This paper introduces an innovative technique of study z^3-x^3=y^3 on the subject of its insolvability in integers. Technique starts from building the interconnected, third degree sets: A3={a_n│a_n=n^3,n∈N}, B3={b_n│b_n=a_(n+1)-a_n }, C3={c_n│c_n=b_(n+1)-b_n } and P3={6} wherefrom we get a_n and b_n expressed as figurate polynomials of third degree, a new finding in mathematics. This approach and the results allow us to investigate equation z^3-x^3=y in these interconnected sets A3 and B3, where z^3∧x^3∈A3, y∈B3. Further, in conjunction with the new Method of Ratio Comparison of Summands and Pascal’s rule, we finally prove inability of y=y^3. After we test the technique, applying the same approach to z^2-x^2=y where we get family of primitive z^2-x^2=y^2 as well as introduce conception of the basic primitiveness of z^'2-x^'2=y^2 for z^'-x^'=1 and the dependant primitiveness of z^'2-x^'2=y^2 for co-prime x,y,z and z^'-x^'>1.