastic
Rings of Non Uniform Cross
Section
Analysis
Sudhir Kumar, Wakkar Ali,
Anil Kumar, Harish Kumar
(2011)
Ring Shaped Force Transducer Axial Deflection Studies
Shailendra V. Dhanal(2013) octagonal ring for a three
component milling tool
dynamometer
Finite element analysis
Sudhir Kumar and H Kumar
(2014)
Ring Shaped Force
Transducers
Development and Testing
Literature review (Ring type)
Author Research area Focus on
Sudhir Kumar, Nabi Hasan,
Harish Kumar & Anil Kumar
(2011)
force transducer Finite element analysis
A.P. Onwualu (2002) extended octagonal ring
dynamometer
measurement of forces on a
simple tillage tool
Humberto Rodríguez- Fuentes,
Martin Cadena-Zapata, Jesús
Alonso Esparza- Renteria,
Juan Antonio Vidales-
Contreras, Ma. del Carmen
Ojeda-Zacarías and Alejandro
Isabel Luna-Maldonado (2014)
Circular Ring Type Monolithic
Load Cell
Design, Manufacturing And
Calibration Addressed To
Drawbar Pull Testing Of The
Farm Tractor
Harish Kumar, Chitra Sharma
and Anil Kumar (2011)
precision force transducers Design and development
Harish Kumar, Mohit Kaushik,
Pardeepc and Pawan Kumar
Arora (2015)
elliptical shaped force
transducers
Investigations on metrological
characterization for precision
force measurement
Literature review (Ring type)
Author Research area Focus on
Harish Kumar(2015) Design And Metrological
Characterization Of Force
Transducers
Finite Element Computational
And Experimental
Investigations
Harish Kumar Chitra Sharma
Anil Kumar(2011)
Ring Shaped Force
Transducers
Design Studies
Essam Soliman(2015) octal rings as mechanical force
transducers
Performance analysis
Harish Kumar & Chitra
Sharma (2012)
force transducers Performance evaluation
A. Abuhasel and Essam
Soliman(2016)
Octal Rings As Mechanical
Force Transducers
Regression Analysis
Vijay A. Kamble, Vasudev D.
Shinde, Jayant K. Kittur
(2019)
Ring Shaped Load Cells Shape Optimization for
Enhancing Sensitivity at
Lower Deflection using FEM
Literature review (Ring type)
Author Research area Focus on
Qiao kang Liang, Dan Zhang,
Yaonan Wang, Yunjian
Ge2013)
Novel Six-Component F/T
Sensor based on CPM for
Passive Compliant Assembly
Design and Analysis
A.R. Tavakolpour-Saleh, M.R.
Sadeghzadeh (2014)
three-component force/moment
sensor for underwater
hydrodynamic tests
Design and development
J.W Jooa, K.S Naa, D.I Kangb
(2002)
six-component load cell Design and evaluation
Fu Shao (2015) Three-Component Force
Sensor for Meso-Milling
Applications
Design
Gab-Soon Kim(2007) Six-Axis Force/Moment
Sensor with Rectangular Taper
Beams for an Intelligent Robot
Development
Literature review (Multi axis)
Author Research area Focus on
M. Mencattelli, Donati, A
(2014)
Customized Load Cell Three-Dimensional Force-
Moment Measurements in
Orthodontics
Yun Lu, , Weijia Li,, Wenzhuo
Tian, and Kai Zhou (2014)
Six-DOF Force Method on Measurement for
Heavy Load Equipment
Wei Zhang, Kim Boon Lua,
Van Tien Truong, Kumar A.
Senthil, Tee Tai Lim,
KhoonSeng Yeo, and Guangya
Zhou (2016)
Novel T- shaped Multi-Axis
Piezoresistive Force/Moment
Sensor
Design and Characterization
HilmanSyaeful Alam, Demi
Soetraprawata and Bahrudin
(2015
Six-Axis Force/Torque Sensor The Structural Design Using
Virtual prototyping Technique
Vinay Ganti(2011) 4-Dof Force/Torque Sensor For
Intelligent Gripper
Analysis
Literature review (Multi axis)
Author Research area Focus on
Amin Valizadeh, Alireza
Akbarzadeh, Mohammad
HoseinTashakori Heravi (2015)
Six-Axis Force/Torque Sensor Effect of Structural Design
Parameters Using Full
Factorial Design
Nicolas Sommer (2011) Multi-Axis Force/Moment
Sensor for a mobile quadruped
platform
Design and Integration
S. Boukhenous (2011) Three-Directional Force
Sensor”,
Low cost
Chul-Goo Kang(2005) 6-Axis Force-torque Sensor Performance Improvement via
Novel Electronics and Cross-
shaped Double-hole Structure
Literature review (Multi axis)
Author Research area Focus on
Chang Y.S., Lin T.C., (2013) G-shaped load cell for two
range loading
Optimization
Osman S.M., Hasan E. H., El-
Hakeem H.M., Rashad R. M.,
Kouta F. (2014)
Multi-Capacity Load Cell Concept
Kluger J. M., Sapsis T. P.,
Slocum A.H., (2016)
load cell by means of nonlinear
cantilever beams
high-resolution and large force-
range
Seif. M. Osman ,Ebtisam H.
Hasan, H. M. El-Hakeem,
R.M.Rashad d F. Kouta (2013)
multi-capacity load cell Conceptual design
Literature review (Multi capacity)
Author Research area Focus on
Dhananjay Ghanshyam Pardhi
and S D Khamankar (2014)
spline shaft Stress analysis using finite
element method and its
experimental verification by
photo elasticity
Minvydas Ragulskisa,, Miguel
A.F. Sanjuanb (2008)
Photoelasticity Chaotic pattern of unsmoothed
isochromatics around the
regions of concentrated stresses
Prajna P, Patil N Konark,
Meshramkar Roseline, Nadiger
Ramesh K. Shetty (2013)
Teeth and Surrounding
Structure
Fast and Economical
Photoelastic Model Making
Pichet Pinit (2009) two-dimensional stress field in
digital photoelasticity
Development of Window-based
program for analysis and
visualization
Dipti Kanta Das, Ashok Kumar
Sahoo, Ratnakar Das, B. C.
Routara ( 2014 )
hard turning using coated
carbide insert
Investigations using Grey
Based Taguchi and regression
methodology
Literature review (General)
Author Research area Focus on
Prof. H. V. Shete, Prof. R. A.
Pasale, Prof. E. N. Eitawade
(2012)
Internal Combustion Engine
Piston
Photoelastic Stress Analysis &
Finite Element Analysis
Dr. P Ravinder Reddy, Mr. K B
Jagadeeshgouda Mr. Suprit
Malagi (2015)
Curved Structure Analysis of Stress Distribution
Using Photoelastic and Finite
Element Method
Uddan wadiker, R. (2011) crane hook Stress analysis and validation
by photo-elasticity
M. Durairaja, D. Sudharsunb,,
N. Swamynathanb (2014)
Wire EDM with Stainless Steel Analysis of Process Parameters
using Single Objective Taguchi
Method and Multi Objective
Grey Relational Grade
Raghu N. Kacker, Eric S.
Lagergren, & James J. Filliben
(1991)
Classical Designs of
Experiments
Taguchi Vs Orthogonal Arrays
Robinson, G. M. (1995) load cell geometry Genetic algorithm optimisation
by FEA
Literature review (General)
•Comparison of strain induced in different load cell spring elements
results that circular ring load cell spring element is most sensitive
•. But less deflection is required to get equivalent strain in octagonal ring
than the circular ring.
•So octagonal ring spring element should be preferred than circular ring
Study of ring load cells
24
Retrospective study of load cells
Investigation of Influence of design parameters
(different geometrical parameters of elastic elements, of
different materials, with different simulation parameters like
different loads) on the performance measures (maximum
stress, sensitivity, and volume) of various load cells is done.
Following types of load cells are considered for study.
• S beam load cell
• Double ended shear beam load cell
• Rectangular beam load cell
• Pan cake type load cell
• G shape load cell
Above load cells are optimized using Toguchi and grey
relational analysis techniques.
25
S type load cell
Double ended shear beam load cell strain distribution
Rectangular beam type load cell strain distribution
Pan cake load cell strain distribution
Retrospective study of load cells
26
Structural Analysis (FEA)
S type load cell strain distribution
Double ended shear beam load cell strain distribution
Rectangular beam type load cell strain distribution
Pan cake load cell strain distribution
27
Work flow process for study
Work flow process
1. Design of Experiment (DOE)
2. Structural Analysis (FEA)
3. Multi-Objective Optimization (Grey
Relational Analysis)
4. Validation using Photoelasticity (ESA)
28
Sr.
No.
Strain gauge
load cell types
Material Young’s
modulus
N/mm2
Geometrical
parameters
Enhancem
ent in
sensitivity
Reductio
n in
volume
1 Double ended
shear beam
EN 24
Steel
2.1x105 Length,
Height,
Thickness
69.28% 3.12%
2 S beam EN 24
Steel
2.1x105 Thickness,
Length,
Height
55.08% 1.06%
3 Rectangular
beam
EN 24
Steel
2.1x105 cavity radius,
height &
length
60% 2.2%.
4 Pan cake type EN 24
Steel
2.1x105 Rim
thickness,
web height
and web
43% 7%
Outcome of retrospective study
29
Photo elastic analysis
‘S’ type model
Double Ended Shear Beam’ type load cell
Rectangular Beam’ type load cell
Pan cake type load cell
30
Ansys and Photo elasticity results
Comparison between Ansys and Photoelasticity results
Sr.
No.
Type of load cell p (N/mm2) a (N/mm2)
1 S 115.47 122.3
2
Double Ended
Shear Beam
176.40 185.30
3 Rectangular Beam 29.06 31.11
4 Pancake 239.12 249.08
31
Study of G shape load cell
Parameter Before optimization Optimized % Improvement
Mass 0.2553 0.25191 1.33
Sensitivity 1.948 2.6438 35.72
32
Literature outcome
• The literature cited above provides basic
information regarding different types and
applications of load cells,
• It gives details about new ways in designing load
cell.
• Some of them present’s information on DOE and
other optimization techniques with help of FEA
softwares.
• Literature also put a light on experimental
techniques used for verification of performance of
load cell.
33
Literature Gap
• Researchers have carried out most of the work on standard
load cells, ring load cells, Multi axis load cells but for
multicapacity load cells very limited work has been
reported.
• The effect of geometric parameters on the performance
characteristics of multicapacity load cells has not been
explored
• Multi-Objective geometric optimization of Multicapacity
load cell is another thrust area which has been given less
attention in past studies.
34
Need of the Dual octal ring load cell
These forces may vary over a wide range and it may be necessary
to have accurate measurements at both ends of the range.
In order to measure 300 N force, a 5,00 N capacity load cell
might be used.
In order to measure 20 N force using a 5,00 N capacity load cell , the
output of the transducer must be highly amplified. In view of the high
amplification, the system is subject to error due to electrical noise both
from the amplifier and from other nearby electrical equipment such as
motors, relays, switches,- brushes, etc.
A low capacity load cell of 50 N capacity for measuring a 20 N
load, is not susceptible to electrical noise of this type since its output
need not be highly amplified.
35
Need of the Dual octal ring load cell
In the calibration process of UTM of capacity of 1000
KN according to UTM standard 1828 It has to be tested
against each 20% load like in the step of 200 KN
More number of load cells are required to cover
different load ranges, these increases handling efforts, in
addition to increase the cost of purchasing load cells.
This work concerns with introduction of dual octal ring
Load Cell for wide-range loading.
Load Load cell capacity
200 KN 200 KN
400 KN 500 KN
600 KN 750 KN
800 KN 1000 KN
1000 KN 1000 KN
36
Development of Dual octal ring load cell
Fig. 1: Dual octal ring load cell 2D, 3D model along with Wheatstone bridge circuit
Experimental runs, L9 OA
Volume, strain, deflection
S/N ratio of 1-9 expt.
(Effect of processing
conditions on response
variables)
S/N ratio
Normalization 1-9 &
Deviation sequence 1-9
Grey Relational
Coefficient,1 -9
Single Grey
Relational Grade
Single processing
condition
Comparability
sequences
Response
37
Dual octal ring load cell
Geometrical parameters
Experimental
validation
Research
approach
38
DOE for Dual octal ring load cell
Sr. no. Parameters Level 1 Level 2 Level 3
1 Height of top octagon (HU) 90 100 110
2 Thickness of top octagon (TU) 4 6 8
3 Height of bottom octagon (HL) 90 100 110
4 Thickness of bottom octagon (TL) 4 6 8
Sr. no. HU TU HL TL
1 90 4 90 4
2 90 6 100 6
3 90 8 110 8
4 100 4 100 8
5 100 6 110 4
6 100 8 90 6
7 110 4 110 6
8 110 6 100 8
9 110 8 90 4
Level of input parameters
(DOF)R=P×(L-1)
Where
(DOF)R:Degree of freedom of Expt.
P:No of parameters
L:No of levels
(DOF)R=4×(3-1)=8
“DOF of the OA should be greater than or equal to the
total DOF required for the experiment”
Here, DOF of OA=DOF of Expt.
Therefore L9 (32) OA is selected
Selection of orthogonal array (OA)
Taguchi L9 Array
g. 1: Dual octal ring load cell 2D, 3D model al
Fig. 1: Dual octal ring load cell 2D, 3D model along with
Structural analysis of Dual octal ring load cell
Constraints
• Load cell is fixed to rigid support.
• Uniformly distributed load is acting on top surface of load cell.
• At the location of strain gauges values of strains are measured.
• Applied load 0 to 2940 for light load condition
2940 to 5000N for heavy load condition.
• Maximum strain induced is less than 1500 µ strain.
•The 0.3 mm gap is maintained in the limbs.
Material Young’s Modulus Poisson's
ratio
Density
EN 24 2.1 X 105 N/mm2
0.33 7840 X 105 Kg/mm3
41
Structural analysis of octal ring load cell
Experiment
number
Volume
mm3
Deflection
mm
εt1
µ strain
εb1
µ strain
εt2
µ strain
εb2
µ strain
1 36730 0.375 875.190 737.750 1366.000 1247.000
2 49110 0.016 408.460 386.480 682.000 646.000
3 62310 0.088 231.790 249.200 396.150 415.240
4 52940 0.361 981.620 217.900 1123.000 376.000
5 49300 0.349 455.450 909.080 761.440 1533.000
6 55120 0.011 265.830 346.620 1117.000 589.050
7 53470 0.511 108.000 406.640 1336.000 697.630
8 58670 0.192 516.537 196.840 611.100 345.360
9 56570 0.254 294.740 820.790 497.770 1384.000
strain under light load in bottom ring (εb1)
strain under heavy load in top ring (εt2)
strain under light load in top ring (εt1)
strain under heavy load in bottom ring (εb2)
n = -10 log10 [mean of sum of squares of measured data]
S/N Ratio: Lower is better
( volume, strain under light load in bottom ring (εb1) and
strain under heavy load in top ring (εt2) )
n = -10 log10 [mean of sum squares of reciprocal of measured data]
S/N Ratio: Larger is better
(deflection, strain under light load in top ring (εt1) and strain under
heavy load in bottom ring (εb2),)
Effect of geometric parameter on response variables
Higher S/N ratio means to closer to optimal parameters
S/N ratio for volume
476
.
94
52940 



 )
log(
10
S/N 2
Smaller is the better
Expt.
No.
Volume
S/N
ratio
1 36730 -91.300
2 49110 -93.823
3 62310 -95.891
4 52940 -94.476
5 49300 -93.857
6 55120 -94.826
7 53470 -94.562
8 58670 -95.368
9 56570 -95.052
21/7/2018 43
Effect of parameters on volume
Optimum combination for
volume
A1B1C1D1
S/N ratio for Deflection
856
.
8
361
.
0
/
1 



 )
log(
10
S/N 2
Larger is the better
Expt.
No.
Deflection S/N
1
0.375 -8.518
2
0.016 -36.053
3
0.088 -21.125
4
0.361 -8.856
5
0.349 -9.148
6
0.011 -39.114
7
0.511 -5.836
8
0.192 -14.339
9
0.254 -11.906
21/7/2018 44
Effect of parameters on Deflection
Optimum combination for
deflection
A3B1C3
D- Least affecting
S/N ratio for strain under light load in top ring (εt1)
839
.
59
620
.
981
/
1 



 )
log(
10
S/N 2
Larger is the better
Expt.
No. εt1 S/N
1 875.190 -58.842
2 408.460 -52.223
3 231.790 -47.302
4 981.620 -59.839
5 455.450 -53.169
6 265.830 -48.492
7 1080.000 -60.668
8 516.537 -54.262
9 294.740 -49.389
21/7/2018 45
Optimum combination for
εt1
A3B1
C & D - Least affecting
S/N ratio for strain under light load in bottom ring (εb1)
7651
.
46
900
.
217 



 )
log(
10
S/N 2
Smaller is the better
Expt.
No. εb1 S/N
1
737.750
-
57.3582
2
386.480 -51.742
3 249.200 -47.931
4
217.900 -46.765
5 909.080 -59.172
6
346.620 -50.797
7
406.640 -52.184
8
196.840 -45.882
9
820.790 -58.284
21/7/2018 46
Optimum combination for
εb1
C1D3
A & B- Least affecting
S/N ratio for strain under heavy load in top ring (εt2)
008
.
61
000
.
1123 



 )
log(
10
S/N 2
Smaller is the better
Expt.
No. εt2 S/N
1
1366.000 -62.709
2
682.000 -56.676
3 396.150 -51.957
4
1123.000 -61.008
5 761.440 -57.633
6
1117.000 -60.961
7
1336.000 -62.516
8
611.100 -55.722
9
497.770 -53.941
21/7/2018 47
Optimum combination for
εt2
B3C3
A & D - Least affecting
S/N ratio for strain under heavy load in bottom ring (εb2)
504
.
51
000
.
376
/
1 


 )
log(
10
S/N 2
Larger is the better
Expt.
No. εb2 S/N
1 1247.000 -61.917
2 646.000 -56.205
3 415.240 -52.366
4 376.000 -51.504
5 1533.000 -63.711
6 589.050 -55.403
7 697.630 -56.873
8 345.360 -50.765
9 1384.000 -62.823
21/7/2018 48
Optimum combination for
εb2
C3D1
A & B- Least affecting
49
HU - top octagon height, TU - top octagon thickness, HL- bottom octagon height, TL -bottom octagon thickness
Fig.3. Mean of S/N Ratio plots for volume, deflection and maximum strain values
(A1B1C1D1)
result
min.volume.
(A3B1C3)
result
Max. deflection
(A3B1) result
Max. straining
in top ring under
light load.
(C1D3) result
Max. straining
in bottom ring
urder light load
(B3C3) result
max. straining
in top ring under
heavy load
(C3D1) result
Max. straining
in bottom ring
under
heavy load
50
Grey regression analysis
51
Analysis of Grey relational coefficient for Volume
Expt.
No.
Volume S/N N D GRC
1 36730 -91.300 1 0 1
2
49110 -93.823
0.5160
28
0.4839
72
0.5081
45
3
62310 -95.891
0 1
0.3333
33
4
52940 -94.476
0.3663
02
0.6336
98
0.4410
34
5
49300 -93.857
0.5086 0.4914
0.5043
38
6
55120 -94.826
0.2810
79
0.7189
21
0.4101
99
7
53470 -94.562
0.3455
82
0.6544
18
0.4331
19
8
58670 -95.368
0.1422
99
0.8577
01
0.3682
7
9
450
.
0
0.550
-
1


Deviation
5
.
0


Where
GRC =
0.526
1
0.5
0.450
)
1
(0.5
0






Normalized value (smaller is better)
550
.
0
95.891
91.300
-
93.823
91.300
-




52
Analysis of Grey relational coefficient for Deflection
Deflection S/N N D GRC
0.375 -8.518 0.919 0.081 0.861
0.016 -36.053 0.092 0.908 0.355
0.088 -21.125 0.541 0.459 0.521
0.361 -8.856 0.909 0.091 0.846
0.349 -9.148 0.900 0.100 0.834
0.011 -39.114 0.000 1.000 0.333
0.511 -5.836 1.000 0.000 1.000
0.192 -14.339 0.744 0.256 0.662
0.254 -11.906 0.818 0.182 0.733 908
.
0
0.092
-
1


Deviation
5
.
0


Where
GRC =
0.355
1
0.5
0.908
)
1
(0.5
0






Normalized value (Larger is better)
092
.
0
39.114
5.000
-
39.114
36.053
-




53
Analysis of GRC for strain under light load in top ring (εt1)
εt1 S/N N D GRC
875.19 58.842 0.863 0.137 0.785
408.46 52.223 0.368 0.632 0.442
231.79 47.302 0.000 1.000 0.333
981.62 59.839 0.938 0.062 0.890
455.45 53.169 0.439 0.561 0.471
265.83 48.492 0.089 0.911 0.354
1080.00 60.668 1.000 0.000 1.000
516.54 54.262 0.521 0.479 0.511
294.74 49.389 0.156 0.844 0.372
632
.
0
0.368
-
1


Deviation
5
.
0


Where
GRC =
0.442
1
0.5
0.632
)
1
(0.5
0






Normalized value (Larger is better)
368
.
0
47.302
-
60.668
302
.
47
52.223



54
Analysis of GRC for strain under light load in bottom ring (εb1)
εb1 S/N N D GRC
737.75 -57.3582 0.864 0.136 0.786
386.48 -51.7425 0.441 0.559 0.472
249.20 -47.931 0.154 0.846 0.372
217.90 -46.7651 0.066 0.934 0.349
909.08 -59.172 1.000 0.000 1.000
346.62 -50.7971 0.370 0.630 0.442
406.64 -52.1842 0.474 0.526 0.487
196.84 -45.8823 0.000 1.000 0.333
820.79 -58.2846 0.933 0.067 0.882 559
.
0
0.441
-
1


Deviation
5
.
0


Where
GRC =
0.472
1
0.5
0.559
)
1
(0.5
0






Normalized value (smaller is better)
441
.
0
59.172
45.8823
-
51.7425
45.8823
-




55
Analysis of GRC for strain under heavy load in top ring (εt2)
εt2 S/N N D GRC
1366.000 -62.709 1.000 0.000 1.000
682.000 -56.676 0.439 0.561 0.471
396.150 -51.957 0.000 1.000 0.333
1123.000 -61.008 0.842 0.158 0.760
761.440 -57.633 0.528 0.472 0.514
1117.000 -60.961 0.837 0.163 0.755
1336.000 -62.516 0.982 0.018 0.965
611.100 -55.722 0.350 0.650 0.435
497.770 -53.941 0.184 0.816 0.380
561
.
0
0.439
-
1


Deviation
5
.
0


Where
GRC =
0.52631
1
0.5
0.450
)
1
(0.5
0






Normalized value (smaller is better)
439
.
0
62.709
51.957
-
56.676
51.957
-




56
Analysis of GRC for strain under heavy load in bottom ring (εb2)
εb2 S/N N D GRC
1247.00 61.917 0.861 0.139 0.783
646.00 56.205 0.420 0.580 0.463
415.24 52.366 0.124 0.876 0.363
376.00 51.504 0.057 0.943 0.347
1533.00 63.711 1.000 0.000 1.000
589.05 55.403 0.358 0.642 0.438
697.63 56.873 0.472 0.528 0.486
345.36 50.765 0.000 1.000 0.333
1384.00 62.823 0.931 0.069 0.879
580
.
0
0.420
-
1


Deviation
5
.
0


Where
GRC =
0.463
1
0.5
0.580
)
1
(0.5
0






Normalized value (Larger is better)
420
.
0
50.765
63.711
50.765
56.205




57
Ranking the performance parameters of force sensor
GRC
GRG Rank
Expt. Volume Deflection εt2 εb2 εt1 εb1
1 0.333 0.861 1.000 0.783 0.785 0.786 0.758 2
2 0.526 0.355 0.471 0.463 0.442 0.472 0.455 9
3 1.000 0.521 0.333 0.363 0.333 0.372 0.487 8
4 0.619 0.846 0.760 0.347 0.890 0.349 0.635 5
5 0.530 0.834 0.514 1.000 0.471 1.000 0.725 3
6 0.683 0.333 0.755 0.438 0.354 0.442 0.501 7
7 0.633 1.000 0.965 0.486 1.000 0.487 0.762 1
8 0.815 0.662 0.435 0.333 0.511 0.333 0.515 6
9 0.732 0.733 0.380 0.879 0.372 0.882 0.663 4
0.455
6
472
.
0
442
.
0
463
.
0
471
.
0
355
.
0
526
.
0







GRG
58
Response table for grey relational grade (GRG)
HU(A) TU(B) HL(C) TL(D)
L1 0.567 0.718 0.591 0.715
L2 0.620 0.565 0.584 0.573
L3 0.647 0.550 0.658 0.546
Max 0.647 0.718 0.658 0.715
Min 0.567 0.550 0.584 0.546
Delta 0.080 0.168 0.074 0.170
Rank 3 2 4 1
Prediction of GRG under optimum Parameters
“A3B1C3D1”
59
ANOVA for grey relational grade
Source Adj SS Adj MS % contribution
HU 0.002270 0.001135 7.41
TU 0.017998 0.008999 58.77
HL 0.003970 0.001985 12.96
TL 0.006383 0.003191 20.85
Total 0.030621 100.00
top octagon thickness (TU) followed by bottom octagon thickness (TL)
are most significant control factor
60
Predicted and Validation values of optimal parameters
Sr.
No.
Process Parameters
Initial
Setting
Predicted
Value
FEA
Validation
1
Optimal parameters A3B1C2D2 A3B1C3D1 A3B1C3D
1
2 HU 110 110
3 TU 4 4
4 HL 100 110
5 TL 6 4
6 Grey Relational Grade 0.636 0.699 0.674
“Improvement of 5.97 %”
61
Manufacturing of dual octal ring load cell
 Using wire EDM because of its high
precision and ability to make small gap of 0.3
mm gap
 Using 20 mm thick sheet of EN 24 steel.
 This EDM uses 0.25 mm diameter brass wire
and creates spark of 0.025 mm and can cut to
an accuracy of 0.025 mm.
 Four strain gauges are mounted in each ring
and Wheatstone bridge circuit is used to get
electrical output voltage
62
Manufacturing of dual octal ring load cell
63
Testing of dual octal ring load cell
• Load cell is tested under 5 kN Dead Weight Force Calibration
Machine at FIE Research Institute, Ichalkaranji.
• Loaded in the step of 500N up to 5000N in the compression
mode
• The electrical output from the top ring and bottom ring of the
dual ring load cell is recorded
64
Electrical output of the dual octal ring load cell
• Output (millivolts) curves of upper ring and lower ring(left)
• Overall electrical output of loadcell(right).
65
Uncertainty Calculation
• Uncertainty Calculation as per IS 4169-2014/ISO 376-2011.
• Calibrated from 10% - 100% of the rated capacity A high resolution
digital indicator is used to take the observations.
• Uncertainty of measurement of load cell involves uncertainty due to
factors including relative zero offset, relative repeatability, relative
resolution and relative interpolation.
• The relative repeatability of the force transducers is found up to 0.0224
% and is within the permissible limits as specified the standard
discussed.
• Uncertainty of force measurement of force calibration machine into
account is up to 0.038 %, which is well within limits as permitted by
the standard IS 4169-2014/ISO 376-2011.
The effect of design parameters of dual octal ring
load cell on its performance measures is investigated.
The conclusions based on multi-objective
optimization of dual octal ring load cell using Taguchi
with GRA and experimental performance evaluation
is summarized as follows:
• The newly developed Dual capacity load cell gives
low stiffness for light load causing high sensitivity,
while high stiffness for heavy load preventing over-
straining.
• Grey regression analysis optimization technique
indicated decrease in mass by 12% with 27% increase
in deflection.
Conclusions
• The performance evaluation test showed increase in
sensitivity by 15.88 % for light loads (up to 2940 N)
as compared to heavy load condition (2940 N to 5000
N), which is very essential to achieve high precision
measurements.
• The Polynomial regression equation is obtained using
experimental observations of load cell. The equation
obtained is y = 9E-10x3 - 1E-05x2 + 0.1392x -
10.576, Where x is force in Newton, y is electrical
output in millivolt.
• Based on ANOVA for Taguchi DOE method and
Grade values, top octagon thickness (TU) followed
by bottom octagon thickness (TL) are most
significant control factor for all performances
Conclusions
• At optimum level of GRG, Initial GRG is 0.762 and
after Confirmation experiment, it is obtained as 0.911,
means there is “Improvement of 16.36 %” is
observed which confirms the theoretical values.
• The uncertainty of the load cell is found to be ± 0.038
% which includes the relative deviations due to the
factors as per standard procedures.
• The load cell confirms to class 1 as per IS 4169-
2014/ISO 376-2011, respectively and is suitable for
use as force transfer standard.
• The experimental results will provide significant
guidance for designing of force sensor.
Conclusions
69
REFERENCES
[1] Kumar, H., Sharma, C., Kumar, A., & Arora, P. K. (2015), “Retrospective investigations of
force measurement”, Mapan, Volume 30, Issue 4, pp.291-302.
[2] Osman, S. M., Hasan, E. H., El-Hakeem, H. M., Rashad, R. M., & Kouta, F. (2014), “Multi-
Capacity Load Cell Concept”, Sensors & Transducers, Volume 179, Issue 9, pp.229.
[3] Bulent Aydemir , Erdinc Kaluc , Sinan Fank (2006),”Influence of heat treatment on hysteresis
error of force transducers manufactured from 17-4PH, stainless steel, Measurement , volume 39,
pp. 892–900.
[4] Jocelyn M. Kluger, Themistoklis P. Sapsis, Alexander H. Slocum (2016) , “A high-resolution
and large force-range load cell by means of nonlinear cantilever beams”, Precision Engineering
,volume 43, pp. 241–256.
[5] Gauri Ranadive, Anindya Deb (2012), “Evaluation of the accuracy of an impact load cell
using lumped parameter modeling and analysis”, 4th International Conference on Computer
Modeling and Simulation , Singapore..Available at
https://www.researchgate.net/profile/Anindya_Deb/publication/266487551_Evaluation_of_the_A
ccuracy_of_an_Impact_Load_Cell_Using_Lumped_Parameter_Modeling_and_Analysis/links/56
c4806a08ae736e7046eb60.pdf
[6] Dhananjay Ghanshyam Pardhi and S D Khamankar (2014), “Stress analysis of spline shaft
using finite element method and its experimental verification by photo elasticity”, International
journal of mechanical engineering and Robotics Research, volume 3, pp. 451–458.
[7] Minvydas Ragulskisa,, Miguel A.F. Sanjuanb (2008) , “Chaotic pattern of unsmoothed
isochromatics around the regions of concentrated stresses'' , Computers & Graphics, volume 32,
pp. 116–119.
[8] Load Cell and Weigh Module Handbook ( 2010), Rice Lake Weighing Systems, United
States of America.
[9] Robinson, Gordon M. (1995), “Genetic algorithm optimisation of load cell geometry by finite
element analysis”, City University, London (Doctoral thesis). Available at
https://openaccess.city.ac.uk/id/eprint/13593/
[10] Prajna P, Patil N Konark, Meshramkar Roseline, Nadiger Ramesh K. Shetty (2013), “A Fast
and Economical Photoelastic Model Making of the Teeth and Surrounding Structure” , Journal of
Dental and Medical Sciences, Volume 3, PP 28-33.
[11] Load Cell Application and Test Guideline (2010), “Scale Manufacturers Association” ,
Columbus, Ohio , Available at http://www.scalemanufacturers.org/
[12] Saswati Biswas ,“Digitization of vibrating wire type load cell for mine support systems”,
National Institute of Technology, Rourkela, Odisha (M.Tech thesis), Available at
http://ethesis.nitrkl.ac.in/6146/
[13] Surasith Piyasi (2002) , “The Detail Design of Hollow Clevis-pin Type Load Cells”, 2002-
International conference ANSYS Conference 50, Available at
https://www.academia.edu/24451091/The_Detail_Design_of_Hollow_Clevis_pin_Type_Load_C
ells
[14]Matthew Wadham-Gagnon, Pascal Hubert, Christian Semler, “Hyperelastic Modeling Of
Rubber In Commercial Finite Element Software (Ansys™)”, 2006_SAMPE_51_Wadham-
Gagnon Available at
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.544.4157&rep=rep1&type=pdf
[15] Sudhir Kumar, Nabi Hasan, Harish Kumar and Anil Kumar (2011), “Finite element analysis
of a force transducer”, Indian Journal of Science and Technology, Volume 4, pp. 1246–1247.
[16]“Design and Performance Considerations: Rocker Column vs. Double End Shear Beam Load
Cells (2011)” , Fairbanks Scales, Inc., 10-11 – Issue 1 Available at
http://catalog.jamiesonequipment.com/Asset/Totalcomp%20Rocker%20Column%20Load%20Ce
ll%20Brochure%20JEC.pdf
72
[17]Harb, A. M. (2013), “Enhancing the performance of dynamic weighing systems using
Kalman filter”, Enhancing The Performance of Dynamic Weighing Systems using Kalman Filter.
[18]M. Mencattelli, Donati, A (2014), “Customized Load Cell for Three-Dimensional Force-
Moment Measurements in Orthodontics” 5th IEEE RAS & EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob), São Paulo, Brazil , pp. 38–43.
[19] Samuel Tileston Whittemore (2014) , “Development and Testing of An Application Specific
Force Sensor for Snowpack Assessment, Massachusetts Institute of Technology (B.S. thesis)
[20] Jjohn Van Tuyl (2014), “Development of a force sensing insole to quantify impact loading to
the foot in various postures”, McMaster University , Hamilton, Ontario (M.S.thesis) Available
athttp://hdl.handle.net/11375/15981
[21]Yun Lu, , Weijia Li,, Wenzhuo Tian, and Kai Zhou (2014), “A Method on Measurement of
Six-DOF Force for Heavy Load Equipment” , Journal of applied science and engineering
innovation, Volume1, pp. 149–157 Available at http://jasei.org/PDF/1-2/1-149-157.pdf
[22] Wei Zhang, Kim Boon Lua, Van Tien Truong, Kumar A. Senthil, Tee Tai Lim, KhoonSeng
Yeo, and Guangya Zhou (2016), “Design and Characterization of a Novel T- shaped Multi-Axis
Piezoresistive Force/Moment Sensor”, IEEE SENSORS Journal, Volume 16, pp. 4198– 4210
[23] TusharKanti Acharya (2012) “Creep Analysis of a Thick Walled Spherical Pressure Vessel
Considering Large Strain”, Rensselaer Polytechnic Institute, Hartford, Connecticut. (M.E thesis).
73
[24] Mikael J. Hvorslev (1972), “Notes On Proving Rings And Frames For Soil Testing
Equipment”, Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, Available at
https://apps.dtic.mil/sti/pdfs/AD0756199.pdf
[25] HilmanSyaeful Alam, Demi Soetraprawata1 and Bahrudin (2015), “The Structural Design of
Six-Axis Force/Torque Sensor Using Virtual prototyping Technique”, Journal of Scientific
Research & Reports ,Volume 5, pp. 120-131.
[26]Ashirbad, S. (2012), “Analysis of machine tool structure using RSM approach (Doctoral
dissertation)”, Available at http://ethesis.nitrkl.ac.in/3946/
[27]Dan MihaiStefanescu*, AlexandruStefanescu (2001), “Criteria for Choosing the Elastic
Elements of Force Transducers”, Proceedings of the 17th International Conference on Force,
Mass, Torque and Pressure Measurements, IMEKO TC3, 17- Available at
https://www.imeko.org/publications/tc3-2001/IMEKO-TC3-2001-017.pdf
[28] Pichet Pinit (2009), “Development of Window-based program for analysis and visualization
of two-dimensional stress field in digital photoelasticity”, Songklanakarin Journal of science and
Technology, Volume 31, pp. 205-212.
[29] Dipti Kanta Das, Ashok Kumar Sahoo, Ratnakar Das, B. C. Routara ( 2014 ), “Investigations
on hard turning using coated carbide insert: Grey Based Taguchi and regression methodology”,
Procedia Materials Science, Volume 6, pp. 1351 – 1358.
74
[30] Madhuban Prasad ,NabiHasan , Anil Kumar , Harish Kumar (2011), “Design studies of a
square ring shaped force sensor”, International Journal Of Applied Engineering Research,
Dindigul ,Volume 1, pp.727-733.
[31] Roman Pačnik and Franc Novak (2010), “A High-Sensitivity Hydraulic Load Cell for Small
Kitchen Appliances”, Sensors, Volume 10, pp. 8452-8465.
[32] Randall M. Schoonover (1979) , “A High Precision Load Cell Mass Comparator”, Journal of
Research of the National Bureau of Standards, Volume 84, pp.347-351
[33] Prof. H. V. Shete, Prof. R. A. Pasale, Prof. E. N. Eitawade (2012), “ Photoelastic Stress
Analysis & Finite Element Analysis of an Internal Combustion Engine Piston”, International
Journal of Scientific & Engineering Research ,Volume 3, pp.,1-5
[34] A. Abu-Sinna, Yon-Kyu Park , Dae-Im Kang, Min-Seok Kim (2009), “The influence of
loading frame stiffness on load cell–deadweight force machine interaction”, Measurement
,Volume 42, pp.830–835.
[35]Dr. P Ravinder Reddy, Mr. K B Jagadeeshgouda Mr. Suprit Malagi (2015), “Analysis of
Stress Distribution in a Curved Structure Using Photoelastic and Finite Element Method'', Journal
of Mechanical and Civil Engineering, Volume 12, pp. 112-116.
[36] Kamlesh H. Thakkar, Vipul. M.Prajapati, Bipin D. Patel (2013), “Performance Evaluation of
Strain Gauge Based Load Cell to Improve Weighing Accuracy”, International Journal of Latest
Trends in Engineering and Technology, Volume 2, pp,.103-107.
75
[37] Uddanwadiker, R. (2011), “Stress analysis of crane hook and validation by photo-elasticity”,
Engineering, Volume 3, pp. 935-941.
[38] Vinay Ganti(2011) , “Analysis Of 4-Dof Force/Torque Sensor For Intelligent Gripper ”,
National Institute Of Technology, Rourkela (B. Tech. thesis), Available at
http://ethesis.nitrkl.ac.in/2273/
39] Seif. M. Osman1 ,Ebtisam H. Hasan1, H. M. El-Hakeem, R.M.Rashad d F. Kouta (2013),
“Conceptual design of multi-capacity load cell”, 16th International Congress of Metrology, EDP
Sciences, Available at
https://cfmetrologie.edpsciences.org/articles/metrology/abs/2013/01/metrology_metr2013_03002
/metrology_metr2013_03002.html
[40] Mr. M. M. Dange, Prof. S. R. Zaveri & Prof.S.D.Khamankar , “Stress Analysis of Bell
Crank Lever, International Journal on Recent and Innovation Trends in Computing and
Communication, Volume 2,pp. 2423 – 2430.
[41] Qiao kang Liang, Dan Zhang, Yaonan Wang, Yunjian Ge2013), “Design and Analysis of a
Novel Six-Component F/T Sensor based on CPM for Passive Compliant Assembly”,
Measurement Science Review, Volume pp.253-264.
[42] A.R. Tavakolpour-Saleh, M.R. Sadeghzadeh (2014), “Design and development of a three-
component force/moment sensor for underwater hydrodynamic tests”, Sensors and Actuators: A
Physical Available at https://doi.org/10.1016/S0263-2241(02)00002-7
76
[43] J.W Jooa, K.S Naa, D.I Kangb (2002) , “Design and evaluation of a six-component load
cell”, Measurement, Volume 32, pp. 125–133.
[44] Fu Shao (2015) , “Design of a Three-Component Force Sensor for Meso-Milling
Applications”, University of Toronto (Doctoral thesis), Available at
https://doi.org/10.1016/j.proeng.2014.06.016
[45] Gab-Soon Kim(2007), “Development of a Six-Axis Force/Moment Sensor with Rectangular
Taper Beams for an Intelligent Robot”, International Journal of Control, Automation, and
Systems, Volume 5, pp. 419-428.
[46] Jean-Marc Drouet and Yvan Champoux(2014),“Designing a Strain Gauge Transducer for
Dynamic Load Measurement in Cycling using numerical simulation”, Procedia Engineering
,Volume72 pp. 304 – 309.
[47] M. Durairaja, D. Sudharsunb,, N. Swamynathanb (2014), “Analysis of Process Parameters
in Wire EDM with Stainless Steel using Single Objective Taguchi Method and Multi Objective
Grey Relational Grade”, Procedia Engineering, Volume 64, pp. 868 – 877.
[48] JacekPiskorowski,, Tomasz Barcinski (2008), “Dynamic compensation of load cell response:
A time-varying approach”, Mechanical Systems and Signal Processing ,Volume 22, pp. 1694–
1704 .
[49] Amin Valizadeh, Alireza Akbarzadeh, Mohammad HoseinTashakori Heravi (2015), “Effect
of Structural Design Parameters of a Six-Axis Force/Torque Sensor Using Full Factorial Design”,
Proceedings of the 3rd RSI International Conference on Robotics and Mechatronics, Tehran, Iran
pp.789-793
77
[50] Robert M. Williams (2014), “Evaluation of Beam Load Cell Use for Base Reaction Force
Collision Detection on Industrial Robots ”, Auburn University, Auburn, Alabama ,(M.S.thesis ),
Available at http://etd.auburn.edu/handle/10415/4355
[51] G.M. Robinson(1997), “Finite element modelling of load cell hysteresis”, Measurement,
Volume 20, pp. 103-107.
[52] Ted Kopczynski,(2011) “ Five Factors That Can Affect Your Weighing System’s Accuracy”,
Hardy Process Solutions, San Diego, Available at https://www.powderbulk.com/wp-
content/uploads/pdf/pbe_20010901_31.pdf
[53] GardarPáll Gíslason (2011), “Load cell optimization”, Load Cell Optimization”, University
of Iceland,(M.S. thesis) Available at https://skemman.is/handle/1946/8589?locale=en
[54] Chung Ket Thein (2013) , “Structural sizing and shape optimization of a load cell”,
International Journal of Research in Engineering and Technology, Volume 02 , pp.196-201,
[55] Hunt, A. Guide to the Measurement of Force, The Institute of Measurement and Control,
London (Published 1998).
[56] R. A. Mitchell (1968), “Analysis of n-Degree Elliptical Elastic Rings of Non Uniform Cross
Section”, Journal of Research of the National Bureau of Standards-Co Engineering and
Instrumentation ,.Volume3c, pp.139-160.
[57] Raghu N. Kacker, Eric S. Lagergren, & James J. Filliben (1991), “Taguchi Vs Orthogonal
Arrays Are Classical Designs of Experiments”, Journal of Research of the National Institute of
Standards and Technology, Volume 96, pp.577-591.
78
[65] S. Boukhenous (2011), “A Low Cost Three-Directional Force Sensor”, International Journal
On Smart Sensing And Intelligent Systems ,Volume 4, pp.21-34.
[66] Chul-Goo Kang(2005), “Performance Improvement of a 6-Axis Force-torque Sensor via
Novel Electronics and Cross-shaped Double-hole Structure”, International Journal of Control,
Automation, and Systems, Volume 3, pp. 469-476.
[67] Brent J. Maranzano ⁎, Bruno C. Hancock (2016), “Quantitative analysis of impact
measurements using dynamic load cells”, Sensing and Bio-Sensing Research Volume7,pp. 31–37.
[68] Robinson, G. M. (1995), “ Genetic algorithm optimisation of load cell geometry by finite
element analysis”, (Doctoral dissertation, City University London), Available at
https://openaccess.city.ac.uk/id/eprint/13593/
[69] Baadkar, C. C. (2010), “Semi-Trailer Structural Failure Analysis Using Finite Element
Method”, Available at https://ir.canterbury.ac.nz/handle/10092/5240
[70] Sudhir Kumar, Wakkar Ali, Anil Kumar, Harish Kumar (2011), “Axial Deflection Studies Of
Ring Shaped Force Transducer: A Review”, International Journal of Engineering Science and
Technology , Volume 3, pp.1330-1333.
[71] Shailendra V. Dhanal(2013) “Finite element analysis of octagonal ring for a three component
milling tool dynamometer”, IOSR Journal of Engineering ,Volume 3, PP 16-19.
[72] Sudhir Kumar and H Kumar (2014) , “Development and Testing of Ring Shaped Force
Transducers”, Journal of Scientific & Industrial Research, Volume , 73, February 2014, pp. 103-
106
79
[73] Sudhir Kumar, Nabi Hasan, Harish Kumar & Anil Kumar (2011), “Finite element analysis of
a force transducer”, Indian Journal of Science and Technology ,Volume 4 , pp.1246-1247.
[74] A.P. Onwualu (2002) , “An extended octagonal ring dynamometer for measurement of forces
on a simple tillage tool”, Nigerian Journal of Technology, Volume 21, pp.46-59.
[75] Humberto Rodríguez- Fuentes, Martin Cadena-Zapata, Jesús Alonso Esparza- Renteria, Juan
Antonio Vidales-Contreras, Ma. del Carmen Ojeda-Zacarías and Alejandro Isabel Luna-
Maldonado (2014), ”Design, Manufacturing And Calibration Of A Circular Ring Type Monolithic
Load Cell Addressed To Drawbar Pull Testing Of The Farm Tractor”, Journal Of Experimental
Biology And Agricultural Sciences, Volume 2, pp373-379.
[76] Harish Kumar, Chitra Sharma and Anil Kumar (2011), “Design and development of
precision force transducers”, Journal of scientific and industrial research, Volume 70, pp. 519-
524.
[77] Harish Kumar, Mohit Kaushik, Pardeepc and Pawan Kumar Arora (2015), “Investigations on
metrological characterization of elliptical shaped force transducers for precision force
measurement”, Engineering Solid Mechanics, Volume 3 , pp. 263-273.
[78] Harish Kumar(2015), “Finite Element Computational And Experimental Investigations Of
Design And Metrological Characterization Of Force Transducers”, Guru Gobind Singh
Indraprastha University, Delhi (PhD thesis), Available at
https://shodhganga.inflibnet.ac.in/handle/10603/127637
80
[79] Harish Kumar Chitra Sharma Anil Kumar(2011), “Design Studies Of Ring Shaped Force
Transducers” International Journal of Engineering Science and Technology, Volume 3 , pp.1536-
1541.
[80] Er Dharmendra Kumar Dubey, Dr. R. L. Yadav (2016), “A Retrospective Study for
Comprehensive Design of Force Transducers”, International Journal of Innovative Science,
Engineering & Technology, Volume 3, pp.234-236.
[81]Er. Dharmendra Kumar Dubey1 Dr. R. L. Yadav2 Manoj Kumar(2015), “Calibration of Force
Transducers”, IJSRD, Volume 3, pp.902-904.
[82] Essam Soliman(2015) ,“Performance analysis of octal rings as mechanical force
transducers”, Alexandria Engineering Journal ,2015, Available at
http://dx.doi.org/10.1016/j.aej.2015.01.004
[83]Harish Kumar & Chitra Sharma (2012), “Performance evaluation of force transducers”,
Indian Journal of Pure & Applied Physics, Volume 50, pp. 86-90.
[84] Khaled A. Abuhasel* & Essam Soliman, “Statistical Analysis Of Octal Rings As Mechanical
Force Transducers”, Advances In Mathematics And Statistical Sciences, Available at
http://wseas.us/e-library/conferences/2015/Dubai/MCSS/MCSS-35.pdf
[85] Rakesh Kolhapure ⇑, Vasudev Shinde, Vijay Kamble(2017), “Geometrical optimization of
strain gauge force transducer using GRA method”, Measurement, Volume.101, pp.111–117
Available at https://doi.org/10.1016/j.measurement.2017.01.030
81
[79] Harish Kumar Chitra Sharma Anil Kumar(2011), “Design Studies Of Ring Shaped Force
Transducers” International Journal of Engineering Science and Technology, Volume 3 , pp.1536-
1541.
[86] Aravind Russel, Jugal Karda, Piyush Jain,Shalmali Kale Pallavi Khaire(2016), “ Simulation
and Experimental Study for Selection of Gauge Area Cross-Section of ‘S’ Type Load Cell”,
International Research Journal of Engineering and Technology ,Volume 03,pp.1301-1304.
[87] A. Abuhasel and Essam Soliman(2016), “Regression Analysis Of Octal Rings As
Mechanical Force Transducers Khaled”, WSEAS Transactions On Mathematics, Volume 15,
pp.398-406.
[88] Meng Chun-Ling,Zheng Wei-Zhi, Lin Mei-Hong(2002) , “Finite element analysis of double-
shear beam load cell”, Machinery Design & Manufacture,vol.3. Available at
https://www.jmst.org/EN/article/showCorrelativeArticle.do?keyword=g
[89] Prof. Kamlesh H. Thakkar, Prof.Vipul M.Prajapati, Prof. Bipin D.Patel (2013),
“Performance Evaluation of Strain Gauge Based Load Cell to Improve Weighing
Accuracy”,International Journal of Latest Trends in Engineering and Technology, vol. 2,pp,.103-
107.
82
Papers published
•Vijay A. Kamble, Jayant K. Kittur ,Vasudev D. Shinde, “Geometrical Optimization of Dual Octal Ring
Force sensor for Wide Range Loading using GRA”, Materials Today: Proceedings, 2021 - Elsevier ,
https://doi.org/10.1016/j.matpr.2021.03.745
•Vijay A. Kamble, Jayant K. Kittur , Vasudev D. Shinde, “Finite element analysis of two stage force
transducer”, Journal of Mechatronics, Machine Design and Manufacturing ,Vol. 2 Issue 3, Page 21-25 ,2020
•Vijay A. Kamble, Vasudev D. Shinde, Jayant K. Kittur , “Shape Optimization of Ring Shaped Load Cells for
Enhancing Sensitivity at Lower Deflection using FEM”, Journal of Research in Mechanical Engineering and
Applied Mechanics, Vol. 4 ,Issue 2, Page 28-36, 2019
•Vijay A. Kamble, Vasudev D. Shinde, Jayant K. Kittur , “Review on optimization of load cells”, Journal
of,Advancements in Material Engineering, (e-ISSN: 2582-0036), Vol.5, Issue, 2020
•Vijay A. Kamble, Vasudev D. Shinde, Jayant K. Kittur , “Critical Assessment of Load Cells “Journal of
Advancement in Machines (e ISSN: 2582-2233), Vol. 5, Issue 3, 2020
•Vijay A. Kamble, Vasudev D. Shinde, Jayant K. Kittur , “Overview of Load Cells”, Journal of Mechanical
and Mechanics Engineering (e-ISSN: 2581-3722),Vol. 5 , Issue 3, 2020.
•Shreyas S. Pandit , Vijay A. Kamble ,“Finite element analysis for stress analysis and Non linear contact
analysis of Multi range load cell in Ansys software”, International journal of Engg. And
Technology,eISSN:2395-0056,p-ISSN2395-0072,vol. 05,issue 06,June 2018
•Shreyas S. Pandit , Vijay A. Kamble, “Review of Multi-stage Strain gauge based load cell”- National
conference on excellence in design manufacturing and automation Textile and engineering Institute
Ichalkarnaji, 26-27 April 2018
83
Papers published
•Rakesh Kolhapure , Vasudev Shinde, VijayKamble “Geometrical optimization of strain gauge force
transducer using GRA method” - Measurement 101 (2017) 111–117
http://dx.doi.org/10.1016/j.measurement. 2017.01.030 0263-2241/_ 2017 Elsevier Ltd.
•VaibhavVarne, VasudevShinde, Vijay Kamble ,“Parametric Optimization of Pancake Type Load Cell Using
Response Surface Methodology” - International Journal of Current Engineering and Technology, issue 6, 2016
•Rakesh Kolhapure , Vasudev Shinde, VijayKamble ,“Optimization of Load Cell by Grey Relational Analysis
Method” - International Journal of Engineering Technology, Management and Applied Sciences, February
2016, Volume 4, Issue 2, ISSN 2349-4476.
•VaibhavVarne, VasudevShinde, Vijay Kamble “Effect of Geometrical Parameters on Sensitivity and Volume
of Rectangular Beam Force Transducer” - Journal of Recent Trends in Mechanics Volume 1 Issue 1, Page 1-
14, 2016
•D.M. Kalai, V.A.Kamble, A.M.Rathod, B. K. Khot “Parametric Optimization of Rectangular Beam Type
Load Cell Using Taguchi Method” - International Journal of Computer Engineering In Research Trends,
Volume 3, Issue 11, November-2016, pp. 596-601
•Rakesh Kolhapure, Vasudev Shinde , Vijay Kamble “Optimization of Strain Gauge Transducer for Weighing
Application Using GRA Method”, Asian Journal of Engineering and Applied Technology, Vol. 4 No. 2, 2015
pp 1-7
•Paper presented in Conference : “Geometrical Optimization of Dual Octal Ring Force sensor for Wide
Range Loading using GRA”, 3rd International e-Conference on Frontiers in Mechanical Engineering and
nanotechnology [ICFMET-2020] held on November 27-28, 2020.
Thank You

More Related Content

What's hot

Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018Universitat Politècnica de Catalunya
 
An Introduction to 5G and ‘Real’ 5G
An Introduction to 5G and ‘Real’ 5GAn Introduction to 5G and ‘Real’ 5G
An Introduction to 5G and ‘Real’ 5G3G4G
 
Low back pain( part 2)
Low back pain( part 2)Low back pain( part 2)
Low back pain( part 2)farranajwa
 
Freiberg's disease
Freiberg's diseaseFreiberg's disease
Freiberg's diseaseYash Oza
 
Open ran functional splits
Open ran functional splitsOpen ran functional splits
Open ran functional splitsAshwani kumar
 
HML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningHML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningYan Xu
 
O-RAN and the enterprise
O-RAN and the enterpriseO-RAN and the enterprise
O-RAN and the enterpriseADVA
 
Lumbar Instability Causes - Diagnosis - Management
Lumbar Instability  Causes - Diagnosis - ManagementLumbar Instability  Causes - Diagnosis - Management
Lumbar Instability Causes - Diagnosis - ManagementAlexander Bardis
 
Myofascial pain conditions causing low back pain
Myofascial pain conditions causing low back painMyofascial pain conditions causing low back pain
Myofascial pain conditions causing low back painDr Ravi Shankar Sharma
 
Complications of total knee replacement
Complications of total knee replacementComplications of total knee replacement
Complications of total knee replacementVaishnavi S Nair
 

What's hot (14)

Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
Variational Autoencoders VAE - Santiago Pascual - UPC Barcelona 2018
 
Entrapment neuropathies
Entrapment neuropathiesEntrapment neuropathies
Entrapment neuropathies
 
An Introduction to 5G and ‘Real’ 5G
An Introduction to 5G and ‘Real’ 5GAn Introduction to 5G and ‘Real’ 5G
An Introduction to 5G and ‘Real’ 5G
 
Low back pain( part 2)
Low back pain( part 2)Low back pain( part 2)
Low back pain( part 2)
 
Freiberg's disease
Freiberg's diseaseFreiberg's disease
Freiberg's disease
 
Open ran functional splits
Open ran functional splitsOpen ran functional splits
Open ran functional splits
 
HML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep LearningHML: Historical View and Trends of Deep Learning
HML: Historical View and Trends of Deep Learning
 
Duplicate_Quora_Question_Detection
Duplicate_Quora_Question_DetectionDuplicate_Quora_Question_Detection
Duplicate_Quora_Question_Detection
 
O-RAN and the enterprise
O-RAN and the enterpriseO-RAN and the enterprise
O-RAN and the enterprise
 
Lumbar Instability Causes - Diagnosis - Management
Lumbar Instability  Causes - Diagnosis - ManagementLumbar Instability  Causes - Diagnosis - Management
Lumbar Instability Causes - Diagnosis - Management
 
Braces scoliosis
Braces scoliosisBraces scoliosis
Braces scoliosis
 
Recent advances in joint arthroplasty
Recent advances in joint arthroplastyRecent advances in joint arthroplasty
Recent advances in joint arthroplasty
 
Myofascial pain conditions causing low back pain
Myofascial pain conditions causing low back painMyofascial pain conditions causing low back pain
Myofascial pain conditions causing low back pain
 
Complications of total knee replacement
Complications of total knee replacementComplications of total knee replacement
Complications of total knee replacement
 

Similar to phd colloquium 9.1.23.ppt

1 s2.0-s0094114 x15002402-main
1 s2.0-s0094114 x15002402-main1 s2.0-s0094114 x15002402-main
1 s2.0-s0094114 x15002402-mainMesfin Demise
 
DESIGN AND ANALYSIS OF GEAR TRAIN...pptx
DESIGN AND ANALYSIS OF GEAR TRAIN...pptxDESIGN AND ANALYSIS OF GEAR TRAIN...pptx
DESIGN AND ANALYSIS OF GEAR TRAIN...pptxRahulKumar10275
 
MSc Dissertation - Selection & Scaling of Natural Earthquake Records for Inel...
MSc Dissertation - Selection & Scaling of Natural Earthquake Records for Inel...MSc Dissertation - Selection & Scaling of Natural Earthquake Records for Inel...
MSc Dissertation - Selection & Scaling of Natural Earthquake Records for Inel...Konstantinos Myrtsis
 
A Review of Vibration of a cantilever Beam
A Review of Vibration of a cantilever BeamA Review of Vibration of a cantilever Beam
A Review of Vibration of a cantilever Beamijiert bestjournal
 
Assessment of Methods for Development of Confinement Model of Low Strength Re...
Assessment of Methods for Development of Confinement Model of Low Strength Re...Assessment of Methods for Development of Confinement Model of Low Strength Re...
Assessment of Methods for Development of Confinement Model of Low Strength Re...IJERA Editor
 
USING FINITE ELEMENT METHOD FOR ANALYSIS OF SINGLE AND MULTICELL BOX GIRDER B...
USING FINITE ELEMENT METHOD FOR ANALYSIS OF SINGLE AND MULTICELL BOX GIRDER B...USING FINITE ELEMENT METHOD FOR ANALYSIS OF SINGLE AND MULTICELL BOX GIRDER B...
USING FINITE ELEMENT METHOD FOR ANALYSIS OF SINGLE AND MULTICELL BOX GIRDER B...IRJET Journal
 
1 s2.0-s0301679 x17303614-main
1 s2.0-s0301679 x17303614-main1 s2.0-s0301679 x17303614-main
1 s2.0-s0301679 x17303614-mainMesfin Demise
 
5.structural engineering
5.structural engineering5.structural engineering
5.structural engineeringhlksd
 
L01 03
L01 03L01 03
L01 03hitusp
 
Bone Mechanics - Leismer and Walsh 2006
Bone Mechanics - Leismer and Walsh 2006Bone Mechanics - Leismer and Walsh 2006
Bone Mechanics - Leismer and Walsh 2006jeffleismer
 
Seismic protection variable stiffness part 2 poster
Seismic protection variable stiffness part 2 poster Seismic protection variable stiffness part 2 poster
Seismic protection variable stiffness part 2 poster Neofytos Theodorou
 

Similar to phd colloquium 9.1.23.ppt (20)

1 s2.0-s0094114 x15002402-main
1 s2.0-s0094114 x15002402-main1 s2.0-s0094114 x15002402-main
1 s2.0-s0094114 x15002402-main
 
DESIGN AND ANALYSIS OF GEAR TRAIN...pptx
DESIGN AND ANALYSIS OF GEAR TRAIN...pptxDESIGN AND ANALYSIS OF GEAR TRAIN...pptx
DESIGN AND ANALYSIS OF GEAR TRAIN...pptx
 
CV_anish
CV_anishCV_anish
CV_anish
 
MSc Dissertation - Selection & Scaling of Natural Earthquake Records for Inel...
MSc Dissertation - Selection & Scaling of Natural Earthquake Records for Inel...MSc Dissertation - Selection & Scaling of Natural Earthquake Records for Inel...
MSc Dissertation - Selection & Scaling of Natural Earthquake Records for Inel...
 
In3314531459
In3314531459In3314531459
In3314531459
 
A Review of Vibration of a cantilever Beam
A Review of Vibration of a cantilever BeamA Review of Vibration of a cantilever Beam
A Review of Vibration of a cantilever Beam
 
5 swapnil
5 swapnil5 swapnil
5 swapnil
 
Assessment of Methods for Development of Confinement Model of Low Strength Re...
Assessment of Methods for Development of Confinement Model of Low Strength Re...Assessment of Methods for Development of Confinement Model of Low Strength Re...
Assessment of Methods for Development of Confinement Model of Low Strength Re...
 
USING FINITE ELEMENT METHOD FOR ANALYSIS OF SINGLE AND MULTICELL BOX GIRDER B...
USING FINITE ELEMENT METHOD FOR ANALYSIS OF SINGLE AND MULTICELL BOX GIRDER B...USING FINITE ELEMENT METHOD FOR ANALYSIS OF SINGLE AND MULTICELL BOX GIRDER B...
USING FINITE ELEMENT METHOD FOR ANALYSIS OF SINGLE AND MULTICELL BOX GIRDER B...
 
1 s2.0-s0301679 x17303614-main
1 s2.0-s0301679 x17303614-main1 s2.0-s0301679 x17303614-main
1 s2.0-s0301679 x17303614-main
 
IJET-V2I6P14
IJET-V2I6P14IJET-V2I6P14
IJET-V2I6P14
 
5.structural engineering
5.structural engineering5.structural engineering
5.structural engineering
 
L01 03
L01 03L01 03
L01 03
 
Bone Mechanics - Leismer and Walsh 2006
Bone Mechanics - Leismer and Walsh 2006Bone Mechanics - Leismer and Walsh 2006
Bone Mechanics - Leismer and Walsh 2006
 
Genikomsou2015
Genikomsou2015Genikomsou2015
Genikomsou2015
 
em ppt.pdf
em ppt.pdfem ppt.pdf
em ppt.pdf
 
Seismic protection variable stiffness part 2 poster
Seismic protection variable stiffness part 2 poster Seismic protection variable stiffness part 2 poster
Seismic protection variable stiffness part 2 poster
 
L01 03
L01 03L01 03
L01 03
 
Dc34631639
Dc34631639Dc34631639
Dc34631639
 
I012326065
I012326065I012326065
I012326065
 

More from VijayKamble86

VA Kamble3.VA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA ...
VA Kamble3.VA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA ...VA Kamble3.VA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA ...
VA Kamble3.VA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA ...VijayKamble86
 
VAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkam...
VAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkam...VAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkam...
VAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkam...VijayKamble86
 
VAKambleVAKamble4VAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKa...
VAKambleVAKamble4VAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKa...VAKambleVAKamble4VAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKa...
VAKambleVAKamble4VAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKa...VijayKamble86
 
Dr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Ka...
Dr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Ka...Dr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Ka...
Dr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Ka...VijayKamble86
 
V A Kamble5.coping of stres5.coping of stres5.coping of stress5.coping of str...
V A Kamble5.coping of stres5.coping of stres5.coping of stress5.coping of str...V A Kamble5.coping of stres5.coping of stres5.coping of stress5.coping of str...
V A Kamble5.coping of stres5.coping of stres5.coping of stress5.coping of str...VijayKamble86
 
stress introduction by Dr V A Kamblestress introduction by Dr V A Kamblestres...
stress introduction by Dr V A Kamblestress introduction by Dr V A Kamblestres...stress introduction by Dr V A Kamblestress introduction by Dr V A Kamblestres...
stress introduction by Dr V A Kamblestress introduction by Dr V A Kamblestres...VijayKamble86
 
2 MODELS OF STRESS2 MODELS OF STRESS2 MODELS OF STRESS.pptx
2 MODELS OF STRESS2 MODELS OF STRESS2 MODELS OF STRESS.pptx2 MODELS OF STRESS2 MODELS OF STRESS2 MODELS OF STRESS.pptx
2 MODELS OF STRESS2 MODELS OF STRESS2 MODELS OF STRESS.pptxVijayKamble86
 
SY_B_Tech_NEP_Curriculam_FINAL_231230_192644.pdf
SY_B_Tech_NEP_Curriculam_FINAL_231230_192644.pdfSY_B_Tech_NEP_Curriculam_FINAL_231230_192644.pdf
SY_B_Tech_NEP_Curriculam_FINAL_231230_192644.pdfVijayKamble86
 
MBA FA II SEM 205 (Stress Of Management).pdf
MBA FA II SEM 205  (Stress Of Management).pdfMBA FA II SEM 205  (Stress Of Management).pdf
MBA FA II SEM 205 (Stress Of Management).pdfVijayKamble86
 
342734005-Entrepreneurship-Development-Notes-Sem-VI-Unit-I.pptx
342734005-Entrepreneurship-Development-Notes-Sem-VI-Unit-I.pptx342734005-Entrepreneurship-Development-Notes-Sem-VI-Unit-I.pptx
342734005-Entrepreneurship-Development-Notes-Sem-VI-Unit-I.pptxVijayKamble86
 
Mechanical structure presentation 17723 modified.pptx
Mechanical structure presentation 17723 modified.pptxMechanical structure presentation 17723 modified.pptx
Mechanical structure presentation 17723 modified.pptxVijayKamble86
 
work stress management.ppt
work stress management.pptwork stress management.ppt
work stress management.pptVijayKamble86
 
Mechanical structure presentation 17723.pptx
Mechanical structure presentation 17723.pptxMechanical structure presentation 17723.pptx
Mechanical structure presentation 17723.pptxVijayKamble86
 
First_Year syllabus nep.pdf
First_Year syllabus nep.pdfFirst_Year syllabus nep.pdf
First_Year syllabus nep.pdfVijayKamble86
 
Stress Mgmt. Presentation.ppt
Stress Mgmt. Presentation.pptStress Mgmt. Presentation.ppt
Stress Mgmt. Presentation.pptVijayKamble86
 

More from VijayKamble86 (20)

VA Kamble3.VA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA ...
VA Kamble3.VA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA ...VA Kamble3.VA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA ...
VA Kamble3.VA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA KambleVA ...
 
VAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkam...
VAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkam...VAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkam...
VAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkambleVAkam...
 
VAKambleVAKamble4VAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKa...
VAKambleVAKamble4VAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKa...VAKambleVAKamble4VAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKa...
VAKambleVAKamble4VAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKambleVAKa...
 
Dr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Ka...
Dr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Ka...Dr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Ka...
Dr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Kamble IPRDr V A Ka...
 
V A Kamble5.coping of stres5.coping of stres5.coping of stress5.coping of str...
V A Kamble5.coping of stres5.coping of stres5.coping of stress5.coping of str...V A Kamble5.coping of stres5.coping of stres5.coping of stress5.coping of str...
V A Kamble5.coping of stres5.coping of stres5.coping of stress5.coping of str...
 
stress introduction by Dr V A Kamblestress introduction by Dr V A Kamblestres...
stress introduction by Dr V A Kamblestress introduction by Dr V A Kamblestres...stress introduction by Dr V A Kamblestress introduction by Dr V A Kamblestres...
stress introduction by Dr V A Kamblestress introduction by Dr V A Kamblestres...
 
2 MODELS OF STRESS2 MODELS OF STRESS2 MODELS OF STRESS.pptx
2 MODELS OF STRESS2 MODELS OF STRESS2 MODELS OF STRESS.pptx2 MODELS OF STRESS2 MODELS OF STRESS2 MODELS OF STRESS.pptx
2 MODELS OF STRESS2 MODELS OF STRESS2 MODELS OF STRESS.pptx
 
SY_B_Tech_NEP_Curriculam_FINAL_231230_192644.pdf
SY_B_Tech_NEP_Curriculam_FINAL_231230_192644.pdfSY_B_Tech_NEP_Curriculam_FINAL_231230_192644.pdf
SY_B_Tech_NEP_Curriculam_FINAL_231230_192644.pdf
 
MBA FA II SEM 205 (Stress Of Management).pdf
MBA FA II SEM 205  (Stress Of Management).pdfMBA FA II SEM 205  (Stress Of Management).pdf
MBA FA II SEM 205 (Stress Of Management).pdf
 
342734005-Entrepreneurship-Development-Notes-Sem-VI-Unit-I.pptx
342734005-Entrepreneurship-Development-Notes-Sem-VI-Unit-I.pptx342734005-Entrepreneurship-Development-Notes-Sem-VI-Unit-I.pptx
342734005-Entrepreneurship-Development-Notes-Sem-VI-Unit-I.pptx
 
Mechanical structure presentation 17723 modified.pptx
Mechanical structure presentation 17723 modified.pptxMechanical structure presentation 17723 modified.pptx
Mechanical structure presentation 17723 modified.pptx
 
work stress management.ppt
work stress management.pptwork stress management.ppt
work stress management.ppt
 
Mechanical structure presentation 17723.pptx
Mechanical structure presentation 17723.pptxMechanical structure presentation 17723.pptx
Mechanical structure presentation 17723.pptx
 
First_Year syllabus nep.pdf
First_Year syllabus nep.pdfFirst_Year syllabus nep.pdf
First_Year syllabus nep.pdf
 
Stress Mgmt. Presentation.ppt
Stress Mgmt. Presentation.pptStress Mgmt. Presentation.ppt
Stress Mgmt. Presentation.ppt
 
ch7.ppt
ch7.pptch7.ppt
ch7.ppt
 
lec05.pdf
lec05.pdflec05.pdf
lec05.pdf
 
lec04.pdf
lec04.pdflec04.pdf
lec04.pdf
 
lec03.pdf
lec03.pdflec03.pdf
lec03.pdf
 
lec02.pdf
lec02.pdflec02.pdf
lec02.pdf
 

Recently uploaded

Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startQuintin Balsdon
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptNANDHAKUMARA10
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfsmsksolar
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfJiananWang21
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayEpec Engineered Technologies
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaOmar Fathy
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086anil_gaur
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationBhangaleSonal
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadhamedmustafa094
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Servicemeghakumariji156
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxmaisarahman1
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VDineshKumar4165
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapRishantSharmaFr
 

Recently uploaded (20)

Design For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the startDesign For Accessibility: Getting it right from the start
Design For Accessibility: Getting it right from the start
 
Block diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.pptBlock diagram reduction techniques in control systems.ppt
Block diagram reduction techniques in control systems.ppt
 
Rums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdfRums floating Omkareshwar FSPV IM_16112021.pdf
Rums floating Omkareshwar FSPV IM_16112021.pdf
 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
data_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdfdata_management_and _data_science_cheat_sheet.pdf
data_management_and _data_science_cheat_sheet.pdf
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
Standard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power PlayStandard vs Custom Battery Packs - Decoding the Power Play
Standard vs Custom Battery Packs - Decoding the Power Play
 
Introduction to Serverless with AWS Lambda
Introduction to Serverless with AWS LambdaIntroduction to Serverless with AWS Lambda
Introduction to Serverless with AWS Lambda
 
Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086Minimum and Maximum Modes of microprocessor 8086
Minimum and Maximum Modes of microprocessor 8086
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
kiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal loadkiln thermal load.pptx kiln tgermal load
kiln thermal load.pptx kiln tgermal load
 
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best ServiceTamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
Tamil Call Girls Bhayandar WhatsApp +91-9930687706, Best Service
 
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptxA CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
A CASE STUDY ON CERAMIC INDUSTRY OF BANGLADESH.pptx
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
Thermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - VThermal Engineering-R & A / C - unit - V
Thermal Engineering-R & A / C - unit - V
 
Unleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leapUnleashing the Power of the SORA AI lastest leap
Unleashing the Power of the SORA AI lastest leap
 

phd colloquium 9.1.23.ppt

  • 1. Ph.D. Colloquium Effects of Design Parameters on Performance of Dual Octal Load Cells By Mr. Vijay A. Kamble USN : 2GI15PMJ14 Under the Guidance of Prof.(Dr.) Jayant K. Kittur Prof. (Dr.) Vasudev D. Shinde Research center Kls Gogte Institute of Technology, Belgaum Visvesvaraya Technological University Belagavi-590018
  • 2. 2 Outline of the presentation • Introduction • Literature survey • Problem Statement and Objectives • Retrospective study of load cells • Introduction of Dual octal ring load cell • DOE for Dual octal ring load cell • Effect of geometric parameter on response variables • Grey relational analysis of Dual octal ring load cell • Manufacturing and testing of Dual octal ring load cell • Conclusion • References • Publications
  • 3. 3 Introduction Force is that produces resistance or obstruction to any moving body, or changes the motion of a body, or tends to produce these effects • Previously levers and rollers were used for multiplying force generated by the muscle. • Sir Isaac Newton, did pioneer work for force measurement and formulated laws • Force, where g is the local acceleration due to gravity , ρa and ρm are densities of air and material of the mass respectively. • Force measurement is required in applications like material testing instruments, weighing machines, force measurement in various manufacturing processes, thrust measurement in Aeronautics, calibration of hardness and strength testing machines
  • 4. 4 Sensor associated with force indicating instrument Dial Gauged Load cell (Commonly called, Proving Ring)
  • 5. 5 Strain gauge load cell • strain gauges mounted on elastic element connected in Wheatstone bridge circuit. • converts force or weight into an electrical signal. strain gauges
  • 6. 6 Load cell types a) Compression cylinder (50 kN to 50 MN) b) Compression cylinder (hollow) (10 kN to 50 MN) c) Toroid ring (1 kN to 5 MN) d) Ring (1 kN to 1 MN) e) S-beam (200 N to 50 kN) f) double-ended shear beam (20 kN to 2 MN) g) double-bending beam (500 N to 50 kN) h) Shear beam (1 kN to 500 kN) i) double-bending beam (100 N to 10 kN) j) Tension cylinder (50 kN to 50 MN)
  • 7. Problem Statement and Objectives “Effects of Design Parameters on Performance of Dual Octal Load Cells” Objectives : • Investigation of the effect of variability of design parameters of load cell on the variability of design relevant response quantities • Design of experiment for carrying simulation studies. • Geometric optimization of critical parameters of load cell using GRA • Validation of the results by using experimental work
  • 8. Author Research area Focus on Kuhnel M. , Hilbrunner F., Buchner H. , Jager G .,Manske E., Frohlich T. (2014) double bending beam force transducers Traceable measurement of mechanical parameters according to EN ISO 376 Stefanescu D.M., Stefanescu A., (2006) Force Transducers Criteria for Choosing the Elastic Elements Kumar, H., Sharma, C., Kumar, A., & Arora, P. K. (2015) force measurement Retrospective investigations Bulent Aydemir , Erdinc Kaluc , Sinan Fank (2006) force transducers manufactured from 17- 4PH stainless steel Influence of heat treatment on hysteresis error Gauri Ranadive, Anindya Deb (2012) impact load cell Evaluation of the accuracy using lumped parameter modeling and analysis Robinson, Gordon M. (1995) load cell geometry Genetic algorithm optimisation by finite element analysis Literature review (Load cell)
  • 9. Author Research area Focus on Surasith Piyasi (2002) Hollow Clevis-pin Type Load Cells Detail Design Sudhir Kumar, Nabi Hasan, Harish Kumar and Anil Kumar (2011) force transducer Finite element analysis Harb, A. M. (2013) dynamic weighing systems Enhancing the performance using Kalman filter Samuel Tileston Whittemore (2014) Application Specific Force Sensor for Snowpack Assessment Development and Testing John Van Tuyl (2014) force sensing insole Development to quantify impact loading to the foot in various postures Rakesh Kolhapure ⇑, Vasudev Shinde, Vijay Kamble(2017) strain gauge force transducer Geometrical optimization using GRA method Randall M. Schoonover (1979) Load Cell Mass Comparator Precision Literature review (Load cell)
  • 10. Author Research area Focus on Kamlesh H. Thakkar, Vipul. M.Prajapati, Bipin D. Patel (2013) Strain Gauge Based Load Cell Performance Evaluation to Improve Weighing Accuracy A. Abu-Sinna, Yon-Kyu Park , Dae-Im Kang, Min-Seok Kim (2009) load cell–deadweight force machine interaction The influence of loading frame stiffness Jean-Marc Drouet and Yvan Champoux(2014) Strain Gauge Transducer for Dynamic Load Measurement in Cycling Designing using numerical simulation JacekPiskorowski,, Tomasz Barcinski (2008) load cell response Dynamic compensation Robert M. Williams (2014) Beam Load Cell Evaluation of Base Reaction and Force Collision Detection on Industrial Robots G.M. Robinson(1997) load cell hysteresis Finite element modelling Er. Dharmendra Kumar Dubey Dr. R. L. Yadav Manoj Kumar(2015) Force Transducers Calibration Literature review (Load cell)
  • 11. Author Research area Focus on Ted Kopczynski,(2011) Weighing System’s Accuracy Five Factors That Can Affect GardarPáll Gíslason (2011) Load cell optimization Chung Ket Thein (2013) load cell Structural sizing and shape optimization A Karaus, H Paul Hottinger Baldwin Messtechnik GmbH, Darmstadt, Germany(1962) Load cells with small nominal load based on strain gauges thin-film techniques Robert Zwijze(2000) High Capacity Silicon Load Cells Micro-Machining Brent J. Maranzano , Bruno C. Hancock (2016) dynamic load cells Quantitative analysis of impact measurements Er Dharmendra Kumar Dubey, Dr. R. L. Yadav (2016) Force Transducers Retrospective Study for Comprehensive Design Literature review (Load cell)
  • 12. Author Research area Focus on Aravind Russel, Jugal Karda, Piyush Jain,Shalmali Kale Pallavi Khaire(2016) ‘S’ Type Load Cell Simulation and Experimental Study for Selection of Gauge Area Cross-Section Meng Chun-Ling,Zheng Wei- Zhi, Lin Mei-Hong(2002) double-shear beam load cell Finite element analysis Prof. Kamlesh H. Thakkar, Prof. Vipul M.Prajapati, Prof. Bipin D.Patel (2013) Strain Gauge Based Load Cell Performance Evaluation to Improve Weighing Accuracy Rakesh Kolhapure, Vasudev Shinde, Vijay Kamble (2015) Strain Gauge Transducer for Weighing Application Optimization of using GRA Method Rakesh Kolhapure , Vasudev Shinde, VijayKamble (2016) Load Cell Optimization using Grey Relational Analysis Method VaibhavVarne, VasudeShinde, Vijay Kamble(2016) Rectangular Beam Force Transducer Effect of Geometrical Parameters on Sensitivity and Volume Literature review (Load cell)
  • 13. Author Research area Focus on VaibhavVarne, VasudeShinde, Vijay Kamble (2016) Pancake Type Load Cell Parametric Optimization using Response Surface Methodology Rakesh Kolhapure , Vasudev Shinde, VijayKamble (2017) force transducer Geometrical optimization using GRA method Shreyas S. Pandit , Vijay A. Kamble (2018) Multi-stage Strain gauge based load cell Review Literature review (Load cell)
  • 14. Author Research area Focus on Mikael J. Hvorslev (1972) Proving Rings And Frames For Soil Testing Equipment Details Madhuban Prasad ,NabiHasan , Anil Kumar , Harish Kumar (2011) square ring shaped force sensor Design studies R. A. Mitchell (1968) n-Degree Elliptical Elastic Rings of Non Uniform Cross Section Analysis Sudhir Kumar, Wakkar Ali, Anil Kumar, Harish Kumar (2011) Ring Shaped Force Transducer Axial Deflection Studies Shailendra V. Dhanal(2013) octagonal ring for a three component milling tool dynamometer Finite element analysis Sudhir Kumar and H Kumar (2014) Ring Shaped Force Transducers Development and Testing Literature review (Ring type)
  • 15. Author Research area Focus on Sudhir Kumar, Nabi Hasan, Harish Kumar & Anil Kumar (2011) force transducer Finite element analysis A.P. Onwualu (2002) extended octagonal ring dynamometer measurement of forces on a simple tillage tool Humberto Rodríguez- Fuentes, Martin Cadena-Zapata, Jesús Alonso Esparza- Renteria, Juan Antonio Vidales- Contreras, Ma. del Carmen Ojeda-Zacarías and Alejandro Isabel Luna-Maldonado (2014) Circular Ring Type Monolithic Load Cell Design, Manufacturing And Calibration Addressed To Drawbar Pull Testing Of The Farm Tractor Harish Kumar, Chitra Sharma and Anil Kumar (2011) precision force transducers Design and development Harish Kumar, Mohit Kaushik, Pardeepc and Pawan Kumar Arora (2015) elliptical shaped force transducers Investigations on metrological characterization for precision force measurement Literature review (Ring type)
  • 16. Author Research area Focus on Harish Kumar(2015) Design And Metrological Characterization Of Force Transducers Finite Element Computational And Experimental Investigations Harish Kumar Chitra Sharma Anil Kumar(2011) Ring Shaped Force Transducers Design Studies Essam Soliman(2015) octal rings as mechanical force transducers Performance analysis Harish Kumar & Chitra Sharma (2012) force transducers Performance evaluation A. Abuhasel and Essam Soliman(2016) Octal Rings As Mechanical Force Transducers Regression Analysis Vijay A. Kamble, Vasudev D. Shinde, Jayant K. Kittur (2019) Ring Shaped Load Cells Shape Optimization for Enhancing Sensitivity at Lower Deflection using FEM Literature review (Ring type)
  • 17. Author Research area Focus on Qiao kang Liang, Dan Zhang, Yaonan Wang, Yunjian Ge2013) Novel Six-Component F/T Sensor based on CPM for Passive Compliant Assembly Design and Analysis A.R. Tavakolpour-Saleh, M.R. Sadeghzadeh (2014) three-component force/moment sensor for underwater hydrodynamic tests Design and development J.W Jooa, K.S Naa, D.I Kangb (2002) six-component load cell Design and evaluation Fu Shao (2015) Three-Component Force Sensor for Meso-Milling Applications Design Gab-Soon Kim(2007) Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot Development Literature review (Multi axis)
  • 18. Author Research area Focus on M. Mencattelli, Donati, A (2014) Customized Load Cell Three-Dimensional Force- Moment Measurements in Orthodontics Yun Lu, , Weijia Li,, Wenzhuo Tian, and Kai Zhou (2014) Six-DOF Force Method on Measurement for Heavy Load Equipment Wei Zhang, Kim Boon Lua, Van Tien Truong, Kumar A. Senthil, Tee Tai Lim, KhoonSeng Yeo, and Guangya Zhou (2016) Novel T- shaped Multi-Axis Piezoresistive Force/Moment Sensor Design and Characterization HilmanSyaeful Alam, Demi Soetraprawata and Bahrudin (2015 Six-Axis Force/Torque Sensor The Structural Design Using Virtual prototyping Technique Vinay Ganti(2011) 4-Dof Force/Torque Sensor For Intelligent Gripper Analysis Literature review (Multi axis)
  • 19. Author Research area Focus on Amin Valizadeh, Alireza Akbarzadeh, Mohammad HoseinTashakori Heravi (2015) Six-Axis Force/Torque Sensor Effect of Structural Design Parameters Using Full Factorial Design Nicolas Sommer (2011) Multi-Axis Force/Moment Sensor for a mobile quadruped platform Design and Integration S. Boukhenous (2011) Three-Directional Force Sensor”, Low cost Chul-Goo Kang(2005) 6-Axis Force-torque Sensor Performance Improvement via Novel Electronics and Cross- shaped Double-hole Structure Literature review (Multi axis)
  • 20. Author Research area Focus on Chang Y.S., Lin T.C., (2013) G-shaped load cell for two range loading Optimization Osman S.M., Hasan E. H., El- Hakeem H.M., Rashad R. M., Kouta F. (2014) Multi-Capacity Load Cell Concept Kluger J. M., Sapsis T. P., Slocum A.H., (2016) load cell by means of nonlinear cantilever beams high-resolution and large force- range Seif. M. Osman ,Ebtisam H. Hasan, H. M. El-Hakeem, R.M.Rashad d F. Kouta (2013) multi-capacity load cell Conceptual design Literature review (Multi capacity)
  • 21. Author Research area Focus on Dhananjay Ghanshyam Pardhi and S D Khamankar (2014) spline shaft Stress analysis using finite element method and its experimental verification by photo elasticity Minvydas Ragulskisa,, Miguel A.F. Sanjuanb (2008) Photoelasticity Chaotic pattern of unsmoothed isochromatics around the regions of concentrated stresses Prajna P, Patil N Konark, Meshramkar Roseline, Nadiger Ramesh K. Shetty (2013) Teeth and Surrounding Structure Fast and Economical Photoelastic Model Making Pichet Pinit (2009) two-dimensional stress field in digital photoelasticity Development of Window-based program for analysis and visualization Dipti Kanta Das, Ashok Kumar Sahoo, Ratnakar Das, B. C. Routara ( 2014 ) hard turning using coated carbide insert Investigations using Grey Based Taguchi and regression methodology Literature review (General)
  • 22. Author Research area Focus on Prof. H. V. Shete, Prof. R. A. Pasale, Prof. E. N. Eitawade (2012) Internal Combustion Engine Piston Photoelastic Stress Analysis & Finite Element Analysis Dr. P Ravinder Reddy, Mr. K B Jagadeeshgouda Mr. Suprit Malagi (2015) Curved Structure Analysis of Stress Distribution Using Photoelastic and Finite Element Method Uddan wadiker, R. (2011) crane hook Stress analysis and validation by photo-elasticity M. Durairaja, D. Sudharsunb,, N. Swamynathanb (2014) Wire EDM with Stainless Steel Analysis of Process Parameters using Single Objective Taguchi Method and Multi Objective Grey Relational Grade Raghu N. Kacker, Eric S. Lagergren, & James J. Filliben (1991) Classical Designs of Experiments Taguchi Vs Orthogonal Arrays Robinson, G. M. (1995) load cell geometry Genetic algorithm optimisation by FEA Literature review (General)
  • 23. •Comparison of strain induced in different load cell spring elements results that circular ring load cell spring element is most sensitive •. But less deflection is required to get equivalent strain in octagonal ring than the circular ring. •So octagonal ring spring element should be preferred than circular ring Study of ring load cells
  • 24. 24 Retrospective study of load cells Investigation of Influence of design parameters (different geometrical parameters of elastic elements, of different materials, with different simulation parameters like different loads) on the performance measures (maximum stress, sensitivity, and volume) of various load cells is done. Following types of load cells are considered for study. • S beam load cell • Double ended shear beam load cell • Rectangular beam load cell • Pan cake type load cell • G shape load cell Above load cells are optimized using Toguchi and grey relational analysis techniques.
  • 25. 25 S type load cell Double ended shear beam load cell strain distribution Rectangular beam type load cell strain distribution Pan cake load cell strain distribution Retrospective study of load cells
  • 26. 26 Structural Analysis (FEA) S type load cell strain distribution Double ended shear beam load cell strain distribution Rectangular beam type load cell strain distribution Pan cake load cell strain distribution
  • 27. 27 Work flow process for study Work flow process 1. Design of Experiment (DOE) 2. Structural Analysis (FEA) 3. Multi-Objective Optimization (Grey Relational Analysis) 4. Validation using Photoelasticity (ESA)
  • 28. 28 Sr. No. Strain gauge load cell types Material Young’s modulus N/mm2 Geometrical parameters Enhancem ent in sensitivity Reductio n in volume 1 Double ended shear beam EN 24 Steel 2.1x105 Length, Height, Thickness 69.28% 3.12% 2 S beam EN 24 Steel 2.1x105 Thickness, Length, Height 55.08% 1.06% 3 Rectangular beam EN 24 Steel 2.1x105 cavity radius, height & length 60% 2.2%. 4 Pan cake type EN 24 Steel 2.1x105 Rim thickness, web height and web 43% 7% Outcome of retrospective study
  • 29. 29 Photo elastic analysis ‘S’ type model Double Ended Shear Beam’ type load cell Rectangular Beam’ type load cell Pan cake type load cell
  • 30. 30 Ansys and Photo elasticity results Comparison between Ansys and Photoelasticity results Sr. No. Type of load cell p (N/mm2) a (N/mm2) 1 S 115.47 122.3 2 Double Ended Shear Beam 176.40 185.30 3 Rectangular Beam 29.06 31.11 4 Pancake 239.12 249.08
  • 31. 31 Study of G shape load cell Parameter Before optimization Optimized % Improvement Mass 0.2553 0.25191 1.33 Sensitivity 1.948 2.6438 35.72
  • 32. 32 Literature outcome • The literature cited above provides basic information regarding different types and applications of load cells, • It gives details about new ways in designing load cell. • Some of them present’s information on DOE and other optimization techniques with help of FEA softwares. • Literature also put a light on experimental techniques used for verification of performance of load cell.
  • 33. 33 Literature Gap • Researchers have carried out most of the work on standard load cells, ring load cells, Multi axis load cells but for multicapacity load cells very limited work has been reported. • The effect of geometric parameters on the performance characteristics of multicapacity load cells has not been explored • Multi-Objective geometric optimization of Multicapacity load cell is another thrust area which has been given less attention in past studies.
  • 34. 34 Need of the Dual octal ring load cell These forces may vary over a wide range and it may be necessary to have accurate measurements at both ends of the range. In order to measure 300 N force, a 5,00 N capacity load cell might be used. In order to measure 20 N force using a 5,00 N capacity load cell , the output of the transducer must be highly amplified. In view of the high amplification, the system is subject to error due to electrical noise both from the amplifier and from other nearby electrical equipment such as motors, relays, switches,- brushes, etc. A low capacity load cell of 50 N capacity for measuring a 20 N load, is not susceptible to electrical noise of this type since its output need not be highly amplified.
  • 35. 35 Need of the Dual octal ring load cell In the calibration process of UTM of capacity of 1000 KN according to UTM standard 1828 It has to be tested against each 20% load like in the step of 200 KN More number of load cells are required to cover different load ranges, these increases handling efforts, in addition to increase the cost of purchasing load cells. This work concerns with introduction of dual octal ring Load Cell for wide-range loading. Load Load cell capacity 200 KN 200 KN 400 KN 500 KN 600 KN 750 KN 800 KN 1000 KN 1000 KN 1000 KN
  • 36. 36 Development of Dual octal ring load cell Fig. 1: Dual octal ring load cell 2D, 3D model along with Wheatstone bridge circuit
  • 37. Experimental runs, L9 OA Volume, strain, deflection S/N ratio of 1-9 expt. (Effect of processing conditions on response variables) S/N ratio Normalization 1-9 & Deviation sequence 1-9 Grey Relational Coefficient,1 -9 Single Grey Relational Grade Single processing condition Comparability sequences Response 37 Dual octal ring load cell Geometrical parameters Experimental validation Research approach
  • 38. 38 DOE for Dual octal ring load cell Sr. no. Parameters Level 1 Level 2 Level 3 1 Height of top octagon (HU) 90 100 110 2 Thickness of top octagon (TU) 4 6 8 3 Height of bottom octagon (HL) 90 100 110 4 Thickness of bottom octagon (TL) 4 6 8 Sr. no. HU TU HL TL 1 90 4 90 4 2 90 6 100 6 3 90 8 110 8 4 100 4 100 8 5 100 6 110 4 6 100 8 90 6 7 110 4 110 6 8 110 6 100 8 9 110 8 90 4 Level of input parameters (DOF)R=P×(L-1) Where (DOF)R:Degree of freedom of Expt. P:No of parameters L:No of levels (DOF)R=4×(3-1)=8 “DOF of the OA should be greater than or equal to the total DOF required for the experiment” Here, DOF of OA=DOF of Expt. Therefore L9 (32) OA is selected Selection of orthogonal array (OA) Taguchi L9 Array
  • 39. g. 1: Dual octal ring load cell 2D, 3D model al Fig. 1: Dual octal ring load cell 2D, 3D model along with Structural analysis of Dual octal ring load cell
  • 40. Constraints • Load cell is fixed to rigid support. • Uniformly distributed load is acting on top surface of load cell. • At the location of strain gauges values of strains are measured. • Applied load 0 to 2940 for light load condition 2940 to 5000N for heavy load condition. • Maximum strain induced is less than 1500 µ strain. •The 0.3 mm gap is maintained in the limbs. Material Young’s Modulus Poisson's ratio Density EN 24 2.1 X 105 N/mm2 0.33 7840 X 105 Kg/mm3
  • 41. 41 Structural analysis of octal ring load cell Experiment number Volume mm3 Deflection mm εt1 µ strain εb1 µ strain εt2 µ strain εb2 µ strain 1 36730 0.375 875.190 737.750 1366.000 1247.000 2 49110 0.016 408.460 386.480 682.000 646.000 3 62310 0.088 231.790 249.200 396.150 415.240 4 52940 0.361 981.620 217.900 1123.000 376.000 5 49300 0.349 455.450 909.080 761.440 1533.000 6 55120 0.011 265.830 346.620 1117.000 589.050 7 53470 0.511 108.000 406.640 1336.000 697.630 8 58670 0.192 516.537 196.840 611.100 345.360 9 56570 0.254 294.740 820.790 497.770 1384.000 strain under light load in bottom ring (εb1) strain under heavy load in top ring (εt2) strain under light load in top ring (εt1) strain under heavy load in bottom ring (εb2)
  • 42. n = -10 log10 [mean of sum of squares of measured data] S/N Ratio: Lower is better ( volume, strain under light load in bottom ring (εb1) and strain under heavy load in top ring (εt2) ) n = -10 log10 [mean of sum squares of reciprocal of measured data] S/N Ratio: Larger is better (deflection, strain under light load in top ring (εt1) and strain under heavy load in bottom ring (εb2),) Effect of geometric parameter on response variables Higher S/N ratio means to closer to optimal parameters
  • 43. S/N ratio for volume 476 . 94 52940      ) log( 10 S/N 2 Smaller is the better Expt. No. Volume S/N ratio 1 36730 -91.300 2 49110 -93.823 3 62310 -95.891 4 52940 -94.476 5 49300 -93.857 6 55120 -94.826 7 53470 -94.562 8 58670 -95.368 9 56570 -95.052 21/7/2018 43 Effect of parameters on volume Optimum combination for volume A1B1C1D1
  • 44. S/N ratio for Deflection 856 . 8 361 . 0 / 1      ) log( 10 S/N 2 Larger is the better Expt. No. Deflection S/N 1 0.375 -8.518 2 0.016 -36.053 3 0.088 -21.125 4 0.361 -8.856 5 0.349 -9.148 6 0.011 -39.114 7 0.511 -5.836 8 0.192 -14.339 9 0.254 -11.906 21/7/2018 44 Effect of parameters on Deflection Optimum combination for deflection A3B1C3 D- Least affecting
  • 45. S/N ratio for strain under light load in top ring (εt1) 839 . 59 620 . 981 / 1      ) log( 10 S/N 2 Larger is the better Expt. No. εt1 S/N 1 875.190 -58.842 2 408.460 -52.223 3 231.790 -47.302 4 981.620 -59.839 5 455.450 -53.169 6 265.830 -48.492 7 1080.000 -60.668 8 516.537 -54.262 9 294.740 -49.389 21/7/2018 45 Optimum combination for εt1 A3B1 C & D - Least affecting
  • 46. S/N ratio for strain under light load in bottom ring (εb1) 7651 . 46 900 . 217      ) log( 10 S/N 2 Smaller is the better Expt. No. εb1 S/N 1 737.750 - 57.3582 2 386.480 -51.742 3 249.200 -47.931 4 217.900 -46.765 5 909.080 -59.172 6 346.620 -50.797 7 406.640 -52.184 8 196.840 -45.882 9 820.790 -58.284 21/7/2018 46 Optimum combination for εb1 C1D3 A & B- Least affecting
  • 47. S/N ratio for strain under heavy load in top ring (εt2) 008 . 61 000 . 1123      ) log( 10 S/N 2 Smaller is the better Expt. No. εt2 S/N 1 1366.000 -62.709 2 682.000 -56.676 3 396.150 -51.957 4 1123.000 -61.008 5 761.440 -57.633 6 1117.000 -60.961 7 1336.000 -62.516 8 611.100 -55.722 9 497.770 -53.941 21/7/2018 47 Optimum combination for εt2 B3C3 A & D - Least affecting
  • 48. S/N ratio for strain under heavy load in bottom ring (εb2) 504 . 51 000 . 376 / 1     ) log( 10 S/N 2 Larger is the better Expt. No. εb2 S/N 1 1247.000 -61.917 2 646.000 -56.205 3 415.240 -52.366 4 376.000 -51.504 5 1533.000 -63.711 6 589.050 -55.403 7 697.630 -56.873 8 345.360 -50.765 9 1384.000 -62.823 21/7/2018 48 Optimum combination for εb2 C3D1 A & B- Least affecting
  • 49. 49 HU - top octagon height, TU - top octagon thickness, HL- bottom octagon height, TL -bottom octagon thickness Fig.3. Mean of S/N Ratio plots for volume, deflection and maximum strain values (A1B1C1D1) result min.volume. (A3B1C3) result Max. deflection (A3B1) result Max. straining in top ring under light load. (C1D3) result Max. straining in bottom ring urder light load (B3C3) result max. straining in top ring under heavy load (C3D1) result Max. straining in bottom ring under heavy load
  • 51. 51 Analysis of Grey relational coefficient for Volume Expt. No. Volume S/N N D GRC 1 36730 -91.300 1 0 1 2 49110 -93.823 0.5160 28 0.4839 72 0.5081 45 3 62310 -95.891 0 1 0.3333 33 4 52940 -94.476 0.3663 02 0.6336 98 0.4410 34 5 49300 -93.857 0.5086 0.4914 0.5043 38 6 55120 -94.826 0.2810 79 0.7189 21 0.4101 99 7 53470 -94.562 0.3455 82 0.6544 18 0.4331 19 8 58670 -95.368 0.1422 99 0.8577 01 0.3682 7 9 450 . 0 0.550 - 1   Deviation 5 . 0   Where GRC = 0.526 1 0.5 0.450 ) 1 (0.5 0       Normalized value (smaller is better) 550 . 0 95.891 91.300 - 93.823 91.300 -    
  • 52. 52 Analysis of Grey relational coefficient for Deflection Deflection S/N N D GRC 0.375 -8.518 0.919 0.081 0.861 0.016 -36.053 0.092 0.908 0.355 0.088 -21.125 0.541 0.459 0.521 0.361 -8.856 0.909 0.091 0.846 0.349 -9.148 0.900 0.100 0.834 0.011 -39.114 0.000 1.000 0.333 0.511 -5.836 1.000 0.000 1.000 0.192 -14.339 0.744 0.256 0.662 0.254 -11.906 0.818 0.182 0.733 908 . 0 0.092 - 1   Deviation 5 . 0   Where GRC = 0.355 1 0.5 0.908 ) 1 (0.5 0       Normalized value (Larger is better) 092 . 0 39.114 5.000 - 39.114 36.053 -    
  • 53. 53 Analysis of GRC for strain under light load in top ring (εt1) εt1 S/N N D GRC 875.19 58.842 0.863 0.137 0.785 408.46 52.223 0.368 0.632 0.442 231.79 47.302 0.000 1.000 0.333 981.62 59.839 0.938 0.062 0.890 455.45 53.169 0.439 0.561 0.471 265.83 48.492 0.089 0.911 0.354 1080.00 60.668 1.000 0.000 1.000 516.54 54.262 0.521 0.479 0.511 294.74 49.389 0.156 0.844 0.372 632 . 0 0.368 - 1   Deviation 5 . 0   Where GRC = 0.442 1 0.5 0.632 ) 1 (0.5 0       Normalized value (Larger is better) 368 . 0 47.302 - 60.668 302 . 47 52.223   
  • 54. 54 Analysis of GRC for strain under light load in bottom ring (εb1) εb1 S/N N D GRC 737.75 -57.3582 0.864 0.136 0.786 386.48 -51.7425 0.441 0.559 0.472 249.20 -47.931 0.154 0.846 0.372 217.90 -46.7651 0.066 0.934 0.349 909.08 -59.172 1.000 0.000 1.000 346.62 -50.7971 0.370 0.630 0.442 406.64 -52.1842 0.474 0.526 0.487 196.84 -45.8823 0.000 1.000 0.333 820.79 -58.2846 0.933 0.067 0.882 559 . 0 0.441 - 1   Deviation 5 . 0   Where GRC = 0.472 1 0.5 0.559 ) 1 (0.5 0       Normalized value (smaller is better) 441 . 0 59.172 45.8823 - 51.7425 45.8823 -    
  • 55. 55 Analysis of GRC for strain under heavy load in top ring (εt2) εt2 S/N N D GRC 1366.000 -62.709 1.000 0.000 1.000 682.000 -56.676 0.439 0.561 0.471 396.150 -51.957 0.000 1.000 0.333 1123.000 -61.008 0.842 0.158 0.760 761.440 -57.633 0.528 0.472 0.514 1117.000 -60.961 0.837 0.163 0.755 1336.000 -62.516 0.982 0.018 0.965 611.100 -55.722 0.350 0.650 0.435 497.770 -53.941 0.184 0.816 0.380 561 . 0 0.439 - 1   Deviation 5 . 0   Where GRC = 0.52631 1 0.5 0.450 ) 1 (0.5 0       Normalized value (smaller is better) 439 . 0 62.709 51.957 - 56.676 51.957 -    
  • 56. 56 Analysis of GRC for strain under heavy load in bottom ring (εb2) εb2 S/N N D GRC 1247.00 61.917 0.861 0.139 0.783 646.00 56.205 0.420 0.580 0.463 415.24 52.366 0.124 0.876 0.363 376.00 51.504 0.057 0.943 0.347 1533.00 63.711 1.000 0.000 1.000 589.05 55.403 0.358 0.642 0.438 697.63 56.873 0.472 0.528 0.486 345.36 50.765 0.000 1.000 0.333 1384.00 62.823 0.931 0.069 0.879 580 . 0 0.420 - 1   Deviation 5 . 0   Where GRC = 0.463 1 0.5 0.580 ) 1 (0.5 0       Normalized value (Larger is better) 420 . 0 50.765 63.711 50.765 56.205    
  • 57. 57 Ranking the performance parameters of force sensor GRC GRG Rank Expt. Volume Deflection εt2 εb2 εt1 εb1 1 0.333 0.861 1.000 0.783 0.785 0.786 0.758 2 2 0.526 0.355 0.471 0.463 0.442 0.472 0.455 9 3 1.000 0.521 0.333 0.363 0.333 0.372 0.487 8 4 0.619 0.846 0.760 0.347 0.890 0.349 0.635 5 5 0.530 0.834 0.514 1.000 0.471 1.000 0.725 3 6 0.683 0.333 0.755 0.438 0.354 0.442 0.501 7 7 0.633 1.000 0.965 0.486 1.000 0.487 0.762 1 8 0.815 0.662 0.435 0.333 0.511 0.333 0.515 6 9 0.732 0.733 0.380 0.879 0.372 0.882 0.663 4 0.455 6 472 . 0 442 . 0 463 . 0 471 . 0 355 . 0 526 . 0        GRG
  • 58. 58 Response table for grey relational grade (GRG) HU(A) TU(B) HL(C) TL(D) L1 0.567 0.718 0.591 0.715 L2 0.620 0.565 0.584 0.573 L3 0.647 0.550 0.658 0.546 Max 0.647 0.718 0.658 0.715 Min 0.567 0.550 0.584 0.546 Delta 0.080 0.168 0.074 0.170 Rank 3 2 4 1 Prediction of GRG under optimum Parameters “A3B1C3D1”
  • 59. 59 ANOVA for grey relational grade Source Adj SS Adj MS % contribution HU 0.002270 0.001135 7.41 TU 0.017998 0.008999 58.77 HL 0.003970 0.001985 12.96 TL 0.006383 0.003191 20.85 Total 0.030621 100.00 top octagon thickness (TU) followed by bottom octagon thickness (TL) are most significant control factor
  • 60. 60 Predicted and Validation values of optimal parameters Sr. No. Process Parameters Initial Setting Predicted Value FEA Validation 1 Optimal parameters A3B1C2D2 A3B1C3D1 A3B1C3D 1 2 HU 110 110 3 TU 4 4 4 HL 100 110 5 TL 6 4 6 Grey Relational Grade 0.636 0.699 0.674 “Improvement of 5.97 %”
  • 61. 61 Manufacturing of dual octal ring load cell  Using wire EDM because of its high precision and ability to make small gap of 0.3 mm gap  Using 20 mm thick sheet of EN 24 steel.  This EDM uses 0.25 mm diameter brass wire and creates spark of 0.025 mm and can cut to an accuracy of 0.025 mm.  Four strain gauges are mounted in each ring and Wheatstone bridge circuit is used to get electrical output voltage
  • 62. 62 Manufacturing of dual octal ring load cell
  • 63. 63 Testing of dual octal ring load cell • Load cell is tested under 5 kN Dead Weight Force Calibration Machine at FIE Research Institute, Ichalkaranji. • Loaded in the step of 500N up to 5000N in the compression mode • The electrical output from the top ring and bottom ring of the dual ring load cell is recorded
  • 64. 64 Electrical output of the dual octal ring load cell • Output (millivolts) curves of upper ring and lower ring(left) • Overall electrical output of loadcell(right).
  • 65. 65 Uncertainty Calculation • Uncertainty Calculation as per IS 4169-2014/ISO 376-2011. • Calibrated from 10% - 100% of the rated capacity A high resolution digital indicator is used to take the observations. • Uncertainty of measurement of load cell involves uncertainty due to factors including relative zero offset, relative repeatability, relative resolution and relative interpolation. • The relative repeatability of the force transducers is found up to 0.0224 % and is within the permissible limits as specified the standard discussed. • Uncertainty of force measurement of force calibration machine into account is up to 0.038 %, which is well within limits as permitted by the standard IS 4169-2014/ISO 376-2011.
  • 66. The effect of design parameters of dual octal ring load cell on its performance measures is investigated. The conclusions based on multi-objective optimization of dual octal ring load cell using Taguchi with GRA and experimental performance evaluation is summarized as follows: • The newly developed Dual capacity load cell gives low stiffness for light load causing high sensitivity, while high stiffness for heavy load preventing over- straining. • Grey regression analysis optimization technique indicated decrease in mass by 12% with 27% increase in deflection. Conclusions
  • 67. • The performance evaluation test showed increase in sensitivity by 15.88 % for light loads (up to 2940 N) as compared to heavy load condition (2940 N to 5000 N), which is very essential to achieve high precision measurements. • The Polynomial regression equation is obtained using experimental observations of load cell. The equation obtained is y = 9E-10x3 - 1E-05x2 + 0.1392x - 10.576, Where x is force in Newton, y is electrical output in millivolt. • Based on ANOVA for Taguchi DOE method and Grade values, top octagon thickness (TU) followed by bottom octagon thickness (TL) are most significant control factor for all performances Conclusions
  • 68. • At optimum level of GRG, Initial GRG is 0.762 and after Confirmation experiment, it is obtained as 0.911, means there is “Improvement of 16.36 %” is observed which confirms the theoretical values. • The uncertainty of the load cell is found to be ± 0.038 % which includes the relative deviations due to the factors as per standard procedures. • The load cell confirms to class 1 as per IS 4169- 2014/ISO 376-2011, respectively and is suitable for use as force transfer standard. • The experimental results will provide significant guidance for designing of force sensor. Conclusions
  • 69. 69 REFERENCES [1] Kumar, H., Sharma, C., Kumar, A., & Arora, P. K. (2015), “Retrospective investigations of force measurement”, Mapan, Volume 30, Issue 4, pp.291-302. [2] Osman, S. M., Hasan, E. H., El-Hakeem, H. M., Rashad, R. M., & Kouta, F. (2014), “Multi- Capacity Load Cell Concept”, Sensors & Transducers, Volume 179, Issue 9, pp.229. [3] Bulent Aydemir , Erdinc Kaluc , Sinan Fank (2006),”Influence of heat treatment on hysteresis error of force transducers manufactured from 17-4PH, stainless steel, Measurement , volume 39, pp. 892–900. [4] Jocelyn M. Kluger, Themistoklis P. Sapsis, Alexander H. Slocum (2016) , “A high-resolution and large force-range load cell by means of nonlinear cantilever beams”, Precision Engineering ,volume 43, pp. 241–256. [5] Gauri Ranadive, Anindya Deb (2012), “Evaluation of the accuracy of an impact load cell using lumped parameter modeling and analysis”, 4th International Conference on Computer Modeling and Simulation , Singapore..Available at https://www.researchgate.net/profile/Anindya_Deb/publication/266487551_Evaluation_of_the_A ccuracy_of_an_Impact_Load_Cell_Using_Lumped_Parameter_Modeling_and_Analysis/links/56 c4806a08ae736e7046eb60.pdf
  • 70. [6] Dhananjay Ghanshyam Pardhi and S D Khamankar (2014), “Stress analysis of spline shaft using finite element method and its experimental verification by photo elasticity”, International journal of mechanical engineering and Robotics Research, volume 3, pp. 451–458. [7] Minvydas Ragulskisa,, Miguel A.F. Sanjuanb (2008) , “Chaotic pattern of unsmoothed isochromatics around the regions of concentrated stresses'' , Computers & Graphics, volume 32, pp. 116–119. [8] Load Cell and Weigh Module Handbook ( 2010), Rice Lake Weighing Systems, United States of America. [9] Robinson, Gordon M. (1995), “Genetic algorithm optimisation of load cell geometry by finite element analysis”, City University, London (Doctoral thesis). Available at https://openaccess.city.ac.uk/id/eprint/13593/ [10] Prajna P, Patil N Konark, Meshramkar Roseline, Nadiger Ramesh K. Shetty (2013), “A Fast and Economical Photoelastic Model Making of the Teeth and Surrounding Structure” , Journal of Dental and Medical Sciences, Volume 3, PP 28-33. [11] Load Cell Application and Test Guideline (2010), “Scale Manufacturers Association” , Columbus, Ohio , Available at http://www.scalemanufacturers.org/
  • 71. [12] Saswati Biswas ,“Digitization of vibrating wire type load cell for mine support systems”, National Institute of Technology, Rourkela, Odisha (M.Tech thesis), Available at http://ethesis.nitrkl.ac.in/6146/ [13] Surasith Piyasi (2002) , “The Detail Design of Hollow Clevis-pin Type Load Cells”, 2002- International conference ANSYS Conference 50, Available at https://www.academia.edu/24451091/The_Detail_Design_of_Hollow_Clevis_pin_Type_Load_C ells [14]Matthew Wadham-Gagnon, Pascal Hubert, Christian Semler, “Hyperelastic Modeling Of Rubber In Commercial Finite Element Software (Ansys™)”, 2006_SAMPE_51_Wadham- Gagnon Available at https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.544.4157&rep=rep1&type=pdf [15] Sudhir Kumar, Nabi Hasan, Harish Kumar and Anil Kumar (2011), “Finite element analysis of a force transducer”, Indian Journal of Science and Technology, Volume 4, pp. 1246–1247. [16]“Design and Performance Considerations: Rocker Column vs. Double End Shear Beam Load Cells (2011)” , Fairbanks Scales, Inc., 10-11 – Issue 1 Available at http://catalog.jamiesonequipment.com/Asset/Totalcomp%20Rocker%20Column%20Load%20Ce ll%20Brochure%20JEC.pdf
  • 72. 72 [17]Harb, A. M. (2013), “Enhancing the performance of dynamic weighing systems using Kalman filter”, Enhancing The Performance of Dynamic Weighing Systems using Kalman Filter. [18]M. Mencattelli, Donati, A (2014), “Customized Load Cell for Three-Dimensional Force- Moment Measurements in Orthodontics” 5th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), São Paulo, Brazil , pp. 38–43. [19] Samuel Tileston Whittemore (2014) , “Development and Testing of An Application Specific Force Sensor for Snowpack Assessment, Massachusetts Institute of Technology (B.S. thesis) [20] Jjohn Van Tuyl (2014), “Development of a force sensing insole to quantify impact loading to the foot in various postures”, McMaster University , Hamilton, Ontario (M.S.thesis) Available athttp://hdl.handle.net/11375/15981 [21]Yun Lu, , Weijia Li,, Wenzhuo Tian, and Kai Zhou (2014), “A Method on Measurement of Six-DOF Force for Heavy Load Equipment” , Journal of applied science and engineering innovation, Volume1, pp. 149–157 Available at http://jasei.org/PDF/1-2/1-149-157.pdf [22] Wei Zhang, Kim Boon Lua, Van Tien Truong, Kumar A. Senthil, Tee Tai Lim, KhoonSeng Yeo, and Guangya Zhou (2016), “Design and Characterization of a Novel T- shaped Multi-Axis Piezoresistive Force/Moment Sensor”, IEEE SENSORS Journal, Volume 16, pp. 4198– 4210 [23] TusharKanti Acharya (2012) “Creep Analysis of a Thick Walled Spherical Pressure Vessel Considering Large Strain”, Rensselaer Polytechnic Institute, Hartford, Connecticut. (M.E thesis).
  • 73. 73 [24] Mikael J. Hvorslev (1972), “Notes On Proving Rings And Frames For Soil Testing Equipment”, Army Engineer Waterways Experiment Station, Vicksburg, Mississippi, Available at https://apps.dtic.mil/sti/pdfs/AD0756199.pdf [25] HilmanSyaeful Alam, Demi Soetraprawata1 and Bahrudin (2015), “The Structural Design of Six-Axis Force/Torque Sensor Using Virtual prototyping Technique”, Journal of Scientific Research & Reports ,Volume 5, pp. 120-131. [26]Ashirbad, S. (2012), “Analysis of machine tool structure using RSM approach (Doctoral dissertation)”, Available at http://ethesis.nitrkl.ac.in/3946/ [27]Dan MihaiStefanescu*, AlexandruStefanescu (2001), “Criteria for Choosing the Elastic Elements of Force Transducers”, Proceedings of the 17th International Conference on Force, Mass, Torque and Pressure Measurements, IMEKO TC3, 17- Available at https://www.imeko.org/publications/tc3-2001/IMEKO-TC3-2001-017.pdf [28] Pichet Pinit (2009), “Development of Window-based program for analysis and visualization of two-dimensional stress field in digital photoelasticity”, Songklanakarin Journal of science and Technology, Volume 31, pp. 205-212. [29] Dipti Kanta Das, Ashok Kumar Sahoo, Ratnakar Das, B. C. Routara ( 2014 ), “Investigations on hard turning using coated carbide insert: Grey Based Taguchi and regression methodology”, Procedia Materials Science, Volume 6, pp. 1351 – 1358.
  • 74. 74 [30] Madhuban Prasad ,NabiHasan , Anil Kumar , Harish Kumar (2011), “Design studies of a square ring shaped force sensor”, International Journal Of Applied Engineering Research, Dindigul ,Volume 1, pp.727-733. [31] Roman Pačnik and Franc Novak (2010), “A High-Sensitivity Hydraulic Load Cell for Small Kitchen Appliances”, Sensors, Volume 10, pp. 8452-8465. [32] Randall M. Schoonover (1979) , “A High Precision Load Cell Mass Comparator”, Journal of Research of the National Bureau of Standards, Volume 84, pp.347-351 [33] Prof. H. V. Shete, Prof. R. A. Pasale, Prof. E. N. Eitawade (2012), “ Photoelastic Stress Analysis & Finite Element Analysis of an Internal Combustion Engine Piston”, International Journal of Scientific & Engineering Research ,Volume 3, pp.,1-5 [34] A. Abu-Sinna, Yon-Kyu Park , Dae-Im Kang, Min-Seok Kim (2009), “The influence of loading frame stiffness on load cell–deadweight force machine interaction”, Measurement ,Volume 42, pp.830–835. [35]Dr. P Ravinder Reddy, Mr. K B Jagadeeshgouda Mr. Suprit Malagi (2015), “Analysis of Stress Distribution in a Curved Structure Using Photoelastic and Finite Element Method'', Journal of Mechanical and Civil Engineering, Volume 12, pp. 112-116. [36] Kamlesh H. Thakkar, Vipul. M.Prajapati, Bipin D. Patel (2013), “Performance Evaluation of Strain Gauge Based Load Cell to Improve Weighing Accuracy”, International Journal of Latest Trends in Engineering and Technology, Volume 2, pp,.103-107.
  • 75. 75 [37] Uddanwadiker, R. (2011), “Stress analysis of crane hook and validation by photo-elasticity”, Engineering, Volume 3, pp. 935-941. [38] Vinay Ganti(2011) , “Analysis Of 4-Dof Force/Torque Sensor For Intelligent Gripper ”, National Institute Of Technology, Rourkela (B. Tech. thesis), Available at http://ethesis.nitrkl.ac.in/2273/ 39] Seif. M. Osman1 ,Ebtisam H. Hasan1, H. M. El-Hakeem, R.M.Rashad d F. Kouta (2013), “Conceptual design of multi-capacity load cell”, 16th International Congress of Metrology, EDP Sciences, Available at https://cfmetrologie.edpsciences.org/articles/metrology/abs/2013/01/metrology_metr2013_03002 /metrology_metr2013_03002.html [40] Mr. M. M. Dange, Prof. S. R. Zaveri & Prof.S.D.Khamankar , “Stress Analysis of Bell Crank Lever, International Journal on Recent and Innovation Trends in Computing and Communication, Volume 2,pp. 2423 – 2430. [41] Qiao kang Liang, Dan Zhang, Yaonan Wang, Yunjian Ge2013), “Design and Analysis of a Novel Six-Component F/T Sensor based on CPM for Passive Compliant Assembly”, Measurement Science Review, Volume pp.253-264. [42] A.R. Tavakolpour-Saleh, M.R. Sadeghzadeh (2014), “Design and development of a three- component force/moment sensor for underwater hydrodynamic tests”, Sensors and Actuators: A Physical Available at https://doi.org/10.1016/S0263-2241(02)00002-7
  • 76. 76 [43] J.W Jooa, K.S Naa, D.I Kangb (2002) , “Design and evaluation of a six-component load cell”, Measurement, Volume 32, pp. 125–133. [44] Fu Shao (2015) , “Design of a Three-Component Force Sensor for Meso-Milling Applications”, University of Toronto (Doctoral thesis), Available at https://doi.org/10.1016/j.proeng.2014.06.016 [45] Gab-Soon Kim(2007), “Development of a Six-Axis Force/Moment Sensor with Rectangular Taper Beams for an Intelligent Robot”, International Journal of Control, Automation, and Systems, Volume 5, pp. 419-428. [46] Jean-Marc Drouet and Yvan Champoux(2014),“Designing a Strain Gauge Transducer for Dynamic Load Measurement in Cycling using numerical simulation”, Procedia Engineering ,Volume72 pp. 304 – 309. [47] M. Durairaja, D. Sudharsunb,, N. Swamynathanb (2014), “Analysis of Process Parameters in Wire EDM with Stainless Steel using Single Objective Taguchi Method and Multi Objective Grey Relational Grade”, Procedia Engineering, Volume 64, pp. 868 – 877. [48] JacekPiskorowski,, Tomasz Barcinski (2008), “Dynamic compensation of load cell response: A time-varying approach”, Mechanical Systems and Signal Processing ,Volume 22, pp. 1694– 1704 . [49] Amin Valizadeh, Alireza Akbarzadeh, Mohammad HoseinTashakori Heravi (2015), “Effect of Structural Design Parameters of a Six-Axis Force/Torque Sensor Using Full Factorial Design”, Proceedings of the 3rd RSI International Conference on Robotics and Mechatronics, Tehran, Iran pp.789-793
  • 77. 77 [50] Robert M. Williams (2014), “Evaluation of Beam Load Cell Use for Base Reaction Force Collision Detection on Industrial Robots ”, Auburn University, Auburn, Alabama ,(M.S.thesis ), Available at http://etd.auburn.edu/handle/10415/4355 [51] G.M. Robinson(1997), “Finite element modelling of load cell hysteresis”, Measurement, Volume 20, pp. 103-107. [52] Ted Kopczynski,(2011) “ Five Factors That Can Affect Your Weighing System’s Accuracy”, Hardy Process Solutions, San Diego, Available at https://www.powderbulk.com/wp- content/uploads/pdf/pbe_20010901_31.pdf [53] GardarPáll Gíslason (2011), “Load cell optimization”, Load Cell Optimization”, University of Iceland,(M.S. thesis) Available at https://skemman.is/handle/1946/8589?locale=en [54] Chung Ket Thein (2013) , “Structural sizing and shape optimization of a load cell”, International Journal of Research in Engineering and Technology, Volume 02 , pp.196-201, [55] Hunt, A. Guide to the Measurement of Force, The Institute of Measurement and Control, London (Published 1998). [56] R. A. Mitchell (1968), “Analysis of n-Degree Elliptical Elastic Rings of Non Uniform Cross Section”, Journal of Research of the National Bureau of Standards-Co Engineering and Instrumentation ,.Volume3c, pp.139-160. [57] Raghu N. Kacker, Eric S. Lagergren, & James J. Filliben (1991), “Taguchi Vs Orthogonal Arrays Are Classical Designs of Experiments”, Journal of Research of the National Institute of Standards and Technology, Volume 96, pp.577-591.
  • 78. 78 [65] S. Boukhenous (2011), “A Low Cost Three-Directional Force Sensor”, International Journal On Smart Sensing And Intelligent Systems ,Volume 4, pp.21-34. [66] Chul-Goo Kang(2005), “Performance Improvement of a 6-Axis Force-torque Sensor via Novel Electronics and Cross-shaped Double-hole Structure”, International Journal of Control, Automation, and Systems, Volume 3, pp. 469-476. [67] Brent J. Maranzano ⁎, Bruno C. Hancock (2016), “Quantitative analysis of impact measurements using dynamic load cells”, Sensing and Bio-Sensing Research Volume7,pp. 31–37. [68] Robinson, G. M. (1995), “ Genetic algorithm optimisation of load cell geometry by finite element analysis”, (Doctoral dissertation, City University London), Available at https://openaccess.city.ac.uk/id/eprint/13593/ [69] Baadkar, C. C. (2010), “Semi-Trailer Structural Failure Analysis Using Finite Element Method”, Available at https://ir.canterbury.ac.nz/handle/10092/5240 [70] Sudhir Kumar, Wakkar Ali, Anil Kumar, Harish Kumar (2011), “Axial Deflection Studies Of Ring Shaped Force Transducer: A Review”, International Journal of Engineering Science and Technology , Volume 3, pp.1330-1333. [71] Shailendra V. Dhanal(2013) “Finite element analysis of octagonal ring for a three component milling tool dynamometer”, IOSR Journal of Engineering ,Volume 3, PP 16-19. [72] Sudhir Kumar and H Kumar (2014) , “Development and Testing of Ring Shaped Force Transducers”, Journal of Scientific & Industrial Research, Volume , 73, February 2014, pp. 103- 106
  • 79. 79 [73] Sudhir Kumar, Nabi Hasan, Harish Kumar & Anil Kumar (2011), “Finite element analysis of a force transducer”, Indian Journal of Science and Technology ,Volume 4 , pp.1246-1247. [74] A.P. Onwualu (2002) , “An extended octagonal ring dynamometer for measurement of forces on a simple tillage tool”, Nigerian Journal of Technology, Volume 21, pp.46-59. [75] Humberto Rodríguez- Fuentes, Martin Cadena-Zapata, Jesús Alonso Esparza- Renteria, Juan Antonio Vidales-Contreras, Ma. del Carmen Ojeda-Zacarías and Alejandro Isabel Luna- Maldonado (2014), ”Design, Manufacturing And Calibration Of A Circular Ring Type Monolithic Load Cell Addressed To Drawbar Pull Testing Of The Farm Tractor”, Journal Of Experimental Biology And Agricultural Sciences, Volume 2, pp373-379. [76] Harish Kumar, Chitra Sharma and Anil Kumar (2011), “Design and development of precision force transducers”, Journal of scientific and industrial research, Volume 70, pp. 519- 524. [77] Harish Kumar, Mohit Kaushik, Pardeepc and Pawan Kumar Arora (2015), “Investigations on metrological characterization of elliptical shaped force transducers for precision force measurement”, Engineering Solid Mechanics, Volume 3 , pp. 263-273. [78] Harish Kumar(2015), “Finite Element Computational And Experimental Investigations Of Design And Metrological Characterization Of Force Transducers”, Guru Gobind Singh Indraprastha University, Delhi (PhD thesis), Available at https://shodhganga.inflibnet.ac.in/handle/10603/127637
  • 80. 80 [79] Harish Kumar Chitra Sharma Anil Kumar(2011), “Design Studies Of Ring Shaped Force Transducers” International Journal of Engineering Science and Technology, Volume 3 , pp.1536- 1541. [80] Er Dharmendra Kumar Dubey, Dr. R. L. Yadav (2016), “A Retrospective Study for Comprehensive Design of Force Transducers”, International Journal of Innovative Science, Engineering & Technology, Volume 3, pp.234-236. [81]Er. Dharmendra Kumar Dubey1 Dr. R. L. Yadav2 Manoj Kumar(2015), “Calibration of Force Transducers”, IJSRD, Volume 3, pp.902-904. [82] Essam Soliman(2015) ,“Performance analysis of octal rings as mechanical force transducers”, Alexandria Engineering Journal ,2015, Available at http://dx.doi.org/10.1016/j.aej.2015.01.004 [83]Harish Kumar & Chitra Sharma (2012), “Performance evaluation of force transducers”, Indian Journal of Pure & Applied Physics, Volume 50, pp. 86-90. [84] Khaled A. Abuhasel* & Essam Soliman, “Statistical Analysis Of Octal Rings As Mechanical Force Transducers”, Advances In Mathematics And Statistical Sciences, Available at http://wseas.us/e-library/conferences/2015/Dubai/MCSS/MCSS-35.pdf [85] Rakesh Kolhapure ⇑, Vasudev Shinde, Vijay Kamble(2017), “Geometrical optimization of strain gauge force transducer using GRA method”, Measurement, Volume.101, pp.111–117 Available at https://doi.org/10.1016/j.measurement.2017.01.030
  • 81. 81 [79] Harish Kumar Chitra Sharma Anil Kumar(2011), “Design Studies Of Ring Shaped Force Transducers” International Journal of Engineering Science and Technology, Volume 3 , pp.1536- 1541. [86] Aravind Russel, Jugal Karda, Piyush Jain,Shalmali Kale Pallavi Khaire(2016), “ Simulation and Experimental Study for Selection of Gauge Area Cross-Section of ‘S’ Type Load Cell”, International Research Journal of Engineering and Technology ,Volume 03,pp.1301-1304. [87] A. Abuhasel and Essam Soliman(2016), “Regression Analysis Of Octal Rings As Mechanical Force Transducers Khaled”, WSEAS Transactions On Mathematics, Volume 15, pp.398-406. [88] Meng Chun-Ling,Zheng Wei-Zhi, Lin Mei-Hong(2002) , “Finite element analysis of double- shear beam load cell”, Machinery Design & Manufacture,vol.3. Available at https://www.jmst.org/EN/article/showCorrelativeArticle.do?keyword=g [89] Prof. Kamlesh H. Thakkar, Prof.Vipul M.Prajapati, Prof. Bipin D.Patel (2013), “Performance Evaluation of Strain Gauge Based Load Cell to Improve Weighing Accuracy”,International Journal of Latest Trends in Engineering and Technology, vol. 2,pp,.103- 107.
  • 82. 82 Papers published •Vijay A. Kamble, Jayant K. Kittur ,Vasudev D. Shinde, “Geometrical Optimization of Dual Octal Ring Force sensor for Wide Range Loading using GRA”, Materials Today: Proceedings, 2021 - Elsevier , https://doi.org/10.1016/j.matpr.2021.03.745 •Vijay A. Kamble, Jayant K. Kittur , Vasudev D. Shinde, “Finite element analysis of two stage force transducer”, Journal of Mechatronics, Machine Design and Manufacturing ,Vol. 2 Issue 3, Page 21-25 ,2020 •Vijay A. Kamble, Vasudev D. Shinde, Jayant K. Kittur , “Shape Optimization of Ring Shaped Load Cells for Enhancing Sensitivity at Lower Deflection using FEM”, Journal of Research in Mechanical Engineering and Applied Mechanics, Vol. 4 ,Issue 2, Page 28-36, 2019 •Vijay A. Kamble, Vasudev D. Shinde, Jayant K. Kittur , “Review on optimization of load cells”, Journal of,Advancements in Material Engineering, (e-ISSN: 2582-0036), Vol.5, Issue, 2020 •Vijay A. Kamble, Vasudev D. Shinde, Jayant K. Kittur , “Critical Assessment of Load Cells “Journal of Advancement in Machines (e ISSN: 2582-2233), Vol. 5, Issue 3, 2020 •Vijay A. Kamble, Vasudev D. Shinde, Jayant K. Kittur , “Overview of Load Cells”, Journal of Mechanical and Mechanics Engineering (e-ISSN: 2581-3722),Vol. 5 , Issue 3, 2020. •Shreyas S. Pandit , Vijay A. Kamble ,“Finite element analysis for stress analysis and Non linear contact analysis of Multi range load cell in Ansys software”, International journal of Engg. And Technology,eISSN:2395-0056,p-ISSN2395-0072,vol. 05,issue 06,June 2018 •Shreyas S. Pandit , Vijay A. Kamble, “Review of Multi-stage Strain gauge based load cell”- National conference on excellence in design manufacturing and automation Textile and engineering Institute Ichalkarnaji, 26-27 April 2018
  • 83. 83 Papers published •Rakesh Kolhapure , Vasudev Shinde, VijayKamble “Geometrical optimization of strain gauge force transducer using GRA method” - Measurement 101 (2017) 111–117 http://dx.doi.org/10.1016/j.measurement. 2017.01.030 0263-2241/_ 2017 Elsevier Ltd. •VaibhavVarne, VasudevShinde, Vijay Kamble ,“Parametric Optimization of Pancake Type Load Cell Using Response Surface Methodology” - International Journal of Current Engineering and Technology, issue 6, 2016 •Rakesh Kolhapure , Vasudev Shinde, VijayKamble ,“Optimization of Load Cell by Grey Relational Analysis Method” - International Journal of Engineering Technology, Management and Applied Sciences, February 2016, Volume 4, Issue 2, ISSN 2349-4476. •VaibhavVarne, VasudevShinde, Vijay Kamble “Effect of Geometrical Parameters on Sensitivity and Volume of Rectangular Beam Force Transducer” - Journal of Recent Trends in Mechanics Volume 1 Issue 1, Page 1- 14, 2016 •D.M. Kalai, V.A.Kamble, A.M.Rathod, B. K. Khot “Parametric Optimization of Rectangular Beam Type Load Cell Using Taguchi Method” - International Journal of Computer Engineering In Research Trends, Volume 3, Issue 11, November-2016, pp. 596-601 •Rakesh Kolhapure, Vasudev Shinde , Vijay Kamble “Optimization of Strain Gauge Transducer for Weighing Application Using GRA Method”, Asian Journal of Engineering and Applied Technology, Vol. 4 No. 2, 2015 pp 1-7 •Paper presented in Conference : “Geometrical Optimization of Dual Octal Ring Force sensor for Wide Range Loading using GRA”, 3rd International e-Conference on Frontiers in Mechanical Engineering and nanotechnology [ICFMET-2020] held on November 27-28, 2020.
  • 84.
  • 85.