SlideShare une entreprise Scribd logo
1  sur  30
Télécharger pour lire hors ligne
TELE3113 Analogue & Digital
Communications
     Review of Fourier Transform




                                   p. 1
Signal Representation
s(t) = A sin(2π fo t +φo ) or A sin(ωo t +φo )
                                            Time-domain: waveform

                                            A: Amplitude
                          Time (seconds)    f : Frequency (Hz) (ω=2πf)
                                            φ : Phase (radian or degrees)
       Period (seconds)
S(f)

                                  Frequency-domain: spectrum


                 fo        Frequency (Hz)
                                                                            p. 2
Energy and Power of Signals

For an arbitrary signal f(t), the total energy normalized to unit
resistance is defined as
                      ∆        T
                 E = lim ∫          f (t ) 2 dt      joules,
                          T →∞ −T


and the average power normalized to unit resistance is defined as
                  ∆        1            T
                P = lim
                    T → ∞ 2T        ∫
                                    −T
                                            f (t ) 2 dt   watts ,


• Note: if 0 < E < ∞ (finite) P = 0.
• When will 0 < P < ∞ happen?




                                                                    p. 3
Periodic Signal

A signal f(t) is periodic if and only if

        f (t + T0 ) = f (t )     for all t   (*)


where the constant T0 is the period.

The smallest value of T0 such that equation (*) is satisfied is
referred to as the fundamental period, and is hereafter simply
referred to as the period.

Any signal not satisfying equation (*) is called aperiodic.




                                                                  p. 4
Deterministic & Random Signals

Deterministic signal can be modeled as a completely specified
function of time.

Example
          f (t ) = A cos( ω 0 t + θ )

Random signal cannot be completely specified as a function of
time and must be modeled probabilistically.




                                                                p. 5
System

Mathematically, a system is a rule used for assigning a function g(t)
(the output) to a function f(t) (the input); that is,
                         g(t) = h{ f(t) }
where h{•} is the rule or we call the impulse response.


             f(t)             h(t)                 g(t)

For two systems connected in cascade, the output of the first system
forms the input to second, thus forming a new overall system:

           g(t) = h2 { h1 [ f(t) ] } = h{ f(t) }


                                                                        p. 6
Linear System

If a system is linear then superposition applies; that is, if

            g1(t) = h{ f1(t) }, and g2(t) = h{ f2(t) }
then

       h{ a1 f1(t) + a2 f2(t) } = a1 g1(t) + a2 g2(t)      (*)


where a1, a2 are constants. A system is linear if it satisfies
Eq. (*); any system not meeting these requirement is nonlinear.




                                                                  p. 7
Time-Invariant and Time-Varying

A system is time-invariant if a time shift in the input results
in a corresponding time shift in the output so that

                  g (t − t 0 ) = h{ f (t − t 0 )}   for any t 0 .

The output of a time-invariant system depends on time differences and
not on absolute values of time.

Any system not meeting this requirement is said to be time-varying.




                                                                        p. 8
Fourier Series

A periodic function of time s(t) with a fundamental period of T0 can be
represented as an infinite sum of sinusoidal waveforms. Such
summation, a Fourier series, may be written as:
                                 ∞
                                               2 π nt ∞          2 πnt
          s (t ) = A0 + ∑               An cos       + ∑ B n sin       ,   (1)
                                 n =1           T0     n =1       T0
where the average value of s(t), A0 is given by
                  1 T20
             A0 =
                  T0 ∫− T20 s (t ) dt ,                                    (2)
while
               2        T0
                                            2 π nt
          An =      ∫                                                      (3)
                         2
                         T0
                            s (t ) cos             dt ,
               T0   −        2               T0
and
               2        T0
                                           2 π nt
          Bn =      ∫
                         2
                         T0
                            s (t ) sin            dt .                     (4)
               T0   −    2                  T0
                                                                                 p. 9
Fourier Series

An alternative form of representing the Fourier series is
                            ∞
                                        2 πnt      
              s (t ) = C 0 + ∑ C n cos 
                                              − φn 
                                                    
                                                                  (5)
                             n =1       T0         
where
           C0 = A0 ,                                              (6)
                       2   2
           Cn =    An + B n ,                                     (7)
                       B
           φ n = tan −1 n .                                       (8)
                       An
The Fourier series of a periodic function is thus seen to consist of a
summation of harmonics of a fundamental frequency f0 = 1/T0.
The coefficients Cn are called spectral amplitudes, which represent the
amplitude of the spectral component Cn cos(2πnf0t − φn) at frequency
nf0.
                                                                          p. 10
Fourier Series

The exponential form of the Fourier series is used extensively in
communication theory. This form is given by
                                  ∞                j 2 π nt

                   s (t ) =      ∑S
                                n = −∞
                                           n   e     T0
                                                              ,         (9)
where
                 1        T0
                                           −
                                               j 2 π nt
                                                                       (10)
            Sn =      ∫         s (t ) e                  dt
                           2                     T0
                           T0
                 T0    −    2

Note that Sn and S−n are complex conjugate of one another, that is

                    S n = S −n .
                            *
                                                                       (11)
These are related to the Cn by
                                                          C n − jφ n   (12)
                 S0 = C0 ,               Sn =                e .
                                                          2
                                                                              p. 11
Fourier Series
                                                                                                    Amplitude Spectra (Line Spectra)
                                                                   Fig.(a)
      Cn




                                                                                                      Note that except S0 = C0, each
                0 fo 2fo 3fo 4fo 5fo 6fo                            (n-1) fo nfo                      spectral line in Fig. (a) at frequency f
                                                                                                      is replaced by the two spectral lines in
                                                                                                      Fig. (b), each with half amplitude,
                                                                   Fig.(b)                            one at frequency f and one at
                                        |Sn|
                                                                                                      frequency - f.


                 •••                                                                    •••
-nfo -(n-1)fo   •••   - 6fo0-5fo -4fo -3fo -2fo -fo 0 fo 2fo 3fo 4fo 5fo 6fo   •••   (n-1) fo nfo




                                                                                                                                                 p. 12
Fourier Series : Example

Consider a unitary square wave defined by                             The Bn coefficients are given by
                       1,                     0 < t < 0.5                      2            T0
                                                                                                              2πnt
                                                                           Bn =          ∫
                                                                                              2

               x(t ) =                                                                   T0
                                                                                                  x(t ) sin        dt
                                                                                T0       −2                    T0
                       − 1,                   0.5 < t < 1
                                                                              = 2 ∫ x(t ) sin (2πnt )dt
                                                                                     1
and periodically extended outside this interval.                                     0

The average value is zero, so                                                 = 2 ∫ sin (2πnt )dt + 2 ∫ − sin (2πnt )dt
                                                                                     0.5                            1

                                                                                     0                              0.5
                       A0 = 0.                                                     cos(2πnt )   cos(2πnt ) 
                                                                                                           1  0.5

                                                                              = 2 −           +             
 Recall that            2            T0
                                                      2πnt                        
                                                                                      2πn 0        2πn 0.5 
                   An =          ∫
                                      2
                                          x(t ) cos        dt
                        T0
                                  T0
                                 −2                    T0                          2
                                                                              =      (1 − cos nπ)
                                                                                  πn
                      = 2 ∫ x(t ) cos(2πnt )dt
                             1

                             0
                                                                       which results in
                      = 2 ∫ cos(2πnt )dt + 2 ∫ − cos(2πnt )dt
                             0.5                            1
                                                                                   4
                             0                              0.5
                                                                                   ,                         n is odd
                                                                             Bn =  nπ
                          sin (2πnt )   sin (2πnt ) 
                                                 0.5              1

                      = 2             −                                         0,
                                                                                                              n is even
                         
                             2πn 0         2πn 0.5 
                      =0
 Thus all An coefficients are zero.
                                                                                                                           p. 13
Fourier Series : Example
The Fourier series of a square wave of unitary amplitude with odd symmetry is
therefore
                         4           1          1
                 x (t ) = (sin 2 πt + sin 6 πt + sin 10 πt + K)
                         π           3          5




      1st term                   1st + 2nd terms             1st + 2nd + 3rd terms




                                                         Sum up to the 6th term


                                                                                     p. 14
Fourier Transform

Representation of an Aperiodic Function
Consider an aperiodic function f(t)




To represent this function as a sum of exponential functions over
the entire interval (-∞, ∞), we construct a new periodic function
fT(t) with period T.




By letting T→∞,

                       lim f T (t ) = f (t )                (13)
                      T →∞
                                                                    p. 15
Fourier Transform

The new function fT(t) can be represented by an exponential
Fourier series, which is written as
                                ∞
                f T (t ) =    ∑ Fn e jn ω 0 t ,
                              n = −∞
                                                               (14)

where
                    1        T /2
                                                               (15)
               Fn =
                    T   ∫−T / 2
                                    f T (t ) e − jn ω 0 t dt

and     ω0 = 2π / T .



                                                                      p. 16
Fourier Transform

For the sake of clear presentation, we set
                    ∆                              ∆
                ω n = nω 0 ,          F ( ω n ) = TF n ,              (16)

Thus, Eq.(14) and (15) become
                                ∞
                                     1
                 f T (t ) =    ∑T
                              n = −∞
                                       F ( ω n ) e jω n t ,           (17)

                                    T /2
                                                                      (18)
                 F (ω n ) =     ∫−T / 2
                                           f T (t ) e − jω n t dt .
The spacing between adjacent lines in the line stream of fT(t)
is
                         ∆ω = 2π / T .                                (19)

                                                                             p. 17
Fourier Transform

Using this relation for T, we get
                         ∞
                                                     ∆ω
          f T (t ) =   ∑
                       n = −∞
                                F (ω n )e   jω n t

                                                     2π
                                                        .              (20)

As T becomes very large, ∆ω becomes smaller and the spectrum
becomes denser.
In the limit T → ∞, the discrete lines in the spectrum of fT(t) merge
and the frequency spectrum becomes continuous.
Therefore,                           1 ∞
                lim f T (t ) = lim
                T →∞           T →∞ 2π
                                        ∑
                                       n = −∞
                                              F ( ω n ) e jω n t ∆ ω   (21)

becomes                                1 ∞
                                      2 π ∫− ∞
                             f (t ) =          F ( ω ) e jω t d ω      (22)
                                                                              p. 18
Fourier Transform

In a similar way, Eq. (18) becomes
                              ∞
                F (ω) =   ∫−∞
                                      f (t ) e − jω t dt .     (23)

Eq. (22) and (23) are commonly referred to as the
Fourier transform pair.
Fourier Transform
                                      ∞
                  F (ω ) =        ∫
                                  −∞
                                          f (t ) e − jω t dt

Inverse Fourier Transform
                           1 ∞
                          2 π ∫− ∞
                 f (t ) =          F ( ω ) e jω t d ω

                                                                      p. 19
Spectral Density Function


F(ω): The spectral density function of f(t).




                      Fig. 3.2


    A unit gate function                       Its spectral density graph


                          sin( ω / 2 )
           Sa ( ω / 2 ) =
                             ω/2
                                                                            p. 20
Parseval’s Theorem

The energy delivered to a 1-ohm resistor is
             ∞                         ∞
    E=   ∫       f (t ) dt =       ∫                               (24)
                          2
                                            f (t ) f * (t ) dt .
         −∞                            −∞

Using Eq. (22) in (24), we get
               ∞       1 ∞ *                                                        1 ∞
          E = ∫ f (t )  ∫ F (ω)e − jωt dω dt                            f (t ) =      ∫− ∞ F (ω)e d ω
                                                                                                   jω t

               −∞
                        2π − ∞                                                     2π

                    1 ∞ *  ∞
                          F (ω) ∫ f (t )e − jωt dt  dω
                   2π ∫−∞
                 =
                                 −∞
                                                  
                                                   
                    1 ∞ *                                          (25)
                 =
                   2π ∫−∞ F (ω) F (ω)dω.
Parseval’s Theorem:
                      ∞                    1 ∞
                  ∫                       2 π ∫− ∞
                                   2                     2
                   −∞
                              f (t ) dt =          F ( ω) d ω.     (26)
                                                                                                   p. 21
Fourier Transform: Impulse Function

The unit impulse function satisfies
          ∞
      ∫       δ( x)dx = 1,                  (27)
      −∞

               ∞            x = 0,
      δ ( x) =                             (28)
               0            x ≠ 0.
Using the integral properties of the impulse function, the Fourier
transform of a unit impulse, δ(t), is
                             ∞
              ℑ{δ(t )} = ∫ δ(t )e − jωt dt = e j 0 = 1.             (29)
                          −∞

If the impulse is time-shifted, we have
                                 ∞
              ℑ{δ(t − t0 )} = ∫ δ(t − t0 )e − jωt dt = e − jωt0 .   (30)
                                 −∞




                                                                           p. 22
Fourier Transform: Complex
       Exponential Function
                         ± jω t
The spectral density of e 0 will be concentrated at ±ω0.
                          1 ∞
     ℑ {δ ( ω m ω 0 )} =
                         2 π ∫− ∞
       −1
                                  δ ( ω m ω 0 ) e jω t d ω

                          1 ± jω 0 t                           (31)
                       =     e        ,
                         2π
Taking the Fourier transform of both sides, we have
                                                               (32)
            ℑℑ   −1

                                         2π
                                                {
                      {δ ( ω m ω 0 ) } = 1 ℑ e ± j ω 0 t   }
which gives
                      {       }
                 ℑ e ± j ω 0 t = 2πδ (ω m ω 0 )                (33)




                                                                      p. 23
Fourier Transform: Sinusoidal Function

The sinusoidal signals  cos ω0tand                            sin ωcan be written in terms of
                                                                   0t
the complex exponentials.
Their Fourier transforms are given by

                     {
ℑ{cos ω 0 t } = ℑ 1 e jω 0 t + 1 e − jω 0 t
                  2            2
                                               }
               = πδ ( ω − ω 0 ) + πδ ( ω + ω 0 ),

                                                       (34)

  ℑ{sin ω0t} = ℑ     {1
                      2j   e jω0t − 21j e − jω0t   }
                    πδ(ω − ω0 ) − πδ(ω + ω0 )
                =                             .
                                j
                                                       (35)

                                                                                                p. 24
Fourier Transform: Periodic Functions

We can express a function f(t) that is periodic with period T by its
exponential Fourier series
                        ∞
       f T (t ) =    ∑ Fn e jn ω 0 t
                     n = −∞
                                            where ω0 = 2π/T.           (36)

Taking the Fourier transform, we have
                 ∞      jnω0 t 
 ℑ{ fT (t )} = ℑ ∑ Fn e        
                                               e.g.
                n = −∞         

               ∑ F ℑ{e                  }
                 ∞
                                jnω0t
           =                n                         A unit gate function    Its Fourier transform
               n = −∞
                        ∞
           = 2π ∑ Fn δ(ω − nω0 ).
                     n = −∞
                                  (37)                Line spectrum of f(t)   Its spectral density graph
                                                      with period T                               p. 25
Time and Spectral Density Functions




                                      p. 26
Selected Fourier Transform Pairs




                                   p. 27
Properties of Fourier Transform
Linearity (Superposition)                                  Time Shifting (Delay)
  a1 f1 (t ) + a 2 f 2 (t ) ↔ a1 F1 ( ω ) + a 2 F2 ( ω )        f (t − t 0 ) ↔ F (ω ) e − jω t 0

Complex Conjugate                                          Frequency Shifting (Modulation)
     f * (t ) ↔ F * (−ω)                                         f ( t ) e jω 0 t ↔ F ( ω − ω 0 )
Duality
                                                           Convolution
     F (t ) ↔ 2 π f ( − ω ).
                                                                 f1 (t ) ∗ f 2 (t ) ↔ F1 ( ω ) F2 ( ω )
Scaling
                     1  ω                                Multiplication
        f (at ) ↔     F            for a ≠ 0.
                     a a
                                                                   f1 (t ) f 2 (t ) ↔ F1 ( ω ) ∗ F2 ( ω )
Differentiation
     dn
          f (t ) ↔ ( jω) n F (ω)
     dt n
                                                                                                          p. 28
Properties of Fourier Transform

Duality     F (t ) ↔ 2 π f ( − ω).




Scaling                 1 ω
             f ( at ) ↔  F         for   a ≠ 0.
                        a a




                                                    p. 29
Properties of Fourier Transform

Frequency Shifting (Modulation)
               jω 0 t
    f (t ) e            ↔ F (ω − ω 0 )




                                         p. 30

Contenu connexe

Tendances

Fourier Transform
Fourier TransformFourier Transform
Fourier TransformAamir Saeed
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier propertiesskysunilyadav
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systemsbabak danyal
 
fourier transforms
fourier transformsfourier transforms
fourier transformsUmang Gupta
 
An Intuitive Approach to Fourier Optics
An Intuitive Approach to Fourier OpticsAn Intuitive Approach to Fourier Optics
An Intuitive Approach to Fourier Opticsjose0055
 
signal and system solution Quiz2
signal and system solution Quiz2signal and system solution Quiz2
signal and system solution Quiz2iqbal ahmad
 
Tele3113 wk2wed
Tele3113 wk2wedTele3113 wk2wed
Tele3113 wk2wedVin Voro
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5Vin Voro
 
Optics Fourier Transform I
Optics Fourier Transform IOptics Fourier Transform I
Optics Fourier Transform Idiarmseven
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsJayanshu Gundaniya
 
Signal fundamentals
Signal fundamentalsSignal fundamentals
Signal fundamentalsLalit Kanoje
 
Case Study (All)
Case Study (All)Case Study (All)
Case Study (All)gudeyi
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1Faiza Saher
 
Fourier analysis
Fourier analysisFourier analysis
Fourier analysisAyzaJabeen
 

Tendances (20)

Fourier Transform
Fourier TransformFourier Transform
Fourier Transform
 
Lecture 9
Lecture 9Lecture 9
Lecture 9
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier properties
 
Lecture8 Signal and Systems
Lecture8 Signal and SystemsLecture8 Signal and Systems
Lecture8 Signal and Systems
 
fourier transforms
fourier transformsfourier transforms
fourier transforms
 
An Intuitive Approach to Fourier Optics
An Intuitive Approach to Fourier OpticsAn Intuitive Approach to Fourier Optics
An Intuitive Approach to Fourier Optics
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Two Curves Upfront
Two Curves UpfrontTwo Curves Upfront
Two Curves Upfront
 
signal and system solution Quiz2
signal and system solution Quiz2signal and system solution Quiz2
signal and system solution Quiz2
 
Tele3113 wk2wed
Tele3113 wk2wedTele3113 wk2wed
Tele3113 wk2wed
 
Cash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap FuturesCash Settled Interest Rate Swap Futures
Cash Settled Interest Rate Swap Futures
 
Tele4653 l5
Tele4653 l5Tele4653 l5
Tele4653 l5
 
Fourier transform
Fourier transformFourier transform
Fourier transform
 
Optics Fourier Transform I
Optics Fourier Transform IOptics Fourier Transform I
Optics Fourier Transform I
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
Signal fundamentals
Signal fundamentalsSignal fundamentals
Signal fundamentals
 
AEM Fourier series
 AEM Fourier series AEM Fourier series
AEM Fourier series
 
Case Study (All)
Case Study (All)Case Study (All)
Case Study (All)
 
Fourier series 1
Fourier series 1Fourier series 1
Fourier series 1
 
Fourier analysis
Fourier analysisFourier analysis
Fourier analysis
 

En vedette

31. upload lks 2015 m arketing
31. upload lks 2015 m arketing31. upload lks 2015 m arketing
31. upload lks 2015 m arketingSmp Al-Hadi
 
Tele4653 l6
Tele4653 l6Tele4653 l6
Tele4653 l6Vin Voro
 
Arrangeren van-leermiddelen: keuzes in het leerplan
Arrangeren van-leermiddelen: keuzes in het leerplanArrangeren van-leermiddelen: keuzes in het leerplan
Arrangeren van-leermiddelen: keuzes in het leerplanwimdboer
 
Cpa network - способы монетизации трафика
Cpa network -  способы монетизации трафикаCpa network -  способы монетизации трафика
Cpa network - способы монетизации трафикаKira Zhestkova
 
CARTA FESTES MARROCS 2015
CARTA FESTES MARROCS 2015CARTA FESTES MARROCS 2015
CARTA FESTES MARROCS 2015Josep Miquel
 
Prof. Tara Dean on allergies - Cafe Scientifique Isle of Wight
Prof. Tara Dean on allergies - Cafe Scientifique Isle of WightProf. Tara Dean on allergies - Cafe Scientifique Isle of Wight
Prof. Tara Dean on allergies - Cafe Scientifique Isle of Wightonthewight
 
Online Retail 2013 // Так стоит ли слать чаще? // OZON.ru (Кира Жесткова)
Online Retail 2013  // Так стоит ли слать чаще? // OZON.ru (Кира Жесткова)Online Retail 2013  // Так стоит ли слать чаще? // OZON.ru (Кира Жесткова)
Online Retail 2013 // Так стоит ли слать чаще? // OZON.ru (Кира Жесткова)Kira Zhestkova
 
Breast Cancer Management
Breast Cancer ManagementBreast Cancer Management
Breast Cancer ManagementAbdul Basit
 
Tele3113 wk1wed
Tele3113 wk1wedTele3113 wk1wed
Tele3113 wk1wedVin Voro
 
Arrangeren
ArrangerenArrangeren
Arrangerenwimdboer
 
Innovation at OnTheWight - Presented at What's next for Community Journalism ...
Innovation at OnTheWight - Presented at What's next for Community Journalism ...Innovation at OnTheWight - Presented at What's next for Community Journalism ...
Innovation at OnTheWight - Presented at What's next for Community Journalism ...onthewight
 

En vedette (20)

La función escalón unitario
La función escalón unitarioLa función escalón unitario
La función escalón unitario
 
Mallorca
Mallorca Mallorca
Mallorca
 
31. upload lks 2015 m arketing
31. upload lks 2015 m arketing31. upload lks 2015 m arketing
31. upload lks 2015 m arketing
 
Tele4653 l6
Tele4653 l6Tele4653 l6
Tele4653 l6
 
Arrangeren van-leermiddelen: keuzes in het leerplan
Arrangeren van-leermiddelen: keuzes in het leerplanArrangeren van-leermiddelen: keuzes in het leerplan
Arrangeren van-leermiddelen: keuzes in het leerplan
 
Cpa network - способы монетизации трафика
Cpa network -  способы монетизации трафикаCpa network -  способы монетизации трафика
Cpa network - способы монетизации трафика
 
CARTA FESTES MARROCS 2015
CARTA FESTES MARROCS 2015CARTA FESTES MARROCS 2015
CARTA FESTES MARROCS 2015
 
B2B Part III
B2B Part IIIB2B Part III
B2B Part III
 
Prof. Tara Dean on allergies - Cafe Scientifique Isle of Wight
Prof. Tara Dean on allergies - Cafe Scientifique Isle of WightProf. Tara Dean on allergies - Cafe Scientifique Isle of Wight
Prof. Tara Dean on allergies - Cafe Scientifique Isle of Wight
 
Online Retail 2013 // Так стоит ли слать чаще? // OZON.ru (Кира Жесткова)
Online Retail 2013  // Так стоит ли слать чаще? // OZON.ru (Кира Жесткова)Online Retail 2013  // Так стоит ли слать чаще? // OZON.ru (Кира Жесткова)
Online Retail 2013 // Так стоит ли слать чаще? // OZON.ru (Кира Жесткова)
 
Media Lab Aalto University October 2011
Media Lab Aalto University October 2011Media Lab Aalto University October 2011
Media Lab Aalto University October 2011
 
Breast Cancer Management
Breast Cancer ManagementBreast Cancer Management
Breast Cancer Management
 
Tele3113 wk1wed
Tele3113 wk1wedTele3113 wk1wed
Tele3113 wk1wed
 
Lect16
Lect16Lect16
Lect16
 
Squinkies
SquinkiesSquinkies
Squinkies
 
Arrangeren
ArrangerenArrangeren
Arrangeren
 
Lect14
Lect14Lect14
Lect14
 
Innovation at OnTheWight - Presented at What's next for Community Journalism ...
Innovation at OnTheWight - Presented at What's next for Community Journalism ...Innovation at OnTheWight - Presented at What's next for Community Journalism ...
Innovation at OnTheWight - Presented at What's next for Community Journalism ...
 
Anna col
Anna colAnna col
Anna col
 
CCRMA - 2011
CCRMA - 2011CCRMA - 2011
CCRMA - 2011
 

Similaire à TELE3113 Fourier Transform Review

The Fourier Series Representations .pptx
The Fourier Series Representations .pptxThe Fourier Series Representations .pptx
The Fourier Series Representations .pptxEyob Adugnaw
 
Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wedVin Voro
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterionsrkrishna341
 
fourier-method-of-waveform-analysis msc physics
fourier-method-of-waveform-analysis msc physicsfourier-method-of-waveform-analysis msc physics
fourier-method-of-waveform-analysis msc physicsRakeshPatil2528
 
Fourier series and Fourier transform in po physics
Fourier series and Fourier transform in po physicsFourier series and Fourier transform in po physics
Fourier series and Fourier transform in po physicsRakeshPatil2528
 
Ss important questions
Ss important questionsSs important questions
Ss important questionsSowji Laddu
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfarihantelectronics
 
7076 chapter5 slides
7076 chapter5 slides7076 chapter5 slides
7076 chapter5 slidesNguyen Mina
 
Introduction and types of signals and its charachteristics
Introduction and types of signals and its charachteristicsIntroduction and types of signals and its charachteristics
Introduction and types of signals and its charachteristicsSushmit8
 
Tele4653 l3
Tele4653 l3Tele4653 l3
Tele4653 l3Vin Voro
 
4. a Find the compact trigonometric Fourier series for the periodic s.pdf
4. a Find the compact trigonometric Fourier series for the periodic s.pdf4. a Find the compact trigonometric Fourier series for the periodic s.pdf
4. a Find the compact trigonometric Fourier series for the periodic s.pdfjovankarenhookeott88
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsMatthew Leingang
 
Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1Vin Voro
 
03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdfROCIOMAMANIALATA1
 

Similaire à TELE3113 Fourier Transform Review (20)

Solved problems
Solved problemsSolved problems
Solved problems
 
Fourier Analysis
Fourier AnalysisFourier Analysis
Fourier Analysis
 
The Fourier Series Representations .pptx
The Fourier Series Representations .pptxThe Fourier Series Representations .pptx
The Fourier Series Representations .pptx
 
Tele3113 wk11wed
Tele3113 wk11wedTele3113 wk11wed
Tele3113 wk11wed
 
Isi and nyquist criterion
Isi and nyquist criterionIsi and nyquist criterion
Isi and nyquist criterion
 
fourier-method-of-waveform-analysis msc physics
fourier-method-of-waveform-analysis msc physicsfourier-method-of-waveform-analysis msc physics
fourier-method-of-waveform-analysis msc physics
 
Fourier series and Fourier transform in po physics
Fourier series and Fourier transform in po physicsFourier series and Fourier transform in po physics
Fourier series and Fourier transform in po physics
 
Ss important questions
Ss important questionsSs important questions
Ss important questions
 
Chapter6 sampling
Chapter6 samplingChapter6 sampling
Chapter6 sampling
 
unit 4,5 (1).docx
unit 4,5 (1).docxunit 4,5 (1).docx
unit 4,5 (1).docx
 
Find the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdfFind the compact trigonometric Fourier series for the periodic signal.pdf
Find the compact trigonometric Fourier series for the periodic signal.pdf
 
7076 chapter5 slides
7076 chapter5 slides7076 chapter5 slides
7076 chapter5 slides
 
Introduction and types of signals and its charachteristics
Introduction and types of signals and its charachteristicsIntroduction and types of signals and its charachteristics
Introduction and types of signals and its charachteristics
 
Tele4653 l3
Tele4653 l3Tele4653 l3
Tele4653 l3
 
4. a Find the compact trigonometric Fourier series for the periodic s.pdf
4. a Find the compact trigonometric Fourier series for the periodic s.pdf4. a Find the compact trigonometric Fourier series for the periodic s.pdf
4. a Find the compact trigonometric Fourier series for the periodic s.pdf
 
Lesson 7: Vector-valued functions
Lesson 7: Vector-valued functionsLesson 7: Vector-valued functions
Lesson 7: Vector-valued functions
 
Tele4653 l1
Tele4653 l1Tele4653 l1
Tele4653 l1
 
03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf03 Cap 2 - fourier-analysis-2015.pdf
03 Cap 2 - fourier-analysis-2015.pdf
 
Signal Processing Homework Help
Signal Processing Homework HelpSignal Processing Homework Help
Signal Processing Homework Help
 
Future CMB Experiments
Future CMB ExperimentsFuture CMB Experiments
Future CMB Experiments
 

Plus de Vin Voro

Tele3113 tut6
Tele3113 tut6Tele3113 tut6
Tele3113 tut6Vin Voro
 
Tele3113 tut5
Tele3113 tut5Tele3113 tut5
Tele3113 tut5Vin Voro
 
Tele3113 tut4
Tele3113 tut4Tele3113 tut4
Tele3113 tut4Vin Voro
 
Tele3113 tut1
Tele3113 tut1Tele3113 tut1
Tele3113 tut1Vin Voro
 
Tele3113 tut3
Tele3113 tut3Tele3113 tut3
Tele3113 tut3Vin Voro
 
Tele3113 tut2
Tele3113 tut2Tele3113 tut2
Tele3113 tut2Vin Voro
 
Tele3113 wk11tue
Tele3113 wk11tueTele3113 wk11tue
Tele3113 wk11tueVin Voro
 
Tele3113 wk10wed
Tele3113 wk10wedTele3113 wk10wed
Tele3113 wk10wedVin Voro
 
Tele3113 wk10tue
Tele3113 wk10tueTele3113 wk10tue
Tele3113 wk10tueVin Voro
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wedVin Voro
 
Tele3113 wk9tue
Tele3113 wk9tueTele3113 wk9tue
Tele3113 wk9tueVin Voro
 
Tele3113 wk8wed
Tele3113 wk8wedTele3113 wk8wed
Tele3113 wk8wedVin Voro
 
Tele3113 wk9wed
Tele3113 wk9wedTele3113 wk9wed
Tele3113 wk9wedVin Voro
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wedVin Voro
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wedVin Voro
 
Tele3113 wk7tue
Tele3113 wk7tueTele3113 wk7tue
Tele3113 wk7tueVin Voro
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wedVin Voro
 
Tele3113 wk6tue
Tele3113 wk6tueTele3113 wk6tue
Tele3113 wk6tueVin Voro
 
Tele3113 wk5tue
Tele3113 wk5tueTele3113 wk5tue
Tele3113 wk5tueVin Voro
 
Tele3113 wk4wed
Tele3113 wk4wedTele3113 wk4wed
Tele3113 wk4wedVin Voro
 

Plus de Vin Voro (20)

Tele3113 tut6
Tele3113 tut6Tele3113 tut6
Tele3113 tut6
 
Tele3113 tut5
Tele3113 tut5Tele3113 tut5
Tele3113 tut5
 
Tele3113 tut4
Tele3113 tut4Tele3113 tut4
Tele3113 tut4
 
Tele3113 tut1
Tele3113 tut1Tele3113 tut1
Tele3113 tut1
 
Tele3113 tut3
Tele3113 tut3Tele3113 tut3
Tele3113 tut3
 
Tele3113 tut2
Tele3113 tut2Tele3113 tut2
Tele3113 tut2
 
Tele3113 wk11tue
Tele3113 wk11tueTele3113 wk11tue
Tele3113 wk11tue
 
Tele3113 wk10wed
Tele3113 wk10wedTele3113 wk10wed
Tele3113 wk10wed
 
Tele3113 wk10tue
Tele3113 wk10tueTele3113 wk10tue
Tele3113 wk10tue
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wed
 
Tele3113 wk9tue
Tele3113 wk9tueTele3113 wk9tue
Tele3113 wk9tue
 
Tele3113 wk8wed
Tele3113 wk8wedTele3113 wk8wed
Tele3113 wk8wed
 
Tele3113 wk9wed
Tele3113 wk9wedTele3113 wk9wed
Tele3113 wk9wed
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wed
 
Tele3113 wk7wed
Tele3113 wk7wedTele3113 wk7wed
Tele3113 wk7wed
 
Tele3113 wk7tue
Tele3113 wk7tueTele3113 wk7tue
Tele3113 wk7tue
 
Tele3113 wk6wed
Tele3113 wk6wedTele3113 wk6wed
Tele3113 wk6wed
 
Tele3113 wk6tue
Tele3113 wk6tueTele3113 wk6tue
Tele3113 wk6tue
 
Tele3113 wk5tue
Tele3113 wk5tueTele3113 wk5tue
Tele3113 wk5tue
 
Tele3113 wk4wed
Tele3113 wk4wedTele3113 wk4wed
Tele3113 wk4wed
 

Dernier

Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4JOYLYNSAMANIEGO
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxkarenfajardo43
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptxmary850239
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...Nguyen Thanh Tu Collection
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsPooky Knightsmith
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...DhatriParmar
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...DhatriParmar
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Projectjordimapav
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptxDhatriParmar
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxDhatriParmar
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxSayali Powar
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationdeepaannamalai16
 

Dernier (20)

Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4Daily Lesson Plan in Mathematics Quarter 4
Daily Lesson Plan in Mathematics Quarter 4
 
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptxGrade Three -ELLNA-REVIEWER-ENGLISH.pptx
Grade Three -ELLNA-REVIEWER-ENGLISH.pptx
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx4.16.24 Poverty and Precarity--Desmond.pptx
4.16.24 Poverty and Precarity--Desmond.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
31 ĐỀ THI THỬ VÀO LỚP 10 - TIẾNG ANH - FORM MỚI 2025 - 40 CÂU HỎI - BÙI VĂN V...
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
Mental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young mindsMental Health Awareness - a toolkit for supporting young minds
Mental Health Awareness - a toolkit for supporting young minds
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
Beauty Amidst the Bytes_ Unearthing Unexpected Advantages of the Digital Wast...
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
Blowin' in the Wind of Caste_ Bob Dylan's Song as a Catalyst for Social Justi...
 
week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
ClimART Action | eTwinning Project
ClimART Action    |    eTwinning ProjectClimART Action    |    eTwinning Project
ClimART Action | eTwinning Project
 
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
Unraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptxUnraveling Hypertext_ Analyzing  Postmodern Elements in  Literature.pptx
Unraveling Hypertext_ Analyzing Postmodern Elements in Literature.pptx
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
 
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptxBIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
BIOCHEMISTRY-CARBOHYDRATE METABOLISM CHAPTER 2.pptx
 
Congestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentationCongestive Cardiac Failure..presentation
Congestive Cardiac Failure..presentation
 

TELE3113 Fourier Transform Review

  • 1. TELE3113 Analogue & Digital Communications Review of Fourier Transform p. 1
  • 2. Signal Representation s(t) = A sin(2π fo t +φo ) or A sin(ωo t +φo ) Time-domain: waveform A: Amplitude Time (seconds) f : Frequency (Hz) (ω=2πf) φ : Phase (radian or degrees) Period (seconds) S(f) Frequency-domain: spectrum fo Frequency (Hz) p. 2
  • 3. Energy and Power of Signals For an arbitrary signal f(t), the total energy normalized to unit resistance is defined as ∆ T E = lim ∫ f (t ) 2 dt joules, T →∞ −T and the average power normalized to unit resistance is defined as ∆ 1 T P = lim T → ∞ 2T ∫ −T f (t ) 2 dt watts , • Note: if 0 < E < ∞ (finite) P = 0. • When will 0 < P < ∞ happen? p. 3
  • 4. Periodic Signal A signal f(t) is periodic if and only if f (t + T0 ) = f (t ) for all t (*) where the constant T0 is the period. The smallest value of T0 such that equation (*) is satisfied is referred to as the fundamental period, and is hereafter simply referred to as the period. Any signal not satisfying equation (*) is called aperiodic. p. 4
  • 5. Deterministic & Random Signals Deterministic signal can be modeled as a completely specified function of time. Example f (t ) = A cos( ω 0 t + θ ) Random signal cannot be completely specified as a function of time and must be modeled probabilistically. p. 5
  • 6. System Mathematically, a system is a rule used for assigning a function g(t) (the output) to a function f(t) (the input); that is, g(t) = h{ f(t) } where h{•} is the rule or we call the impulse response. f(t) h(t) g(t) For two systems connected in cascade, the output of the first system forms the input to second, thus forming a new overall system: g(t) = h2 { h1 [ f(t) ] } = h{ f(t) } p. 6
  • 7. Linear System If a system is linear then superposition applies; that is, if g1(t) = h{ f1(t) }, and g2(t) = h{ f2(t) } then h{ a1 f1(t) + a2 f2(t) } = a1 g1(t) + a2 g2(t) (*) where a1, a2 are constants. A system is linear if it satisfies Eq. (*); any system not meeting these requirement is nonlinear. p. 7
  • 8. Time-Invariant and Time-Varying A system is time-invariant if a time shift in the input results in a corresponding time shift in the output so that g (t − t 0 ) = h{ f (t − t 0 )} for any t 0 . The output of a time-invariant system depends on time differences and not on absolute values of time. Any system not meeting this requirement is said to be time-varying. p. 8
  • 9. Fourier Series A periodic function of time s(t) with a fundamental period of T0 can be represented as an infinite sum of sinusoidal waveforms. Such summation, a Fourier series, may be written as: ∞ 2 π nt ∞ 2 πnt s (t ) = A0 + ∑ An cos + ∑ B n sin , (1) n =1 T0 n =1 T0 where the average value of s(t), A0 is given by 1 T20 A0 = T0 ∫− T20 s (t ) dt , (2) while 2 T0 2 π nt An = ∫ (3) 2 T0 s (t ) cos dt , T0 − 2 T0 and 2 T0 2 π nt Bn = ∫ 2 T0 s (t ) sin dt . (4) T0 − 2 T0 p. 9
  • 10. Fourier Series An alternative form of representing the Fourier series is ∞  2 πnt  s (t ) = C 0 + ∑ C n cos   − φn   (5) n =1  T0  where C0 = A0 , (6) 2 2 Cn = An + B n , (7) B φ n = tan −1 n . (8) An The Fourier series of a periodic function is thus seen to consist of a summation of harmonics of a fundamental frequency f0 = 1/T0. The coefficients Cn are called spectral amplitudes, which represent the amplitude of the spectral component Cn cos(2πnf0t − φn) at frequency nf0. p. 10
  • 11. Fourier Series The exponential form of the Fourier series is used extensively in communication theory. This form is given by ∞ j 2 π nt s (t ) = ∑S n = −∞ n e T0 , (9) where 1 T0 − j 2 π nt (10) Sn = ∫ s (t ) e dt 2 T0 T0 T0 − 2 Note that Sn and S−n are complex conjugate of one another, that is S n = S −n . * (11) These are related to the Cn by C n − jφ n (12) S0 = C0 , Sn = e . 2 p. 11
  • 12. Fourier Series Amplitude Spectra (Line Spectra) Fig.(a) Cn Note that except S0 = C0, each 0 fo 2fo 3fo 4fo 5fo 6fo (n-1) fo nfo spectral line in Fig. (a) at frequency f is replaced by the two spectral lines in Fig. (b), each with half amplitude, Fig.(b) one at frequency f and one at |Sn| frequency - f. ••• ••• -nfo -(n-1)fo ••• - 6fo0-5fo -4fo -3fo -2fo -fo 0 fo 2fo 3fo 4fo 5fo 6fo ••• (n-1) fo nfo p. 12
  • 13. Fourier Series : Example Consider a unitary square wave defined by The Bn coefficients are given by 1, 0 < t < 0.5 2 T0 2πnt Bn = ∫ 2 x(t ) =  T0 x(t ) sin dt T0 −2 T0 − 1, 0.5 < t < 1 = 2 ∫ x(t ) sin (2πnt )dt 1 and periodically extended outside this interval. 0 The average value is zero, so = 2 ∫ sin (2πnt )dt + 2 ∫ − sin (2πnt )dt 0.5 1 0 0.5 A0 = 0.  cos(2πnt ) cos(2πnt )  1 0.5 = 2 − +  Recall that 2 T0 2πnt   2πn 0 2πn 0.5  An = ∫ 2 x(t ) cos dt T0 T0 −2 T0 2 = (1 − cos nπ) πn = 2 ∫ x(t ) cos(2πnt )dt 1 0 which results in = 2 ∫ cos(2πnt )dt + 2 ∫ − cos(2πnt )dt 0.5 1  4 0 0.5  , n is odd Bn =  nπ  sin (2πnt ) sin (2πnt )  0.5 1 = 2 −  0,  n is even   2πn 0 2πn 0.5  =0 Thus all An coefficients are zero. p. 13
  • 14. Fourier Series : Example The Fourier series of a square wave of unitary amplitude with odd symmetry is therefore 4 1 1 x (t ) = (sin 2 πt + sin 6 πt + sin 10 πt + K) π 3 5 1st term 1st + 2nd terms 1st + 2nd + 3rd terms Sum up to the 6th term p. 14
  • 15. Fourier Transform Representation of an Aperiodic Function Consider an aperiodic function f(t) To represent this function as a sum of exponential functions over the entire interval (-∞, ∞), we construct a new periodic function fT(t) with period T. By letting T→∞, lim f T (t ) = f (t ) (13) T →∞ p. 15
  • 16. Fourier Transform The new function fT(t) can be represented by an exponential Fourier series, which is written as ∞ f T (t ) = ∑ Fn e jn ω 0 t , n = −∞ (14) where 1 T /2 (15) Fn = T ∫−T / 2 f T (t ) e − jn ω 0 t dt and ω0 = 2π / T . p. 16
  • 17. Fourier Transform For the sake of clear presentation, we set ∆ ∆ ω n = nω 0 , F ( ω n ) = TF n , (16) Thus, Eq.(14) and (15) become ∞ 1 f T (t ) = ∑T n = −∞ F ( ω n ) e jω n t , (17) T /2 (18) F (ω n ) = ∫−T / 2 f T (t ) e − jω n t dt . The spacing between adjacent lines in the line stream of fT(t) is ∆ω = 2π / T . (19) p. 17
  • 18. Fourier Transform Using this relation for T, we get ∞ ∆ω f T (t ) = ∑ n = −∞ F (ω n )e jω n t 2π . (20) As T becomes very large, ∆ω becomes smaller and the spectrum becomes denser. In the limit T → ∞, the discrete lines in the spectrum of fT(t) merge and the frequency spectrum becomes continuous. Therefore, 1 ∞ lim f T (t ) = lim T →∞ T →∞ 2π ∑ n = −∞ F ( ω n ) e jω n t ∆ ω (21) becomes 1 ∞ 2 π ∫− ∞ f (t ) = F ( ω ) e jω t d ω (22) p. 18
  • 19. Fourier Transform In a similar way, Eq. (18) becomes ∞ F (ω) = ∫−∞ f (t ) e − jω t dt . (23) Eq. (22) and (23) are commonly referred to as the Fourier transform pair. Fourier Transform ∞ F (ω ) = ∫ −∞ f (t ) e − jω t dt Inverse Fourier Transform 1 ∞ 2 π ∫− ∞ f (t ) = F ( ω ) e jω t d ω p. 19
  • 20. Spectral Density Function F(ω): The spectral density function of f(t). Fig. 3.2 A unit gate function Its spectral density graph sin( ω / 2 ) Sa ( ω / 2 ) = ω/2 p. 20
  • 21. Parseval’s Theorem The energy delivered to a 1-ohm resistor is ∞ ∞ E= ∫ f (t ) dt = ∫ (24) 2 f (t ) f * (t ) dt . −∞ −∞ Using Eq. (22) in (24), we get ∞ 1 ∞ *  1 ∞ E = ∫ f (t )  ∫ F (ω)e − jωt dω dt f (t ) = ∫− ∞ F (ω)e d ω jω t −∞  2π − ∞  2π 1 ∞ *  ∞ F (ω) ∫ f (t )e − jωt dt  dω 2π ∫−∞ =  −∞    1 ∞ * (25) = 2π ∫−∞ F (ω) F (ω)dω. Parseval’s Theorem: ∞ 1 ∞ ∫ 2 π ∫− ∞ 2 2 −∞ f (t ) dt = F ( ω) d ω. (26) p. 21
  • 22. Fourier Transform: Impulse Function The unit impulse function satisfies ∞ ∫ δ( x)dx = 1, (27) −∞ ∞ x = 0, δ ( x) =  (28) 0 x ≠ 0. Using the integral properties of the impulse function, the Fourier transform of a unit impulse, δ(t), is ∞ ℑ{δ(t )} = ∫ δ(t )e − jωt dt = e j 0 = 1. (29) −∞ If the impulse is time-shifted, we have ∞ ℑ{δ(t − t0 )} = ∫ δ(t − t0 )e − jωt dt = e − jωt0 . (30) −∞ p. 22
  • 23. Fourier Transform: Complex Exponential Function ± jω t The spectral density of e 0 will be concentrated at ±ω0. 1 ∞ ℑ {δ ( ω m ω 0 )} = 2 π ∫− ∞ −1 δ ( ω m ω 0 ) e jω t d ω 1 ± jω 0 t (31) = e , 2π Taking the Fourier transform of both sides, we have (32) ℑℑ −1 2π { {δ ( ω m ω 0 ) } = 1 ℑ e ± j ω 0 t } which gives { } ℑ e ± j ω 0 t = 2πδ (ω m ω 0 ) (33) p. 23
  • 24. Fourier Transform: Sinusoidal Function The sinusoidal signals cos ω0tand sin ωcan be written in terms of 0t the complex exponentials. Their Fourier transforms are given by { ℑ{cos ω 0 t } = ℑ 1 e jω 0 t + 1 e − jω 0 t 2 2 } = πδ ( ω − ω 0 ) + πδ ( ω + ω 0 ), (34) ℑ{sin ω0t} = ℑ {1 2j e jω0t − 21j e − jω0t } πδ(ω − ω0 ) − πδ(ω + ω0 ) = . j (35) p. 24
  • 25. Fourier Transform: Periodic Functions We can express a function f(t) that is periodic with period T by its exponential Fourier series ∞ f T (t ) = ∑ Fn e jn ω 0 t n = −∞ where ω0 = 2π/T. (36) Taking the Fourier transform, we have  ∞ jnω0 t  ℑ{ fT (t )} = ℑ ∑ Fn e  e.g. n = −∞  ∑ F ℑ{e } ∞ jnω0t = n A unit gate function Its Fourier transform n = −∞ ∞ = 2π ∑ Fn δ(ω − nω0 ). n = −∞ (37) Line spectrum of f(t) Its spectral density graph with period T p. 25
  • 26. Time and Spectral Density Functions p. 26
  • 28. Properties of Fourier Transform Linearity (Superposition) Time Shifting (Delay) a1 f1 (t ) + a 2 f 2 (t ) ↔ a1 F1 ( ω ) + a 2 F2 ( ω ) f (t − t 0 ) ↔ F (ω ) e − jω t 0 Complex Conjugate Frequency Shifting (Modulation) f * (t ) ↔ F * (−ω) f ( t ) e jω 0 t ↔ F ( ω − ω 0 ) Duality Convolution F (t ) ↔ 2 π f ( − ω ). f1 (t ) ∗ f 2 (t ) ↔ F1 ( ω ) F2 ( ω ) Scaling 1  ω Multiplication f (at ) ↔ F  for a ≠ 0. a a f1 (t ) f 2 (t ) ↔ F1 ( ω ) ∗ F2 ( ω ) Differentiation dn f (t ) ↔ ( jω) n F (ω) dt n p. 28
  • 29. Properties of Fourier Transform Duality F (t ) ↔ 2 π f ( − ω). Scaling 1 ω f ( at ) ↔ F  for a ≠ 0. a a p. 29
  • 30. Properties of Fourier Transform Frequency Shifting (Modulation) jω 0 t f (t ) e ↔ F (ω − ω 0 ) p. 30