Ce diaporama a bien été signalé.
Le téléchargement de votre SlideShare est en cours. ×

Citylogistics: working on livable cities

Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
  1	
  
	
  
	
  
	
  
City	
  Logistics	
  
	
  
Working	
  on	
  livable	
  cities	
  through	
  
sustainable	
  city	
 ...
  2	
  
	
  
	
  
Content	
  
	
  
	
  
	
  
1.	
   Urban	
  mobility	
  
2.	
  	
   Measures	
  for	
  city	
  logistics	...
  3	
  
	
  
Clean	
  and	
  sustainable	
  cities	
  are	
  appealing	
  places	
  to	
  live,	
  to	
  work,	
  
to	
  e...
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Publicité
Chargement dans…3
×

Consultez-les par la suite

1 sur 41 Publicité

Citylogistics: working on livable cities

Télécharger pour lire hors ligne

Clean and sustainable cities are appealing places to live, to work, to enjoy life, and – not least – to invest in.

I live right in the very center of Amsterdam and look out over the bustling square in front of Central Station. Every day, around the clock, trucks and delivery vans drive past my door to deliver shoes and put fresh fish on the table; they deliver packages from web stores, they arrive with construction materials, and they pick up lots and lots of garbage. It’s a wonderful sight if you enjoy transport as much as I do.

My neighbors aren’t quite as excited about transport, however. They complain about the poor air quality, the lack of safety, and the inaccessibility of the neighborhood. Irritation is also growing among the local business owners themselves. Their customers are complaining... It’s really not much fun trying to enjoy a cold beer at an outdoor café with all those trucks and touring cars chugging by.

Good city logistics is important for the economic vitality and the appeal of cities. It ensures that restaurants can serve their guests, that stores can offer the very latest product range and that buildings can be renovated without delays.

Urbanization puts new demands on urban mobility. As customer demands evolve, city logistics is becoming more and more finely meshed and more often just-in-time. If no adjustments are made to current policy, city logistics will continue to grow. City logistics needs to become smarter, cleaner, quieter, and safer, with faster flows.

The City Logistics research program will be conducting applied research on ways to improve city logistics. In this white paper I will start by giving an impression of the challenges in relation to city logistics in Amsterdam and other cities. I will then give an overview of the themes for future research. In developing a base of practical knowledge, we will be making use of an integrated approach on the basis of a city logistics concept and the Business Model Canvas. Finally, I will conclude by presenting the themes of this new research program.

Clean and sustainable cities are appealing places to live, to work, to enjoy life, and – not least – to invest in.

I live right in the very center of Amsterdam and look out over the bustling square in front of Central Station. Every day, around the clock, trucks and delivery vans drive past my door to deliver shoes and put fresh fish on the table; they deliver packages from web stores, they arrive with construction materials, and they pick up lots and lots of garbage. It’s a wonderful sight if you enjoy transport as much as I do.

My neighbors aren’t quite as excited about transport, however. They complain about the poor air quality, the lack of safety, and the inaccessibility of the neighborhood. Irritation is also growing among the local business owners themselves. Their customers are complaining... It’s really not much fun trying to enjoy a cold beer at an outdoor café with all those trucks and touring cars chugging by.

Good city logistics is important for the economic vitality and the appeal of cities. It ensures that restaurants can serve their guests, that stores can offer the very latest product range and that buildings can be renovated without delays.

Urbanization puts new demands on urban mobility. As customer demands evolve, city logistics is becoming more and more finely meshed and more often just-in-time. If no adjustments are made to current policy, city logistics will continue to grow. City logistics needs to become smarter, cleaner, quieter, and safer, with faster flows.

The City Logistics research program will be conducting applied research on ways to improve city logistics. In this white paper I will start by giving an impression of the challenges in relation to city logistics in Amsterdam and other cities. I will then give an overview of the themes for future research. In developing a base of practical knowledge, we will be making use of an integrated approach on the basis of a city logistics concept and the Business Model Canvas. Finally, I will conclude by presenting the themes of this new research program.

Publicité
Publicité

Plus De Contenu Connexe

Diaporamas pour vous (20)

Publicité

Similaire à Citylogistics: working on livable cities (20)

Plus par Walther Ploos van Amstel (20)

Publicité

Plus récents (20)

Citylogistics: working on livable cities

  1. 1.   1         City  Logistics     Working  on  livable  cities  through   sustainable  city  logistics           Walther  Ploos  van  Amstel     Professor  of  City  Logistics   at  the  Amsterdam  University  of  Applied  Sciences  (HvA)   Faculty  of  Technology   Urban  Technology  research  program   September  2015  
  2. 2.   2       Content         1.   Urban  mobility   2.     Measures  for  city  logistics     3.     International  research   4.   Supply  chain  perspective   5.   City  logistics  as  we  head  towards  2050   6.   An  integrated  approach   7.   Applied  research   8.   The  future  of  sustainable  city  logistics                   Copyright   Walther  Ploos  van  Amstel   Amsterdam,  2015             This  relatively  new  discipline  has  several  different  names  in  English,  including  urban  freight   transport  (UTF),  urban  distribution,  city  distribution,  urban  logistics,  and  city  logistics.     I  prefer  the  term  "city  logistics”  and  use  that  in  this  lecture  and  otherwise  in  my  work.  
  3. 3.   3     Clean  and  sustainable  cities  are  appealing  places  to  live,  to  work,   to  enjoy  life,  and  –  not  least  –  to  invest  in.     I  live  right  in  the  very  center  of  Amsterdam  and  look  out  over  the  bustling  square  in   front  of  Central  Station.  Every  day,  around  the  clock,  trucks  and  delivery  vans  drive   past  my  door  to  deliver  shoes  and  put  fresh  fish  on  the  table;  they  deliver  packages   from  web  stores,  they  arrive  with  construction  materials,  and  they  pick  up  lots  and   lots  of  garbage.  It’s  a  wonderful  sight  if  you  enjoy  transport  as  much  as  I  do.     My  neighbors  aren’t  quite  as  excited  about  transport,  however.  They  complain   about  the  poor  air  quality,  the  lack  of  safety,  and  the  inaccessibility  of  the   neighborhood.  Irritation  is  also  growing  among  the  local  business  owners   themselves.  Their  customers  are  complaining...  It’s  really  not  much  fun  trying  to   enjoy  a  cold  beer  at  an  outdoor  café  with  all  those  trucks  and  touring  cars   chugging  by.     Good  city  logistics  is  important  for  the  economic  vitality  and  the  appeal  of  cities.  It   ensures  that  restaurants  can  serve  their  guests,  that  stores  can  offer  the  very  latest   product  range  and  that  buildings  can  be  renovated  without  delays.     Urbanization  puts  new  demands  on  urban  mobility.  As  customer  demands  evolve,   city  logistics  is  becoming  more  and  more  finely  meshed  and  more  often  just-­in-­time.   If  no  adjustments  are  made  to  current  policy,  city  logistics  will  continue  to  grow.   City  logistics  needs  to  become  smarter,  cleaner,  quieter,  and  safer,  with  faster  flows.       The  City  Logistics  research  program  will  be  conducting  applied  research  on  ways   to  improve  city  logistics.  In  my  inaugural  lecture  I  will  start  by  giving  an   impression  of  the  challenges  in  relation  to  city  logistics  in  Amsterdam  and  other   cities.  I  will  then  give  an  overview  of  the  themes  for  future  research.  In  developing  a   base  of  practical  knowledge,  we  will  be  making  use  of  an  integrated  approach  on   the  basis  of  a  city  logistics  concept  and  the  Business  Model  Canvas.  Finally,  I  will   conclude  by  presenting  the  themes  of  this  new  research  program.     Walther  Ploos  Amstel   Amsterdam,  September  2015  
  4. 4.   4     1.   Urban  mobility       All  around  the  globe,  urban  populations  are  growing.  In  the  Netherlands,  too,  the   process   of   urbanization   is   taking   place   in   many   large,   medium-­‐size,   and   small   cities  and  in  their  immediate  vicinity.  The  most  highly  urbanized  region  of  the   Netherlands   is   commonly   referred   to   there   as   the   Randstad.   Encircling   the   country’s  rural  “Green  Heart”,  the  Randstad  includes  the  country’s  four  largest   cities:   Amsterdam,   Rotterdam,   Utrecht,   and   The   Hague   (PBL,   2015).   In   an   interview  in  the  Dutch  daily  newspaper  Trouw,  Amsterdam  urban  planner  and   social  geographer  Zef  Hemel  predicted  that  Amsterdam’s  population  will  reach   two  million  inhabitants  by  2040  (Hemel,  2015).  As  a  consequence  of  such  growth,   more  and  more  people  will  need  to  share  the  same  space  in  the  city  (Groen  Links   Amsterdam,  2011).     Policy-­‐makers   around   the   world   are   facing   the   challenge   of   keeping   their   growing  cities  livable.  Freight  traffic  plays  an  important  role  in  that  connection,   in  both  a  positive  and  a  negative  sense.  ALICE/ERTRAC  (2015)  estimates  that   between  10  and  15%  of  all  vehicle  mileage  driven  in  cities  involves  freight  traffic.   Research  in  the  US  has  shown  a  disproportionately  strong  increase  in  the  share   of  truck  mileage  driven  within  cities  in  the  past  50  years,  particularly  by  smaller   trucks:  from  40%  in  1966  to  60%  in  2013.  The  increase  has  been  particularly   steep   in   the   past   few   years   as   consumers   purchase   more   and   more   online   (Brookings,  2015)     Urbanization  is  placing  new  demands  on  urban  mobility:     between   10   and   15%   of   all   vehicle   mileage   driven   in   cities   involves  freight  traffic.     Mobility  in  Amsterdam   In   the   Uitvoeringsagenda   Mobiliteit   voor   Amsterdam   (“Implementation   Agenda   for   Mobility   in   Amsterdam”)   from   April   2015,   city   alderman   Pieter   Litjens   (Gemeente  Amsterdam,  2015b)  wrote  (in  Dutch):       Throughout  the  centuries,  Amsterdam  has  held  a  special  attraction  for  many  people.   The   city’s   appeal   has   brought   us   many   new   Amsterdammers,   unprecedented   dynamism,  and  economic  and  cultural  prosperity.  Its  success  is  astonishing:  each   year   more   and   more   people   come   to   live,   work,   and   study   in   Amsterdam.   And   especially   since   the   recent   reopening   of   the   city’s   greatest   museums,   more   and   more  tourists  are  finding  their  way  to  our  nation’s  capital.       With  each  new  day,  Amsterdam  is  only  getting  busier  and  busier  –  but  that  also  has   a  downside.  Cars,  bicyclists,  and  pedestrians  increasingly  find  themselves  in  each   other’s   way,   and   the   scarce   public   spaces   in   or   near   the   city   center   are   nearly   always  full  of  people.  Both  the  accessibility  and  the  public  spaces  of  Amsterdam  are   under   increasing   pressure.   To   keep   the   city   safe   and   easy   to   reach,   and   to   keep   public  spaces  accessible  and  appealing,  we  are  going  to  need  to  make  some  choices.   It   is   no   longer   workable   to   have   cars   and   bikes   and   pedestrians   and   public   transport   going   everywhere   at   the   same   time.   We   need   to   accommodate   the  
  5. 5.   5   increasing   mobility   in   a   heavily   urbanized   area   such   as   Amsterdam   primarily   by   giving  more  room  to  pedestrians,  bicyclists,  and  public  transportation.         This  Uitvoeringsagenda  lists  a  number  of  measures  aimed  at  creating  more  room   for  loading  and  unloading  and  for  optimizing  regulations  and  enforcing  those.  It   mentions   a   Supply   Committee   (an   initiative   of   the   trade   organizations   MKB   Amsterdam,  VNO-­‐NCW,  EVO,  and  TLN)  that  will  make  proposals  for  improving   accessibility  and  ensuring  a  better  flow  in  the  transport  of  goods.  Topics  that  the   City  of  Amsterdam  would  like  to  gain  more  insight  into  include:  slow  traffic  flows   (pedestrians   and   bicyclists),   urban   distribution   and   logistics,   electric   mobility,   automated  transport,  and  mobility  behavior.  The  City  of  Amsterdam  is  studying   these   themes   in   collaboration   with   the   following   knowledge   institutions:   the   Amsterdam   Institute   for   Advanced   Metropolitan   Solutions,   the   University   of   Amsterdam   (UvA),   Vrije   Universiteit   Amsterdam   (VU),   and   the   Amsterdam   University  of  Applied  Sciences  (HvA).     In   its   Agenda   Duurzaamheid   (“Sustainability   Agenda”),   the   City   of   Amsterdam   states   its   intention   to   improve   the   city’s   air   quality   by   stimulating   the   use   of   zero-­‐emission   vehicles   and   introducing   low-­‐emission   zones   (Gemeente   Amsterdam,  2015a).  A  more  regional  focus  in  the  distribution  of  products  or  an   expansion  of  the  separate  collection  of  waste  streams  will  mean  more  mileage   for  trucks.  But  that  would  come  at  the  expense  of  greater  accessibility  and  better   air   quality,   and   it   will   call   for   new   forms   of   urban   distribution   and   the   consolidation  of  waste  collection  trips  in  the  city.  Agreements  will  be  made  with   trade  organizations  about  ways  to  achieve  zero-­‐emission  mobility.  The  subsidies   that  are  intended  to  stimulate  zero-­‐emission  mobility  will  be  continued  to  make   it  possible  to  meet  the  air-­‐quality  standards.     The   Stad   in   Balans   (“City   in   Balance”)   memorandum   (Gemeente   Amsterdam,   2015c)  has  also  made  the  case  for  paying  closer  attention  to  city  logistics.  It  calls   for  smart,  small-­‐scale,  and  zero-­‐emission  urban  distribution,  including  a  greater   use  of  waterways.      
  6. 6.   6     Freight  traffic  is  only  one  of  the  transport  flows  in  the  city,  of  course.  It  shares   the  infrastructure  with  pedestrians,  bicyclists  and  other  two-­‐wheeled  vehicles,   private  cars,  taxis,  and  public  transportation,  and  it  shares  the  water  with  canal   excursion  boats  and  pleasure  craft.     Recent   traffic   surveys   held   on   Amsterdam’s   Ferdinand   Bolstraat   (Hogeschool   van   Amsterdam,   2015a)   show   that   some   80%   of   the   freight   traffic   consists   of   delivery  vans  (the  remaining  20%  concerns  larger  trucks  and  garbage  trucks).   The  main  categories  are  (in  order  of  importance)  construction  and  installation,   hospitality   and   food   service,   and   waste.   There   are   also   many   parcel   and   store   deliveries.  In  addition  there  are  the  combined  flows  of  people  and  material  such   as   service   technicians,   builders,   and   installers   (Hogeschool   van   Amsterdam,   2015a).  In  Amsterdam’s  bustling  Haarlemmerstraat  neighborhood,  freight  traffic   account  for  as  much  as  40%  of  rush-­‐hour  traffic,  both  in  the  mornings  and  in  the   evenings  (Hogeschool  van  Amsterdam,  2015f).     Most  of  the  deliveries  in  the  city  are  still  made  using  carriers  on  own  account  or   dedicated   outsourcing.   City   logistics,   whereby   a   logistics   service   provider   consolidates  freight  flows  from  multiple  shippers,  is  limited.  The  carriers  on  own   account   enters   the   city   from   relatively   short   distances:   about   25   miles   on   average.   In   contrast,   professional   freight   transport   takes   place   over   longer   distances:   an   average   of   56   miles   according   to   the   transport   statistics   of   CBS.   Studies   on   public   procurement   confirm   these   figures   (Hogeschool   van   Amsterdam,  2014,  2015c;  Balm  et  al.,  2015).     Amsterdam  and  innovations  in  mobility   Since  July  2014,  the  City  of  Amsterdam  has  had  a  chief  technology  officer  (CTO).   As  an  advisor  and  facilitator,  the  CTO  has  a  flywheel  effect,  helping  the  city  to   comprehend  complex  urban  issues,  to  choose  a  focus,  to  connect  different  parties,   and  to  formulate  an  approach  and  strategies  in  the  area  of  smart  mobility,  among   others.       Cities  are  under  increasing  pressure.  People  are  migrating  to  the  cities,  where   they  are  eager  to  live,  work,  and  enjoy  themselves.    This  growth  means  added   pressure   on   the   traffic   and   transport   both   within   and   to   and   from   the   city.   Amsterdam  will  continue  to  grow  in  the  coming  years,  and  so  will  the  traffic  and   transport  there.  As  CTO  Ger  Baron  puts  it:  “The  big  challenge  is:  how  do  we  keep   Amsterdam   accessible,   ensure   good   air   quality,   and   keep   the   public   spaces   attractive,   so   that   the   quality   of   life   in   the   city   and   the   draw   of   the   city   will   improve?”  (translated  from  the  Dutch;  source:  Gemeente  Amsterdam,  2015d).   As  the  most  important  trends,  the  CTO  sees:  the  Internet  of  Things,  the  rise  of   connected   vehicles   and   smart   infrastructure,   capacity   sharing,   using   real   time   (open)  data  for  precision-­‐guided  logistics  alternative  fuels.   The  CTO  matches  urban  mobility  issues  with  the  knowledge  already  present  in   the   city   in   projects   such   as   the   urban   mobility   lab   (AMS   Institute),   ALLEGRO,   SELF  STAD  self-­‐driving  cars  and  bicycles.  The  Amsterdam  University  of  Applied   Sciences  (HvA)  is  involved  in  a  number  of  these  studies  as  a  knowledge  partner.    
  7. 7.   7   European  perspective   The   future   of   city   logistics   is   being   carefully   considered   at   the   European   level   (ALICE/ERTRAC,  2015).  Europe  is  a  largely  urban  continent;  some  359  million   people  (72%  of  the  total  EU  population)  currently  live  in  urbanized  areas.  The   share  of  the  population  that  lives  in  cities  continues  to  grow  and  will  reach  as   much  as  80%  by  2020.  Cities  are  not  only  the  places  where  goods  are  delivered,   but  also  where  shipments  originate.  Outgoing  transport  represents  between  20   and  25%  of  the  transport  mileage  in  urban  areas,  incoming  freight  amounts  to   between  40  and  50%,  and  the  rest  both  originates  in  and  is  delivered  to  locations   within   the   city   itself   (ALICE/ERTRAC,   2015).   Waste   transport   also   forms   a   significant  share  of  city  logistics.       The  transport  of  freight  in  cities  leads  to  congestion,  poorer  air   quality,  problems  with  noise  and  a  lack  of  safety.           The   transport   of   freight   in   cities   with   trucks   and   delivery   vans   leads   to   congestion.   Other   problems   include:   poorer   air   quality,   noise   pollution,   and   a   lack   of   safety   (MDS   Transmodal,   2012;   Taniguchi   et   al.,   2015).   In   Europe,   city   logistics  is  responsible  for  25%  of  the  transport-­‐related  CO2  emissions  and  30  to   50%  of  the  remaining  transport-­‐related  air  pollution  (PM,  NOx,  etc.)  Within  the   OECD,  the  transport  sector  is  the  largest  consumer  of  energy  in  general  and  of  oil   in  particular  (OECD,  2015).     Even  though  the  number  of  freight  vehicles  is  limited,  they  are  relatively  more   often   involved   in   accidents   with   pedestrians   and   bicyclists.   As   city   logistics   is   responsible   for   a   significant   share   of   the   ambient   noise   in   cities,   it   also  
  8. 8.   8   inconveniences   residents   during   the   night.   The   utilization   rate   of   city   logistics   vehicles  is  low.  According  to  Transport  for  London,  for  example,  delivery  vans  in   that   city   have   an   average   utilization   rate   of   about   38%.     These   negative   consequences  of  city  logistics  have  a  direct  impact  on  the  appeal  and  livability  of   cities  (ALICE/ERTRAC,  2015).       Smart  and  zero-­emission  city  logistics  should  contribute  to  more   livable   and   appealing   cities   with   cleaner   vehicles   that   better   match  the  size  of  the  city,  but  also  to  the  consolidation  of  freight   flows   and   the   use   of   waterways   for   transporting   goods   to   and   from  the  city.     A  more  finely  meshed  network   The  urgency  to  promote  smart  and  zero-­‐emission  city  logistics  is  growing.  City   logistics  is  becoming  more  finely  meshed  and  more  frequent  (Taniguchi  et  al.,   2015).   And   that,   in   turn,   is   putting   increasing   pressure   on   the   city:   there   are   more  shipments,  involving  more  vehicles.  A  more  finely  meshed  network  is  the   result  of  developments  such  as  the  following:     • The   growth   of   omnichannel   retailing,   with   home   delivery   and   pick-­‐up   points,  the  increase  in  sales  transacted  between  consumers  themselves,   and  the  sharing  economy  (Weltevreden  &  Rotem-­‐Mindali,  2009;  Visser  et   al.,   2014).   Consumers   who   also   want   shorter   delivery   times   and   more   delivery  options.   • The  growth  of  e-­‐commerce  in  B2B  markets  (Forrester,  2015).   • The  return  of  stores  from  the  outskirts  of  town  to  inside  the  city.  Among   others,  IKEA  and  Praxis  are  opening  stores  in  the  city  (NOS,  2015).   • The   faster   exchanges   of   collections   in   retail   stores,   especially   in   the   fashion  branch  (Barnes  &  Lea-­‐Greenwood,  2010).   • The   rise   of   nano   stores   such   as   Albert   Heijn   To   Go   (Blanco   &   Fransoo,   2013).   • The  growth  of  the  inner-­‐city  renovation  market  in  the  construction  sector   (RESIDE,  2015).   • The  linking  of  return  flows  from  the  city  with  the  circular  economy  (Soto   et  al.,  2015).   • The   servicification   of   products,   which   leads   to   more   service   provision.   (Eckerdal,  2012).   • The  growth  of  3D  printing,  which  leads  to  local  production,  which  in  turn   needs  raw  materials  in  small  amounts  (Janssen,  2014;  Taniguchi,  2015).   • The  growing  number  of  urban  seniors  who  need  home  care  (Hogeschool   van  Amsterdam,  2015b).    
  9. 9.   9     2.     Measures  for  city  logistics         Local   and   national   authorities   play   an   active   role   in   regulating,   coordinating,   facilitating,   and   stimulating   city   logistics   (MDS   Transmodal,   2012;   Vlaamse   Ministerie  van  Mobiliteit  en  Openbare  Werken,  2013;  Quak  et  al.,  2014b).  Table  1   shows  the  measures  that  such  authorities  can  take.  Research  is  being  done  at  the   European   level   on   the   effectiveness   of   measures   for   the   various   different   stakeholders  (MDS  Transmodal,  2015).       Measures   Examples   Regulation   Delivery  windows   Vehicle  restrictions   Low-­‐emission  zones   Market  forces   Internalization  of  external  costs:   -­‐ pricing   -­‐ mobility  points   -­‐ time-­‐based  charges  (vignettes)   Subsidies  for  zero-­‐emission  vehicles,  bicycle  couriers,  and   transport  by  water  or  rail   Fiscal  policy   Spatial  planning   Redevelopment  of  (new)  areas   Creation  of  pick-­‐up  points  for  e-­‐commerce  shipments   Loading  and  unloading  facilities   Access  for  transport  by  water  and  rail   Facilitating  urban  consolidation  centers   Charging  infrastructure  for  electric  vehicles   Infrastructure   Loading  and  unloading  facilities  on  the  street   Loading  and  unloading  facilities  on  the  water  or  the  rails   Parking  locations  for  heavy  construction  traffic   Technology   Intelligent  transport  systems   Dynamic  traffic  management   Green  wave  traffic  signaling  for  heavy  traffic   Virtual  loading  and  unloading  bays   Open  data  and  local  traffic  control  data   Other   Granting  of  privileges   Enforcement   Consolidation  of  demand  via  urban  consolidation  centers  and   coordinated  (public)  procurement   Certification  of  carriers   Management  of  construction  logistics  using  the  accessibility,   livability,  safety,  and  communications  (ALSC)  framework   Subsidies  for  urban  consolidation  centers   Early-­‐morning  and  late-­‐night  deliveries  and  stimulating  silent   vehicles     Preferred  routes  for  heavy  freight  traffic   Incentives  for  research  programs,  expertise  development,  and   business  networks   Public-­‐private  partnerships     Table  1.  Government  measures  with  regard  to  city  logistics  
  10. 10.   10   Stakeholders   The   following   are   all   stakeholders   in   sustainable   city   logistics   (Macharis   &   Bernardini,  2015):     • residents,  who  want  to  have  clean  air,  safety,  and  no  undue  noise   • visitors,   who   come   to   the   cities   for   recreation   and   do   not   want   to   find   streets  filled  with  freight  traffic   • companies,   which   depend   on   smooth   logistics   in   order   to   run   their   businesses   • shippers   and   transport   companies,   who   bring   goods   into   the   cities   day   after  day,  preferably  at  the  lowest  possible  cost   • the   government,   which   is   responsible   for   the   making   sure   the   carries   responsibility  for  the  draw  of  the  city   • real  estate  owners,  project  developers  and  investors,  who  want  to  receive   a  decent  return  on  their  investments  in  homes  and  commercial  properties   • politicians,  who  want  to  be  re-­‐elected  every  four  years.     City  logistics  in  a  historical  perspective   The  first  plans  for  urban  distribution  centers  in  the  Netherlands  were  developed   in  the  early  1990s.  The  consulting  firm  Coopers  &  Lybrand  (Coopers  &  Lybrand,   1991;   Van   Aken   et   al.,   1993)   did   research   on   urban   distribution   centers   in   Maastricht,   Amsterdam,   and   Alkmaar,   among   other   locations.   In   subsequent   years,  those  studies  were  followed  by  stacks  of  reports  on  other  municipalities,   including   Breda,   Oosterhout,   Utrecht,   and   Amersfoort,   on   the   Stadsbox   (“City   box”)  initiative  (Groothedde  &  Rustenburg,  2003),  on  a  cargo  tram,  beer  boats,   and  freight  transport  by  canal  in  Amsterdam,  on  the  work  of  Binnenstadservice   (a   city   logistics   service   center)   in   various   municipalities,   and   on   subsidies   for   electric  vehicles.       Quak’s  dissertation  (2008)  provides  an  overview  of  the  most  important  Dutch   initiatives  and  literature  in  this  regard.  He  concludes  (in  Dutch):       The   extent   to   which   initiatives   will   be   successful   in   practice   depends   on   the   relationship   between   the   initiators,   the   incentive   to   participate   in   initiatives,   and   the  dominant  actors.  If  the  initiator  is  not  the  most  dominant  actor,  an  initiative  can   only  be  implemented  successfully  in  practice  if  the  actor  who  is  supposed  to  change   his  behavior  actually  stands  to  benefit  from  it.  Another  option  is  to  legally  oblige   that   actor   to   adapt   his   behavior.   Among   local   authorities,   there   is   only   limited   knowledge  of  the  logistics  operations  of  transporters.  In  the  same  way,  transporters   know  little  about  the  issues  regarding  sustainability  in  cities.  Moreover,  the  near   lack  of  any  communication  between  transporters  and  local  authorities  means  that   these   public   and   private   actors   rarely   ever   get   any   real   insight   into   each   other’s   problems.   An   initiative   is   doomed   to   fail   if   its   initiator   is   unable   to   estimate   the   consequences  of  the  initiative  beyond  the  scope  that  he  defined  for  it.  Higher  levels   of  government  are  hardly  ever  involved  in  initiatives  for  a  sustainable  distribution   of  goods.  The  initiatives  described  in  the  academic  literature  have  not  always  been   successful  in  practice.       Cargohopper  Amsterdam  
  11. 11.   11   In   its   first   nine   months,   the   four   electric   delivery   trucks   of   Cargohopper   Amsterdam  managed  to  deliver  more  than  a  million  kilograms  of  freight,  saving   the  company  7,000  liters  of  diesel  fuel.     “We   are   very   happy   with   this   result,”   says   Ron   Klein   Tiessink,   director   of   Cargohopper,   on   the   website   of   trade   journal   Truck   &   Transportmanagement.   Since   the   delivery   service   began   using   electric   trucks   in   March   2014,   the   company   has   made   nearly   34,000   deliveries.   In   the   process,   the   concept   has   more  than  proved  itself,  according  to  Klein  Tiessink.     The  electric  urban  distribution  has  prevented  the  emission  of  18,400  kilograms   of   CO2.   At   the   same   time,   the   emissions   of   particulate   matter   and   nitrogen   compounds   (NOx)   have   been   reduced.   Since   Cargohopper   consolidates   its   shipments   in   a   smart   way,   the   company   also   manages   to   reduce   the   average   distance  driven  for  each  individual  delivery.  That  means  that  the  actual  savings   in  terms  of  fuel  consumption  and  emissions  are  even  higher.     Klein   Tiessink   thinks   it’s   a   shame   that   there   are   still   only   seven   of   the   Cargohopper   trucks   he   developed   being   used   in   Amsterdam,   Enschede,   and   Utrecht.  He  is  pleased  with  all  the  attention  it  has  received,  but  he  would  prefer   to  see  the  market  speed  up  its  development.  “Zero-­‐emission  urban  distribution  is   only  going  to  work  when  it  stops  being  something  out  of  the  ordinary.  The  latest   generation  of  heavier  electric  vehicles  should  be  available  for  purchase  from  a   dealer.”     If  the  market  would  have  a  need  for  700  trucks,  it  would  already  be  possible  to   scale   up   to   series   production,   says   Klein   Tiessink.   That   is   an   absolute   prerequisite.   Only   then   can   the   price   come   down   far   enough   that   companies   would  be  able  to  buy  such  a  truck  without  a  subsidy.     The   Cargohopper   director   hopes   that   cities   both   in   the   Netherlands   and   internationally   will   begin   pursuing   a   common   policy.   “Only   then   will   there   be   sufficient   demand   for   the   right   heavier   electric   trucks,   which   would   make   it   interesting  for  the  industry  to  develop  those.     Source:  Truck  &  Transportmanagement,  January  23,  2015    
  12. 12.   12     3.     International  research       On  the  European  level,  research  is  being  conducted  in  programs  such  as  Bestuffs,   Bestfact,   Straightsol,   Sugar,   Smartfusion,   Citylog,   Civitas,   Frevue   (on   electric   transport),   CoE-­‐SUFS,   Lamilo,   ALICE/ERTRAC   and   Smartset.   Also   elsewhere   around  the  world  there  are  comprehensive  research  programs.     With   regard   to   the   evaluation   of   European   pilot   projects,   Balm   et   al.   (2014)   conclude:       The  number  of  initiatives  that  aim  to  improve  urban  freight  transport  grow  (sic)   rapidly.  To  make  sure  that  the  obtained  results  grow  (sic)  as  fast  as  well,  we  should   make  sure  that  we  do  the  right  things  and  that  we  know  how  (sic).  To  avoid  wasting   money,   effort,   and   time   on   implementing   measures   and   initiatives   that   will   not   (likely)   be   successful   in   the   future,   knowledge   transfer   across   cities   is   very   important.  The  knowledge  should  be  based  on  a  transparent  evaluation,  identifying   the  relevant  impacts  and  measurable  indicators  that  represent  the  key  objectives  of   all   stakeholders.   As   there   is   not   one   problem   owner   of   urban   freight   transport   issues  (sic),  such  a  thorough  evaluation  is  often  lacking.     On  the  evaluation  of  projects,  Quak  et  al.  (2014)  claim:       Small  scale,  local  demonstrations  of  which  the  outcomes  are  considered  to  be  only   appropriate  within  a  specific  context  occur  quite  often  in  the  field  of  city  logistics.   Various   local   demonstrations   usually   show   a   solution’s   technical   and   operational   feasibility.  These  often  subsidized  demonstrations  do  not  have  long-­‐term  potential   due  to  the  lack  of  thought  on  (sic)  their  business  models,  i.e.  the  financial  feasibility.   To  make  a  solution  really  work  in  practice  a  viable  business  model  is  required.     Vahrenkamp  et  al.  (2013)  conclude:     As  a  main  result  of  the  city  logistic  (sic)  projects  over  the  past  25  years  one  has  to   state   that   traffic   reduction   and   economic   gains   of   consolidation   were   only   small   (sic).  The  gains  do  not  cover  the  costs  the  projects  impose.  To  make  the  projects   economic  (sic)  feasible  the  cities  had  to  carry  a  share  of  the  cost.  This  was  the  case   for  all  Urban  Consolidation  Centre  (UCC)  solutions  in  the  UK,  France,  Netherlands   and   Italy.   The   weak   position   of   UCC   became   evident   when   public   money   was   canceled  and  the  UCC  had  to  stop.     Many   initiatives   for   city   logistics   started   out   with   government   subsidies.   When   the   government   funding   dried   up,   that   would   often  mean  the  end  of  the  initiative  as  well.  
  13. 13.   13       Many  projects  failed   Unfortunately,   most   of   city   logistics   projects   have   been   unsuccessful   and   have   ended   up   dying   a   premature,   quiet   death.   Generally   speaking,   there   are   five   reasons  for  this:     1. They  were  developed  on  the  basis  of  the  wrong  data  about  city  logistics.   Many  initiatives  focused  on  retail  distribution,  which  accounts  for  only  a   small  share  of  city  logistics  and  often  already  involves  consolidation.  Until   a  few  years  ago,  the  major  flows  such  as  construction  materials,  waste,   and   catering   supplies   remained   out   of   the   picture,   which   essentially   meant   that   no   visible   results   were   achieved   in   terms   of   improving   city   logistics.     2. The  proposed  solutions  were  unattractive  for  the  customers.  As  a  result  of   logistics   consolidation   centers   (such   as   urban   distribution   centers)   the   delivery  ended  up  taking  longer.     3. The  city  logistics  solution  ended  up  being  more  expensive  for  the  shippers   than  the  existing  solution.  The  entire  chain  –  from  the  distribution  center   all  the  way  to  the  delivery  in  the  city  –  was  not  well  thought  out.  Solutions   were  often  only  developed  for  the  last  mile  on  entering  the  city.   4. The   business   model   for   city   logistics   was   not   sound.   And   because   the   business  model  was  not  sound,  a  critical  mass  was  never  achieved.   5. The  local  political  situation  proved  volatile,  which  meant  the  local  playing   field  for  city  logistics  changed  every  four  years.     This   brief   analysis   of   the   bottlenecks   for   city   logistics   also   indicates   the   conditions  for  successful  future  solutions:     1. Focus  solutions  on  the  major  flows  of  goods  within  cities.   2. The  receiving  party  should  never  be  worse  off  in  any  case.   3. The  solution  should  not  be  more  expensive  for  the  chain.   4. There   needs   to   be   a   sound   business   model   for   city   logistics   service   providers.   5. There  needs  to  be  continuity  in  local  and  national  policy  in  terms  of  city   logistics.     European  vision  for  2050   On  the  one  hand,  Europe  needs  to  provide  for  the  still-­‐growing  need  for  mobility   and  freight  transport,  but  on  the  one  hand,  it  also  needs  to  ensure  a  substantial   reduction  in  greenhouse  gases  and  other  harmful  emissions  as  well  as  in  noise   pollution   (European   Commission,   2011).   The   dependence   on   oil   must   be   decreased,  while  at  the  same  time  maintaining  a  high  level  of  efficiency  in  the   transport  system.  This  calls  for  radical  changes  in  the  system,  based  on  smarter,   cleaner,  and  safer  transport  solutions.     ERTRAC   (European   Road   Transport   Research   Advisory   Council)   and   ALICE   (Alliance   for   Logistics   Innovation   through   Collaboration   in   Europe)   have   put   together   a   roadmap   for   research   on   city   logistics   (ALICE/ERTRAC,   2015).   The  
  14. 14.   14   aim  of  this  roadmap  is  to  set  the  research  priorities  in  relation  to  city  logistics.  In   the   logistics   vision   of   ALICE,   which   covers   the   period   until   2050,   the   main   ambition   is   the   development   of   the   so-­‐called   Physical   Internet   (Ballot   et   al.,   2014).  To  achieve  that  ambition,  two  proposed  lines  of  research  form  the  basis   for  the  logistics  projects  within  the  EU  Horizon  2020  research  program.  These   are:  a)  sustainable  and  safe  supply  chains,  and  b)  coordination  and  collaboration   in   global   supply   networks.   The   research   will   focus   on   corridors,   hubs   and   synchromodality,  city  logistics,  and  information  systems  for  connecting  logistics   systems   within   the   chain.   The   participants   in   ALICE   are   companies,   research   institutes,   national   governments,   and   innovation   partners.   The   roadmap   (ALICE/ERTRAC,  2015)  has  four  objectives:     1. Decarbonization:   energy   efficiency   can   be   achieved   by   making   city   logistics  more  efficient  (for  example  by  consolidation  deliveries)  and  by   using  zero-­‐emission  and  energy-­‐efficient  vehicle  technology  (Stanislaw  et   al.,   2014).   One   condition   for   the   introduction   of   electric   vehicles   is   the   implementation  of  a  charging  infrastructure  with  rapid  charging  points.   Smart  city  logistics  concepts  can  compensate  for  the  extra  costs  of  using   electric  vehicles  for  the  transportation  of  goods  by  raising  the  utilization   rate,  by  reducing  the  number  of  miles  driven  and  the  number  of  empty   runs  made,  and  by  preventing  hours  from  being  lost.     2. Livability  and  the  quality  of  the  environment:  the  research  is  expected  to   help  improve  the  air  quality  in  European  cities  and  to  reduce  noise  levels.   The  factors  contributing  to  local  air  pollution  can  differ  significantly  from   city  to  city,  just  as  the  relative  share  of  transport  as  a  cause  of  urban  air   pollution  also  varies  from  place  to  place.  The  goal  is  to  reduce  particulate   matter  by  80%  and  NOx  by  90%  in  the  period  from  2010  until  2030.  It  is   possible  to  improve  air  quality  by  reducing  the  emissions  of  the  vehicles   themselves   by   applying   higher   emission   standards,   by   using   smart   city   logistics  concepts,  and  by  local  traffic  management.  The  reduction  of  noise   emissions  in  connection  with  city  logistics  is  important  due  to  its  impact   on   the   health   of   the   citizens.   Quieter   vehicles   will   make   it   possible   to   make   deliveries   at   night.   This   will   require   not   only   a   reduction   of   the   noise   level   of   the   vehicles   themselves,   but   also   of   the   noise   from   the   loading  and  unloading  of  goods.     3. Reliability:  city  logistics  is  only  effective  when  the  goods  are  delivered  to   the   expected   delivery   point   and   at   the   expected   delivery   time.   With   regard   to   business-­‐to-­‐business   (B2B),   the   percentage   of   effective   deliveries   is   already   around   95%.   For   business-­‐to-­‐consumer   (B2C)   deliveries  in  the  urban  environment,  that  is  currently  only  70%  to  75%.   The  reliability  will  need  to  improve  substantially  with  an  eye  to  the  fast   growth  of  e-­‐commerce  (Van  Duin  et  al.,  2015;  EY,  2015).   4. Safety:   there   is   growing   concern   about   the   number   of   injuries   and   fatalities  involving  trucks  and  more  vulnerable  road  users  in  the  urban   environment.   The   European   Union   has   ambitious   goals   in   relation   to   traffic  safety.  Some  cities  have  already  adopted  Vision  Zero  as  their  policy   objective.  The  roadmap  focuses  research  on  infrastructure,  vehicles,  and   human   behavior.   Besides   traffic   safety,   there   is   also   attention   for   safe   deliveries  with  less  theft  and  damage.    
  15. 15.   15   4.   Supply  chain  perspective       In  the  effort  to  realize  these  objectives,  city  logistics  should  be  seen  as  a  link  in   the  logistics  chain,  with  the  end  user  as  the  primary  end  point  (which,  based  on   the   notion   of   circularity,   is   also   a   potential   new   starting   point).   A   holistic   approach  should  be  followed  in  order  to  understand  what  can  be  done  upstream   to  optimize  the  logistics  chain  and  to  have  it  link  up  with  city  logistics.       City  logistics  lies  at  the  end  of  an  integrated  logistics  chain:  from   field  to  fork.     Three   technological   developments   in   transport   and   distribution   are   going   to   fundamentally   change   the   existing   distribution   networks:   the   Trans-­‐European   Transport  Networks  (TEN-­‐T),  the  autonomous  trucks  that  will  carry  goods  safely   and  reliably  across  the  TEN-­‐T,  and  the  innovations  in  warehouse  automation.     1. TEN-­‐T:  international  transport  links.       In  the  framework  of  the  TEN-­‐T  program,  the  European  Commission  has   designated  ten  international  transport  links  –  the  “core  network  corridors”   –  that  are  to  be  fully  built  up  and  improved  with  EU  funding  through  2030.   These  concern  innovative  transport  links  on  water,  rails,  and  roads.       The  aim  is  to  further  strengthen  the  European  transport  infrastructure  –   and   the   intelligent   transport   and   traffic   management   systems   that   go   along  with  that  –  and  to  lower  transport  costs  in  the  process.  On  these   safe   and   robust   core   network   corridors,   goods   can   find   their   way   –   uninterrupted,   but   especially   also   reliably   –   between   Europe’s   major   production  and  consumption  areas.  This  is  the  preferred  network  of  the   future.     2. Platooning:  autonomous  driving.       Unmanned   trucks   are   getting   closer   and   closer.   The   use   of   wireless   technology  to  connect  to  a  road  train  –  a  manually  steered  lead  truck  with   a  column  of  vehicles  behind  it  –  is  already  technically  possible.  These  road   trains  are  going  to  need  to  have  sufficient  volume  and  frequency.  That  will   require  enormous  distribution  centers  where  logistics  service  providers   can   consolidate   transport   flows   from   different   sectors   of   industry   to   deliver   –   with   a   high   frequency   and   great   reliability   –   to   distribution   centers   downstream   in   the   chain,   closer   to   major   consumption   centers:   urban   consolidation   centers.   Those   DCs   will   need   to   be   strategically   connected  with  these  nodes  of  the  TEN-­‐T  network.     3. Dark  stores:  robots  in  warehouses.       Faster,   more   frequent   and   more   finely   meshed   delivery   calls   for   the   mechanization   of   order-­‐picking   activities   in   distribution   centers:   dark   stores.  With  new  technology  such  as  Amazon’s  picking  robots,  automatic   case  picking,  RFID,  GS1  standards  for  things  like  pallet  labels,  dock-­‐and-­‐
  16. 16.   16   roll,   and   pick-­‐by-­‐voice,   the   productivity   in   distribution   centers   is   increasing   in   leaps   and   bounds.   Distribution   centers   where   employees   gather  900  to  1,200  order  lines  an  hour  are  no  longer  exceptions.  Those   investments   can   only   be   earned   back   in   distribution   centers   with   sufficient  scale.     Ten  years  ago,  experts  still  thought  that  distribution  centers  couldn’t  be   any  larger  than  50,000  square  meters.  Warehouses  larger  than  that  were   thought   to   be   less   efficient.   In   the   meantime,   recent   examples   from   Zalando,   Action,   Nike,   and   Zara   have   shown   that   efficient   distribution   centers  can  easily  be  as  big  as  150,000  to  300,000  square  meters.         The  distribution  centers  of  the  future  will  be  located  at  strategic  points  within   the  TEN-­‐T  network.  They  will  consolidate  freight  flows  from  many  shippers  and   have   fully   mechanized   internal   processes.   The   distribution   centers   will   be   interconnected  with  advanced  systems  for  the  minute-­‐by-­‐minute  planning  and   steering   of   the   operational   processes   with   transport   management,   warehouse   management,  and  traffic  management:  sense  and  respond.  Control  towers  will   see   to   the   tactical   coordination   of   the   flows   of   goods   and   capacities   in   the   distribution  network:  predict  and  prepare.       These  developments  will  have  consequences  for  the  city  logistics  at  the  end  of   the  logistics  chain  and  thus  also  for  local  spatial  planning  (Dablanc,  2014).  More   and  more  often,  urban  consolidation  centers  on  the  edges  of  cities  will  be  the   points  where  slow  mobility,  aimed  at  efficiently  consolidated  freight  flows,  turns   into  valuable  personalized  mobility,  aimed  at  the  needs  of  the  receiver.       The  pressure  to  improve  the  air  quality  in  urban  areas  is  an  important  incentive   for   the   use   of   electric   vehicles.   That   means   that   more   shipments   are   being   transferred  to  these  electric  vehicles  at  consolidation  centers  within  or  around   the  city.       An  urban  consolidation  centers  functions  as  a  lynch  pin  and  pivot  point  in  the   logistics  chain  for  physical,  information,  and  financial  flows,  but  that  only  works   properly  with  a  corresponding  organizational  structure.  Important  ingredients   for   the   organization   model   are   the   neutral   director’s   role   that   can   serve   the  
  17. 17.   17   interests  of  every  shipper,  transporter,  distributor,  and  receiver,  and  the  national   coverage   of   uniform   services   combined   with   local   situation   (Guis,   2014). This   transfer-­‐of-­‐goods   function   needs   to   be   integrated   into   the   logistics   chain   with   multiple  parties.  Different  business  models,  new  processes,  and  technologies  will   need   to   be   investigated   and   implemented.   The   city   logistics   systems   are   becoming   more   and   more   integrated   with   both   horizontal   and   vertical   collaboration  between  parties.  Such  a  development  needs  to  have  attention  for   intermodal  and  multimodal  solutions  for  city  logistics  (for  example  the  shipping   of  products  via  inland  waterways  to  the  edges  of  the  city).     More  and  more  vehicles  are  connected  with  each  other  and  with  road  authorities,   for   example   via   cooperative   intelligent   transportation   systems   (ITS-­‐C).   With   traffic  management,  this  can  result  in  better  freight  traffic  flows.       Finally  one  should  not  forget  that  the  freight  traffic  in  cities  is  the  result  of  the   behavior   of   customers   in   those   cities.   The   development   of   the   city   and   the   lifestyle  of  the  people  who  live  there  both  have  a  major  impact  on  city  logistics.   Factors  such  as  the  development  of  teleworking,  an  aging  population,  housing,   and  the  growth  of  omnichannel  retail  have  major  consequences  for  city  logistics   (ALICE/ERTRAC,   2015).   Digitization   may   also   offer   opportunities   to   put   the   client   behind   the   steering   wheel   in   organizing   city   logistics   more   efficiently.   AH.nl   allows   customers   to   choose   a   delivery   time   themselves.   By   charging   different  prices  for  the  different  delivery  times  (ranging  from  €4.95  to  €12.95),   AH.nl  leads  its  customers  by  the  hand  through  the  logistics  process.  And  in  doing   so,   AH.nl   is   managing   to   optimize   its   own   home-­‐delivery   process   quietly   and   dynamically.        
  18. 18.   18     5.   City  logistics  as  we  head  towards  2050       The  ALICE/ERTRAC  (2015)  report  contains  12  roadmaps  that  were  developed   for  the  research  themes  for  the  coming  decades:     1. Identifying  and  assessing  opportunities  in  urban  freight.   2. Towards   a   more   efficient   integration   of   urban   freight   in   the   urban   transport  system.   3. Understanding  the  impact  of  land  use  on  urban  freight  activities.   4. Enabling  more  efficient  movements  of  goods  through  the  management  of   the  infrastructure.   5. Improving   the   interaction   between   long   distance   freight   transport   and   urban  freight.   6. Better  adapting  the  vehicles  to  innovative  urban  freight  delivery  systems.   7. Value  creation  logistics  services  and  more  efficient  operations.   8. E-­‐commerce   implications:   Direct   to   consumer   deliveries   and   functional   logistics  services.   9. Reverse  logistics  and  transport  of  waste  and  recycling  material.   10. Designing  and  operating  urban  freight  delivery  infrastructures.   11. Safety  and  security  in  urban  freight.   12. Cleaner  and  more  efficient  vehicles.     Netherlands  2020–2025:  Green  Deal  Zero  Emission  Urban  Logistics   The   Top   Sector   Logistics’   2016–2020   multiyear   program   (Topsector   Logistiek,   2015)   also   gives   attention   to   city   logistics.   The   collaboration   between   all   the   different   parties   involved   in   city   logistics   is   currently   most   evident   within   the   Green   Deal   Zero   Emission   Urban   Logistics   (GDZES)   program.   The   basis   of   the   GDZES  lies  in  the  Agreement  on  Energy  for  Sustainable  Growth.    That   Agreement   states  (in  Dutch):  “In  2014,  parties  intend  [...]  to  conclude  a  Green  Deal  about   zero-­‐emission   city   logistics   that   will   facilitate   and   give   direction   to   regional   pilots.”   In   this   context,   zero-­‐emission   city   logistics   refers   in   any   case   to   the   reduction  of  CO2  emissions  resulting  from  city  logistics  to  zero,  but  preferably   also  to  the  reduction  of  NOx,  particulate  matter,  and  noise  emissions  in  the  city   centers  resulting  from  city  logistics  to  practically  zero.     Parties  to  the  GDZES  have  the  goal  of  achieving  emission-­‐free  deliveries  in  city   centers   by   2025.   These   parties   include   the   Dutch   national   government,   municipalities,  industry  associations,  knowledge  institutions,  shippers,  transport   and  distribution  companies,  fuel  suppliers,  and  vehicle  producers.    By  means  of   Living  Labs,  parties  are  working  together  to  come  up  with  workable  operational   solutions.  The  projects  have  to  do  with  vehicle  technology,  the  use  and  loading  of   trucks,  and  the  initiation  of  innovative  city  logistics  projects.     With  its  action  line  for  city  logistics,  the  Top  Sector  Logistics  wants  to  connect   with  this  Green  Deal.  Considering  that  city  logistics  has  a  major  impact  on  the   accessibility  and  the  broader  quality  of  life  in  the  city,  both  of  which  form  the  
  19. 19.   19   focus   of   the   current   Dutch   government’s   Agenda   Stad   (“Urban   Agenda”),   the   action  line  for  city  logistics  will  form  a  link  to  that  agenda.       While  there  has  been  no  large-­‐scale  production  of  zero-­‐emission  vehicles  to  date,   electric  delivery  vans  are  already  available  and  the  first  heavier,  custom-­‐made   zero-­‐emission   trucks   are   already   in   use.   In   addition,   prototypes   of   hybrid   vehicles  are  being  developed  that  can  use  conventional  fuels  on  the  motorways   but   travel   emission-­‐free   for   the   “last   mile”   within   the   city.   Despite   the   great   diversity  in  load  types  and  the  resulting  diversity  of  technical  specifications  for   vehicles,  relevant  developments  are  currently  under  way  for  all  types  of  supply   vehicles  that  are  being  used  on  a  large  scale,  each  one  proceeding  at  its  own  pace.   As   logistics   concepts   are   scaled   up   further,   the   parties   to   the   GDZES   want   to   boost  the  development,  availability,  reliability,  and  affordability  of  zero-­‐emission   vehicles.  By  now  there  are  many  opportunities  for  electric  vehicles  in  connection   with   city   logistics   (Stanislaw   et   al.,   2014)   and   their   use   is   being   monitored   (Nesterova  et  al.,  2013;  Pelletier  et  al.,  2014;  Hogeschool  van  Amsterdam,  2015d).     Besides  the  use  of  zero-­‐emission  vehicles,  a  reduction  in  the  number  of  vehicles   needed  to  bring  supplies  to  the  city  is  another  important  objective.  Some  goods   already  enter  the  city  in  efficient  ways.  That  is  especially  the  case  where  logistics   professionals  and  companies  have  organized  the  (consolidation  of)  freight  flows   with  transport  on  their  own  account,  as  with  the  stocking  of  supermarkets  and   chain  stores.  Also  the  distribution  of  e-­‐commerce  shipments  is  continually  being   optimized  by  the  larger  logistics  parties,  thanks  in  part  to  the  sound  agreements   that  are  being  made  with  receivers  (Van  Duin  et  al.,  2015).     In  contrast  to  the  efficient  flows,  by  far  most  transport  movements  are  known  to   work  with  a  low  utilization  rate  or  only  enter  the  city  to  deliver  small  shipments.   New   city   logistics   concepts   and   more   extensive   consolidation   make   the   use   of   zero-­‐emission  vehicles  and/or  the  use  of  clean  vehicles  with  a  high  utilization   rate  in  lieu  of  low  emissions  for  those  transport  movements  potentially  feasible   and  are  therefore  in  line  with  the  GDZES  objectives.  Amsterdam  has  it’s  own  deal   with  local  business  organization  and  research  institutions  called  ‘Slim  en  Schoon’.      
  20. 20.   20     The  action  line  for  city  logistics  aims  to  reduce  CO2  emissions  by  5,000  kilotons   of  CO2  per  year.  Achieving  zero-­‐emission  city  logistics  through  a  combination  of   better   technology   and   more   efficient   logistics   will   require   organizational,   technological,  social,  financial,  and  legal  adjustments.  This  variety  of  factors  to  be   overcome,   in   combination   with   the   many   different   interests   of   stakeholders,   demands  an  innovative  approach.       The  first  phase  will  start  the  moment  the  Green  Deal  enters  into  force  and  run   until  2020.  In  this  initial  phase,  the  Green  Deal  will  focus  on  demonstrating  or  at   least   making   plausible,   via   Living   Labs,   that   zero-­‐emission   city   logistics   is   feasible,  from  a  technical,  economic,  and  enforcement  perspective,  for  a  specific   logistics  flow.  In  the  second  phase,  which  runs  until  2025,  the  Green  Deal  will   focus  on  scaling  up  the  demonstrated  concepts.       There  are  also  links  with  other  part  of  the  Top  Sector  such  as  the  application  of   knowledge   from   the   4C   roadmap   (for   cross   chain   control   centers),   the   development   of   new   business   models,   and   the   implementation   of   digital   exchanges   of   logistics   information   with   the   Neutral   Logistic   Information   Platform  or  NLIP  (Topsector  Logistiek,  2015).      
  21. 21.   21     6.   An  integrated  approach       Considering   the   Dutch   and   European   ambitions,   a   lot   of   innovation   will   be   required   of   shippers,   receivers,   logistics   service   providers,   and   governments   when   it   comes   to   city   logistics.   In   practice,   the   integrated   logistics   concept   is   often  used  in  dealing  with  such  innovative  logistics  issues  (Van  Goor  et  al.,  2014).   Local  and  supralocal  government  policy  is  another  key  factor  in  city  logistics.  For   that  reason,  government  policy  has  been  added  to  the  integrated  approach  of  city   logistics  (see  Fig.  1).       Figure  1:  Integrated  approach  to  city  logistics  (based  on  Van  Goor  et  al.,  2014).     External  and  internal  objectives   In   terms   of   the   external   objectives,   it   concerns   linking   up   with   the   logistical   needs   of   the   receiving   party   during   the   customer-­‐experience   cycle   (pre-­‐sales,   sales,  and  aftersales).  In  terms  of  the  internal  objectives,  it  concerns  the  costs   and  the  working  capital  that  are  involved  in  supplying  the  customers  in  the  chain.   These  are  the  framework  conditions  for  setting  up  a  distribution  network.       Especially   as   a   result   of   the   digitization   of   customers   and   the   changes   in   customer   behavior,   these   external   objectives   are   changing   (Shopping2020,   2014).   Consumers   are   buying   more   online.   With   the   advent   of   nano   stores   (Blanco   &   Fransoo,   2013),   shops   are   receiving   smaller   and   smaller   shipments   more  and  more  often.  To  be  able  to  compete  with  web  stores,  fashion  retailers   are  presenting  new  collections  more  and  more  often.    E-­‐commerce  in  the  B2B   market  is  only  now  really  starting  to  develop.  As  construction  sites  in  cities  get  
  22. 22.   22   smaller   and   smaller,   supplies   need   to   be   brought   in   more   often   and   delivered   right   on   time.   In   the   future,   seniors   who   want   to   keep   living   at   home   will   get   customized  healthcare  logistics  at  home.     Processes   For   deliveries   to   customers   in   cities,   there   are   several   types   of   possible   distribution  networks:       • Directly  from  the  shippers  to  the  customer(s)   • Consolidation  of  freight  flows  of  shippers  upstream  in  the  logistics  chain.   • Consolidation   of   freight   flows   of   multiple   shippers   and   logistics   service   providers  downstream  through  urban  consolidation  centers   • Consolidation   of   freight   flows   of   multiple   shippers   and   logistics   service   providers  downstream  through  urban  consolidation  centers   • Consolidation  of  freight  flows  of  multiple  shippers  via  stores  or  pick-­‐up   points  within  an  urban  area.     As   an   example,   the   possibilities   for   construction   logistics   are   given   in   Table   2   (Quak  et  al.,  2011).     Logistics   concept   Load  characteristics   Transport   characteristics   Solutions   FTL   thick  flows   Initial  phase  of   construction  projects   Sand,  gravel,  prefab   Direct  delivery;   Out  full,  empty   back   Preferred  network  for   construction  traffic;   Consolidation  of  extra-­‐ urban  traffic;   Multimodal   Integrated  distribution   network   LTL   thin  flows   Pallets  (load  carrier)   Trucks  not  fully   loaded  (low   utilization  rate)   Innovative  construction;   Consolidation  at  the   source;   Consolidation  at  an  urban   consolidation  center;   Outsourcing  of   construction  logistics   Parcels   Parcels   Trucks  not  fully   loaded  (low   utilization  rate)   Consolidation  at  the   source;   Consolidation  at  an  urban   consolidation  center;   Outsourcing  of   construction  logistics;   Mobile  storage  container   (construction  finishing   box)   Rush  orders   Parcels   Ad  hoc,  rush   (very  low   utilization  rate)   Outsourcing  to  courier;   Collection  points   Returns   Clay,  rubble,   construction  waste   Out  empty,  back   full   Preferred  network  for   construction  traffic;   Consolidation  of  extra-­‐ urban  traffic;  
  23. 23.   23   Multimodal   Integrated  distribution   network;   Combicontainer  for   moving  things  to  and   from  the  site.     Table  2.  Distribution  networks  for  construction  logistics  (Quak  et  al.,  2011).     Then  there  is  the  question  of  which  modality  or  modalities  are  used  for  transport   within  the  distribution  network  (e.g.  cargo  tricycle,  delivery  van,  truck,  or  boat)   and  which  fuel  technology  is  used.         Important   factors   in   setting   up   a   distribution   network   include:   the   company’s   strategy,   the   customer   demands   that   the   company   wants   to   respond   to,   the   desired  degree  of  flexibility,  the  margin  on  products,  the  production  cycle,  and   the   product   characteristics   such   as   value   density   and   packing   density   that   determine  the  distribution  costs  (Van  Goor  et  al.,  2014).     Planning  and  control   Tactical  and  operational  planning  and  control  ensure  that  the  shipments  reach   the   receiver   on   time   and   with   the   appropriate   use   of   resources.   Planning   and   control   concerns   decisions   about   the   deployment   of   personnel   and   the   scheduling  of  vehicles  and  warehouse  processes,  but  also  about  the  charging  of   electric  vehicles.  In  terms  of  city  logistics,  this  planning  and  control  covers  the   entire  chain,  often  involving  multiple  parties  that  work  together.  Data  alignment   in  logistics  chains  is  a  condition  for  the  sharing  of  planning  data.     Information  and  communications  technology   The   tactical   and   operational   planning   and   control   requires   data   about   the   shipments,   the   available   capacities,   and   the   routes:   transport   management  
  24. 24.   24   systems  (TMS).  These  systems  are  increasingly  linked  with  local  traffic  systems   of  the  government  that  give  relevant  information  about  traffic  using  open  data.   Giving   road   users   tailored   driving   recommendations   can   contribute   towards   a   better  flow  of  traffic,  and  road  users  will  also  be  prepared  to  adjust  their  driving   style  on  the  basis  of  those  recommendations.  Soon  the  receiver  will  get  real-­‐time   information   about   the   shipment   and   its   expected   arrival   time   and   can   even   change  the  delivery  address  while  the  shipment  is  already  under  way.       A  trend  in  the  development  of  ICT  is  the  advent  of  location-­‐based  applications,   agent-­‐based   software,   and   systems   for   the   exchange   of   freight   between   companies   (and   increasingly   also   between   private   individuals).   Well-­‐known   applications  include  Uber  and  GoGoVan.       Logistics  organization   In  terms  of  the  logistics  organization,  it  concerns  the  way  in  which  the  tasks  for   the  planning  and  control  of  the  transport  flows  are  anchored  in  the  organization,   the   competencies   of   the   employees   involved,   and   how   parties   in   the   logistics   chain  work  together.       Local  government  policy   Local   government   policy   determines   the   playing   field   by   means   of   delivery   windows,   vehicle   restrictions,   the   arrangement   of   public   spaces   (including   loading   and   unloading   bays),   late   night   and   early   morning   distribution,   low-­‐ emission  zones,  the  amount  of  space  that  is  available  for  logistics  consolidation   centers,  the  available  charging  infrastructure  for  electric  vehicles,  the  number  of   quays  that  are  available  for  the  loading  and  unloading  of  boats,  and  the  open  data   that  is  made  available  for  local  traffic  control  and  dynamic  traffic  management   aimed  at  improving  the  flow.     Supralocal  government  policy   Among  other  things,  supralocal  government  policy  determines  hours-­‐of-­‐service   regulations,  vehicle  specifications,  and  the  availability  of  open  data  for  dynamic   traffic  management.     An   integrated   approach   to   city   logistics   also   requires   a   careful   consideration   of   the   business   model.   There   is   no   future   for   solutions  based  entirely  on  subsidies.     Earning  money  with  city  logistics   One  of  the  problems  in  the  implementation  of  new  concepts  for  city  logistics  is   the  lack  of  a  business  model:  they  don’t  earn  any  money.  As  Quak  &  Balm  (2014)   put  it:    
  25. 25.   25         Small  scale,  local  demonstrations  of  which  the  outcomes  are  considered  to  be  only   appropriate  within  a  specific  context  occur  quite  often  in  the  field  of  city  logistics.   Various   local   demonstrations   usually   show   a   solution’s   technical   and   operational   feasibility.  These  often  subsidized  demonstrations  do  not  have  long-­‐term  potential   due  to  the  lack  of  thought  on  their  business  models,  i.e.  the  financial  feasibility.  To   make  a  solution  really  work  in  practice  a  viable  business  model  is  required.     The   use   of   business   models   such   as   Canvas   (Osterwalder   &   Pigneur,   2010;   Turblog,  2011;  Pauli,  2014)  can  support  the  development  of  a  business  model.   The   Business   Model   Canvas   is   a   powerful   instrument   to   identify   the   business   model   in   a   transparent   and   comprehensible   way   (see   Fig.   2).   In   city   logistics,   these   business   models   also   often   have   characteristics   of   public-­‐private   partnerships.           Figure  2.  Business  Model  Canvas  (Quak  &  Balm,  2014).    
  26. 26.   26         Checklist  for  the  Business  Model  Canvas     1.  Customer  Segments   What  specific  customer  groups  does  the  company  want  to  serve?  What  are  the   needs  of  those  customer  groups?     2.  Value  Proposition   What   distinctive   value   does   the   company   offer?   What   problems   does   the   company  help  to  solve?  Those  can  be  both  the  current  and  the  future  needs.  Why   should  these  customers  do  business  with  the  company  (and  not  with  someone   else)?  This  is  the  value  proposition.     3.  Customer  Relationships   How  does  the  company  maintain  contact  with  the  various  customer  segments?   How   does   each   aspecific   customer   segment   want   the   company   to   maintain   contact   with   them?   Which   type   of   contact   is   the   right   one   and   the   most   cost-­‐ effective  for  each  segment?     4.  Channels   How   are   (groups   of)   customers   kept   abreast   of   the   range   of   services   offered?   How  do  they  best  experience  the  value  proposition?  How  can  they  buy  and  get   the  range  of  services  offered?     5.  Revenue  Streams   How   does   the   company   earn   money?   And   in   the   future?   How   can   it   develop   supplementary  sources  of  income?     6.  Key  Resources   Which   resources   are   essential   to   create   the   value   proposition?   To   maintain   customer  relationships?  To  get  new  customers?     7.  Key  Activities   Which  core  activities  are  essential  to  create  or  strengthen  the  value  proposition?   To  maintain  customer  relationships?  To  get  new  customers?     8.  Partners   Which   private   and   public   partnerships   are   essential   to   make   or   co-­‐create   the   offer  ?  Which  partners  are  crucial  to  ensure  even  more  success?     9.  Cost  Structure   Which  costs  are  essential  to  ensure  that  the  business  model  will  work?  Which   resources   and   core   activities   are   the   most   costly?   Which   costs   are   fixed,   and   which  are  variable?        
  27. 27.   27     7.   Applied  research       The   Faculty   of   Technology   at   the   Amsterdam   University   of   Applied   Sciences   (HvA)   has   a   research   program   that   extends   beyond   the   faculty   itself:   Urban   Technology.   As   one   of   the   spearhead   programs   of   the   HvA,   Urban   Technology   focuses   on   researching,   designing,   and   realizing   smart   solutions   for   the   challenges   that   major   cities   will   face   in   the   future.   In   this   broad   research   program,  the  Faculty  of  Technology  works  together  with  two  other  faculties  at   the  HvA:  Economics  and  Management  and  Digital  Media  and  Creative  Industries.     The  broader  Logistics  research  program  focuses  on  two  themes  that  are  closely   connected  with  Metropoolregio  Amsterdam  (MRA),  the  umbrella  organization  of   municipalities  that  form  the  Amsterdam  metropolitan  area:  Mainport  Logistics   and   City   Logistics.   The   Logistics   research   program   at   the   HvA   is   closely   connected  to  the  national  Centre  of  Expertise  Logistiek  (“Center  of  Expertise  for   Logistics”),  of  which  the  HvA  fulfills  the  role  of  secretary,  and  with  the  regional   KennisDC  (“Knowledge  Distribution  Center”)  in  Amsterdam.         Within   the   Urban   Technology   research   program,   the   City   Logistics   research   program  is  linked  to  the  research  theme  of  Smart  Mobility  &  Logistics.  The  focus   lies  on  designing  technological  solutions  for  sustainable  mobility  to  ensure  the   city  remains  accessible  and  connected.  The  research  program  is  also  linked  to   the  showcase  project  E-­‐mobility  and  City  Logistics,  in  which  researchers  in  the   Smart   Mobility   &   Logistics   and   Smart   Energy   Systems   programs   are   working   together   on   the   smart   use   of   electric   vehicles   for   urban   distribution   in   the   Amsterdam  metropolitan  area.       Applied  research  within  the  Faculty  of  Technology   Technology  helps  to  create  the  world  of  tomorrow.  That  will  require  research   that   is   related   to   practical   applications   and   problems   in   practice.   Applied   research  contributes  to  the  improvement  and  innovation  of  professional  practice,   to   the   quality   of   professional   education,   and   to   the   quality   of   teachers   and   students.  In  addition  to  preparing  students  to  be  knowledgeable  professionals,   conducting   applied   research   is   one   of   the   core   activities   through   which   the   Faculty  of  Technology  at  the  HvA  is  helping  to  create  the  world  of  tomorrow.       Applied  research  differs  from  classic  theoretical  research  in  that  it  investigates   practical   issues   from   the   field   and   involves   a   close   cooperation   with   the   professional  practice.  The  research  is  nevertheless  methodologically  sound  and   in   line   with   academic   knowledge.   Indeed,   the   added   value   of   applied   research   lies  in  the  fact  that  bridges  the  gap  between  theoretical  knowledge  and  day-­‐to-­‐ day  professional  practice.    
  28. 28.   28       Applied  research  has  four  characteristics:     1. It  is  rooted  in  professional  practice   The  strength  of  applied  research  lies  in  large  part  in  the  way  it  is  set   up  and  carried  out:  in  close  cooperation  with  professional  practice  via   networks  and  collaborative  relationships.  The  research  being  done  at   the   Amsterdam   University   of   Applied   Sciences   (HvA)   has   a   clearly   recognizable  regional  dimension  thanks  to  its  connection  with  MRA’s   Kennis-­  en  Innovatieagenda  (“Knowledge  and  Innovation  Agenda”).     2. It  forms  a  bridge  between  science  and  professional  practice   One   of   the   objectives   of   applied   research   is   to   translate   scientific   knowledge  into  professional  practice.  It  is  through  research  that  the   practical  applicability  of  scientific  insights  is  put  to  the  test  and  made   concrete.   As   such,   applied   research   plays   an   important   role   in   increasing   the   readiness   of   new   technologies   with   an   eye   to   their   market  introduction.  In  the  process,  applied  research  not  only  draws   from  the  body  of  knowledge  but  also  adds  new  knowledge  to  that.       3. It  is  methodologically  sound   Applied   research   uses   sound   methods   and   meets   the   current   standards   in   terms   of   validity   and   reliability.   In   addition,   it   tries   to   make   the   results   generalizable   as   much   as   possible.   Part   of   the   research  takes  place  in  collaboration  with  research  universities,  other   universities   of   applied   sciences,   and   knowledge   institutions   such   as   the  Netherlands  Organisation  for  Applied  Scientific  Research  (TNO).     4. It  has  an  impact  on  society   Applied  research  contributes  to  the  professionalization  and  innovative   force  of  industry  and  government  bodies.  This  active  contribution  has   a  visible  impact  that  underscores  the  social  engagement  of  the  Faculty   of  Technology  at  the  HvA.       Research  also  takes  place  in  the  classroom  setting.   In  the  Faculty  of  Technology,  research  is  carried  out  by  professors,  teachers  with   a  research  task,  doctoral  candidates,  and  students,  in  collaboration  with  and  at   the  request  of  professionals  in  the  field.      

×