SlideShare a Scribd company logo
1 of 33
Download to read offline
Time Series, Part 1
Content
- Stationarity, autocorrelation, partial autocorrelation, removal of non-
stationary components, independence test for time series
- Linear Stochastic Processes: autoregressive (AR), moving average (MA),
autoregressive moving average (ARMA)
- Fit of models AR, MA and ARMA to stationary time series
- Linear models for non-stationary time series
- Prediction of time series
- Nonlinear analysis of time series with stochastic models
- Nonlinear analysis of time series and dynamical systems
Literature
- “The Analysis of Time Series, An Introduction”, Chatfield C., Sixth edition,
Chapman & Hall, 2004
- “Introduction to time series and forecasting”, Brockwell P.J. and Davis R.A.,
Second edition, Springer, 2002
- “Non-Linear Time Series, A Dynamical System Approach”, Tong H., Oxford
University Press, 1993
- “Nonlinear Time Series Analysis”, Kantz H. and Schreiber T., Cambridge
University Press, 2004
Real world time series
mechanics
physiology
geophysics economy
univariate
time series
non-stationarity
noise
electronics only one time series
limited length
Definitions / notations
observed quantity  variable Χ
The observations take place most often at fixed time steps
 sampling time
The values of the observed quantity change with randomness (stochasticity)
at some small or larger degree  random variable (r.v.) Χ
For each time point t we consider the value xt of the r.v. Χ
The set of the values of xt over a time period n (given in units of the sampling
time)  (univariate) time series
  1 21
{ , , , }
n
t nt
x x x x

If there are simultaneous observations of more than one variable
 multivariate time series
We apply methods and techniques on the given univariate or multivariate
time series in order to get insight for the system that generates it
 time series analysis
The time series can be considered as realization of a
stochastic or deterministic process (dynamical system)  t t
X


Exchange index and volume of the Athens Stock Exchange (ASE)
86 88 90 92 94 96 98 00 02 04 06 08 10 12
0
1000
2000
3000
4000
5000
6000
7000
years
closeindex
ASE index, period 1985 - 2011
07 08 09 10 11 12
0
1000
2000
3000
4000
5000
6000
years
closeindex
ASE index, period 2007 - 2011
01 02 03 04 05 06 07 08 09 10 11
600
800
1000
1200
1400
1600
1800
months
closeindex
ASE index, period 2011
98 99 00 01 02 03 04 05 06 07 08
0
5
10
15
x 10
5
years
volume
ASE volume, period 1998 - 2008
Prediction?
Dynamical system ?
stochastic process ?
What is the index value tomorrow? The day after?
What is the mechanism of the
Greek stock market?
General Index of Consumer Prices (GICP)
01 02 03 04 05 06
100
105
110
115
120
125
years
GeneralIndexofComsumerPrices
General Index of Comsumer Prices, period Jan 2001 - Aug 2005
Trend ?
Seasonality / periodicity ?
Autocorrelation ?
Autoregression ?
Prediction ?
Annual sunspot numbers
1700 1750 1800 1850 1900 1950 2000
0
50
100
150
200
years
numberofsunspots
Annual sunspots, period 1700 - 2010
1900 1920 1940 1960 1980 2000
20
40
60
80
100
120
140
160
180
200
years
numberofsunspots
Annual sunspots, period 1900 - 2010
What will be the sunspot number in 2013, 2014 … ?
What is the mechanism / system / process
that generates sunspots?
Is it a periodic system + noise ?
Is it a stochastic system?
Is it a chaotic system?
1960 1970 1980 1990 2000 2010
0
50
100
150
200
years
numberofsunspots
Annual sunspots, period 1960 - 1995
Given the sunspot number for up to 1995,
what is the sunspot number in 1996?
and the years after?
1995 2000 2005 2010 2015 2020
0
50
100
150
200
year
sunspotnumber
Genuine predictions of sunspot data
Model
comparison
Genuine
prediction
What is the generating system of a real time series?
100 200 300 400 500
periodic + noise
time in seconds
100 200 300 400 500
low dimensional chaos
time in seconds
100 200 300 400 500
high dimensional chaos
time in seconds
Candidate deterministic models
0 200 400
time index i
x(i)
stochastic
Candidate
stochastic
models
100 200 300 400 500
preictal EEG
time in seconds
Real time series
100 200 300 400 500
ictal EEG
time in seconds
Dripping water faucet
(original experiment at UC Santa Cruz).
The observation of the dripping faucet
shows that for some flow velocity the
drops do not run at constant time
intervals.
Crutchfield et al, Scientific American, 1986
3x1x 2x
2 1( , )x x
3 2( , )x x
The scatter diagram of the data
showed that the drop flow is not
random.
scatter
diagram 1( , )i ix x  1 2( , , )i i ix x x 
Hénon map
2
1 21 1.4 0.3i i is s s   
observed variable
i i ix s w  wi noise
chaos
01 02 03 04 05 06
100
105
110
115
120
125
years
GeneralIndexofComsumerPricesGeneral Index of Comsumer Prices, period Jan 2001 - Aug 2005
Trend?
Seasonality / periodicity?
Autocorrelation ?
0 50 100 150 200 250 300 350 400 450 500
0
200
400
600
800
1000
1200
1400
time [10 min]
AEindex
Auroral Electrojet Index
Volatility ?
Non-stationarity
Variance stabilizing transformation
simple solution: log( )t tX Y ?
Power transform (Box-Cox):
1t
t
Y
X




?
λ Χt Var[yt]
-1
-0.5
0
0.5
Other transforms ?
0 50 100 150 200 250 300 350 400 450 500
0
200
400
600
800
1000
1200
1400
time [10 min]
AEindex
Auroral Electrojet Index
 1 2, , , ny y y
0 50 100 150 200 250 300 350 400 450 500
3
4
5
6
7
8
time [10 min]
AEindex
Logarithm transform of Auroral Electrojet Index
 1 2, , , nx x x
1
tY
1
tY
tY
4
tc
log( )tY 2
tc
tc
3
tc
Assumption: Var[Υt] changes as a
function of the trend μt
Transform Χt=T(Υt) that stabilizes
the variance of Υt ?
Var[ ] consttX 
0 50 100 150 200 250 300 350 400 450 500
0
200
400
600
800
1000
1200
1400
time [10 min]
AEindex
Auroral Electrojet Index
0 50 100 150 200 250 300 350 400 450 500
3
4
5
6
7
8
time [10 min]
AEindex
Logarithm transform of Auroral Electrojet Index
-1000 -500 0 500 1000 1500
0
1
2
3
4
5
x 10
-3
x
f
X
(x)
y
normal
0 2 4 6 8 10
0
0.1
0.2
0.3
0.4
0.5
y
f
Y
(y)
x=log(y)
normal
 1 2, , , ny y y
log( )t tX Y
0 50 100 150 200 250 300 350 400 450 500
-4
-3
-2
-1
0
1
2
3
4
time [10 min]
AEindex
Gaussian transform of Auroral Electrojet Index
-4 -2 0 2 4
0
0.1
0.2
0.3
0.4
0.5
z
f
Z
(z)
x=-1
(FY
(y))
normal
 1
( )t Y tX F Y
 
?
Stationarity - trend
Plastic deformationdeterministic trend: a function of time μt = f(t)
Trend: slow change of the successive values of yt
82 85 87 90 92 95 97 00 02 05
0
200
400
600
800
1000
1200
1400
1600
years
index
S&P500
 1 2, , , ny y ytime series
stochastic trend: random slow change μt
Removal of trend t t tY X 
1. Deterministic trend :
known or estimated function of time μt = f(t)
Fit with first
degree
polynomial
Fit with fifth
degree
polynomial
Plastic deformation
t t tX Y  
{Xt} stationary
μt: mean value as
function of t (slowly
varying mean level)
Example: polynomial of degree p
0 1( ) p
t pf t a a t a t     
Index of the Athens Stock Exchange (ASE)
86 88 90 92 94 96 98 00 02 04 06 08 10 12
0
1000
2000
3000
4000
5000
6000
7000
years
closeindex
ASE index, period 1985 - 2011
orig
07 08 09 10 11 12
0
1000
2000
3000
4000
5000
6000
years
closeindex
ASE index, period 2007 - 2011
2. Stochastic trend
2α. Smoothing with moving average filter
86 88 90 92 94 96 98 00 02 04 06 08 10 12
-1000
0
1000
2000
3000
4000
5000
6000
7000
years
closeindex
ASE index, period 1985 - 2011
orig
local linear, 10 breakpoints
polynomial,p=20
Simple filter:
moving average
1
ˆ
2 1
q
t t j
j q
y
q
 



 2 1 3q   1 1
1 1 1
ˆ
3 3 3
t t t ty y y    
"2 1" 4q   ?
86 88 90 92 94 96 98 00 02 04 06 08 10 12
0
1000
2000
3000
4000
5000
6000
7000
years
closeindex
ASE index, period 1985 - 2011
orig
MA(31)
MA(151)
More general filter:
moving weighted average
ˆ
q
t j t j
j q
a y 

  1
q
j
j q
a


Simple moving average:
1
, , ,
2 1
ja j q q
q
  

2b. Trend removal with differencing
If the trend is locally linear, it is removed by first differences:
0 1t a a t   1 1 1t t t t t t tY Y Y X X         
1 0 1 0 1 1( 1)t t a a t a a t a         constant!
If the trend is locally polynomial or degree p, it is removed by using
p
tY ?
08 10 12
-600
-400
-200
0
200
400
years
closeindex
ASE index: first differences, period 2007 - 2011
86 88 90 92 94 96 98 00 02 04 06 08 10 12
-600
-400
-200
0
200
400
years
closeindex
ASE index: first differences, period 2007 - 2011
Second order lag difference
2 2
1 2( ) (1 )(1 ) (1 2 ) 2t t t t t t tY Y B B Y B B Y Y Y Y             
One lag difference or first difference
1 (1 )t t t tY Y Y B Y     1t tBY YB: lag operator
[show first: ]!p
t tY p c X  
Which method for trend removal is best ?
08 10 12
0
1000
2000
3000
4000
5000
6000
years
closeindex
ASE index, period 2007 - 2011
orig
MA(31)
MA(151)
08 10 12
-1000
-500
0
500
1000
1500
2000
years
closeindex
ASE index detrended, period 2007 - 2011
MA(31)
MA(151)
08 10 12
0
1000
2000
3000
4000
5000
6000
years
closeindex
ASE index, period 2007 - 2011
orig
local linear, 10 breakpoints
polynomial,p=20
08 10 12
-1000
-500
0
500
1000
1500
2000
years
closeindex
ASE index detrended, period 2007 - 2011
local linear, 10 breakpoints
polynomial,p=20
08 10 12
-1000
-500
0
500
1000
1500
2000
years
closeindex ASE index: first differences, period 2007 - 2011
Estimation of trend
82 85 87 90 92 95 97 00 02 05
0
200
400
600
800
1000
1200
1400
1600
years
index
S&P500
 1 2, , , ny y y time series 82 85 87 90 92 95 97 00 02 05
-100
-50
0
50
100
years
firstdifference
S&P500, first differences
1t t tx y y  
change of
the value
82 85 87 90 92 95 97 00 02 05
-0.25
-0.2
-0.15
-0.1
-0.05
0
0.05
0.1
years
relativechange
S&P500, relative changes
1t t
t
t
y y
x
y


relative
change of
the value
82 85 87 90 92 95 97 00 02 05
-0.25
-0.2
-0.15
-0.1
-0.05
0
0.05
0.1
years
differenceoflogs
S&P500, difference of logs
1ln lnt t tx y y  
change of the
logarithm of
the value
… more on differencing transform
Removal of seasonality
or periodicity
t t tY s X 
1. known or estimated periodic function st = f(t)
st: periodic function of
t with period d
Annual sunspots
1700 1750 1800 1850 1900 1950 2000
0
50
100
150
200
years
numberofsunspots
Annual sunspots, period 1700 - 2010
1900 1920 1940 1960 1980 2000
20
40
60
80
100
120
140
160
180
200
years
numberofsunspots
Annual sunspots, period 1900 - 2010
t t tX Y s  {Xt} stationaryPeriod d and
appropriate function st
?
2a. Estimation of si i=1,…,d from the averages for each component
Period d is known
1
1
ˆ
k
i i jd
j
s y
k


  /k n d
2b. Removal of periodicity using lag differences of order d (d-differencing)
(1 )d
d t t t d tY Y Y B Y    
Removal of trend and periodicity t t t tY s X  
1. Removal of trend t t t t tY Y s X   
2. Removal of periodicity t t t t t tX Y s Y s    
First remove trend and then
periodicity or vice versa ?
01 02 03 04 05 06
100
105
110
115
120
125
year
GICP
General Index of Comsumer Prices, period 1/2001-8/2005
01 02 03 04 05 06
-3
-2
-1
0
1
2
3
years
detrendedGICP
GICP: Residual of linear fit
01 02 03 04 05 06
-3
-2
-1
0
1
2
3
year
yearcycleofGICP
GICP: Year cycle estimate
01 02 03 04 05 06
-3
-2
-1
0
1
2
3
year
residualGICP
GICP: detrended and deseasoned
01 02 03 04 05 06
100
105
110
115
120
125
year
GICP
GICP: Linear fit
non-stationary  1 2, , , ny y y stationary  1 2, , , nx x x Is there information
in the residuals?
{Χt}: time series of residuals
Time correlation
tY
82 85 87 90 92 95 97 00 02 05
0
200
400
600
800
1000
1200
1400
1600
years
index
S&P500
: the value of the quantity
 1 2, , , ny y y time series
( )tYf y
0 500 1000 1500 2000
0
0.5
1
1.5
2
2.5
3
3.5
x 10
-3
Yt
f
Y
t
(y)
Gaussian pdf superimposed to S&P500
( )tXf x
-0.05 0 0.05
0
10
20
30
40
50
60
Xt
f
X
t
(x)
Gaussian pdf superimposed to S&P500 returns
Static description …
 marginal distribution
Dynamic description?
 Time correlation
Stochastic process
 t t
Y


 t t
X


82 85 87 90 92 95 97 00 02 05
-100
-50
0
50
100
years
firstdifference
S&P500, first differences
1t t tx y y  
change of
the value
Distribution and moments of a stochastic process
A stochastic process can be fully described in terms of the
marginal and joint probability distributions
( ) ( , )tY Yf y f y tt Z  marginal distribution
1 2
, 1 2 1 2 1 2( , ) ( , , , )t tY Y Yf y y f y y t t
1 2 3
, , 1 2 3 1 2 3 1 2 3( , , ) ( , , , , , )t t tY Y Y Yf y y y f y y y t t t
joint distribution of 2 r.v.
joint distribution of 3 r.v.
1 2,t t Z 
1 2 3, ,t t t Z 
…
The probability distribution and moments may change in time
First order moment (mean)   ( , )dt tYY yf y t y 


  
Second order moment
1 2 1 2 1 2 1 2 1 2 1 2( , , , )d d ( , )t t YY Y y y f y y t t y y t t
 
 
      
Higher order moments …
Central second order moment
1 1 2 2 1 21 2 1 2( , )( )( ) ( , )t t t t t t t tY Y t t           
autocovariance
Stationarity
The distributions do not change with time (equivalently, all moments are constant)
( ) ( , ) ( )t tY Y Yf y f y t f y t Z 
1 2 1 23
, , 1 2 3 , , 1 2 3( , , ) ( , , )tt tt t tY Y Y Y Y Yf y y y f y y y  

1 2,t t Z 
1 2 3, ,t t t Z 
Strict-sense stationarity
1 2
, 1 2 , 1 2( , ) ( , )t tt tY Y Y Yf y y f y y

constant
t Z 
for τ=0 2
(0)tY     constant variance
  
22 2 2
(0) (0)t tY Y           
Wide-sense stationarity
The first two moments are constant in time
 tY  
 1 2
, ( , ) ( )t tt tY Y Y Y t t    
       
constant
t Z 
1 2( , ) ( , ) ( )t t t t      
constant
- mean
- variance
- autocovariance
Autocorrelation
Stationary time series
Autocovariance       
2 2
( )( ) ( )( ) t t t t tX X X X X                 
Variance   
22 2 2
(0) (0)t tX X           
Autocorrelation
( )
)
)
0
(
(
 

  
Time correlation of variables of
at a lag τ.
Measures the “memory” of
 t t
X


 t t
X


 t t
X


(0) 1 
Notation: ( )    ( )   
0k 
Comments:
1k and
k k  k k and
Autocovariance matrix
01
201
110











n
n
n
n
Autocorrelation matrix
1 1
1 2
1
1
1
1
n
n
n
n
 
 




 
Basic stochastic processes
2
E i j ijX X     
white noise (WN), non-correlated r.v. t t
X


 t t
X


independent and identically distributed r.v. (iid)
)()()(),,,( 22112211 nnnn xXPxXPxXPxXxXxXP  
 E 0tX 
 E 0tX  2 2
E tX    
 1 0 1E | , , ,t t tY Y Y Y Y 
random walk (RW)
1 1 2t t t tY Y X X X X    
  1t t
Y


 t t
X


iid
 E 0tY  2 2
E tY t   
Variance increases linearly with time!
?
1
3
2
Chatfield C., “The Analysis of Time Series, An Introduction”, 6th edition, p. 38 (Chapter 3):
“Some authors prefer to make the weaker assumption that the zt’s are mutually uncorrelated,
rather than independent. This is adequate for linear, normal processes, but the stronger
independence assumption is needed when considering non-linear models (Chapter 11). Note
that a purely random process is sometimes called white noise, particularly by engineers.
p. 221 (Chapter 11):
When examining the properties of non-linear models, it can be very important to distinguish
between independent and uncorrelated random variables. In Section 3.4.1, white noise (or a
purely random process) was defined to be a sequence of independent and identically
distributed (i.i.d.) random variables. This is sometimes called strict white noise (SWN), and the
phrase uncorrelated white noise (UWN) is used when successive values are merely
uncorrelated, rather than independent. Of course if successive values follow a normal
(Gaussian) distribution, then zero correlation implies independence so that Gaussian
UWN is SWN. However, with non-linear models, distributions are generally non-normal and
zero correlation need not imply independence.
Wei W.W.C., “Time Series Analysis, Univariate and Multivariate Methods”, p. 15:
2.4 White Noise Processes
A process {at} is called a white noise process if it is a sequence of uncorrelated random
variables from a fixed distribution with constant mean (usually assumed 0), constant
variance and zero autocovariance for lags different from 0.
Uncorrelated (white noise) and independent (iid) observations
 t t
X


Gaussian (normal) stochastic process
For each order p: is p-dimensional Gaussian distribution
1 1
, , , 1 2( , , , )t t t p
X X X pf x x x   
Gaussian distribution is completely defined by the first two moments
strict stationarity ≡ weak stationarity
4
Example
sin( )tX A t  Stochastic process:
A r.v. E[ ] 0A  Var[ ] 1A 
~ [ , ]U   θ and A independent
E[ ] E[ ]E[sin( )] 0tX A t   
Is the process weak stationary?
2 1
E[ ] E sin( )sin( ( ) ) ... cos( )
2
t tX X A t t      
       
?
The first and second order moments do not depend on time t.
Sample autocovariance / autocorrelation
 1 2, , , nx x xtime series
1
1 n
t
t
xx
n 
 Sample mean
unbiased estimate of the mean μ of the time series ?
2 2
1
1
(0) ( )
n
t
t
c x x
n 
 
Another estimate of autocovariance
2
1
( )
1
( )
n
t t
t
x x x
n
c 


 
 
 

 
Biased estimates:
E[ ] ( )Var[ ]
n
c x
n n
  
 
 

  
E[ ] Var[ ]c x   
( )c c 
Notation
bias increases
with the lag τ
Sample autocovariance
2
1
( ))
1
(
n
t t
t
xc x x
n


 
 
  0,1, , 1n  
(
(
)
)
)
(0
c
r
c

 Sample autocorrelation (0) 1r  ( )r r 
Notation
~ N( ,Var[ ])r r  For large n:
2 2 21
Var[ ] ( 2 4 )m m m m m m
m
r
n
            

  

   
Bartlett
formula
21
Var[ ] m
m
r
n
 


  very large n
Autocorrelation for white noise
 1 2, , , nx x x white noise time series 0, 0   
1
~ N(0, )r
n
 ?
Test for independence
 1 2, , , nx x x
observed stationary time series
residual time series after trend
or periodicity removal
Are there
correlations ?
Is it iid ? Η0
Η0
Hypotheses
Η0: is iid 1 2, , , nx x x Η0: is white noise 1 2, , , nx x x
Statistical Significance test for autocorrelation
0H : 0  1H : 0 
Rejection region: 1 /2|
1/
t
r
R r z
n


 
  
 
for significance level 
Band of insignificant autocorrelation: 1 /2
1
az
n
 for =0.05
2
n

1
N(0, )r
n

white noise 1 2, , , nx x x
0 5 10 15
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3

r()
GICP residual: autocorrelation
At significance level =0.05,
Η0 is rejected for τ=10
Is there any correlation in the GICP time series?
Significance test Η0:
for each independently
0 
Numerical Example
For a time series of 200 observations, the autocorrelation for τ=1,…,10 are:
1 2 3 4 5 6 7 8 9 10
-0.38 -0.28 0.11 -0.08 0.02 0.00 0.01 0.07 -0.08 0.05
Assume that the time series is purely random (Η0:ρ=0):
1
Var[ ] 0.005
200
r  
for =0.05, we expect 95% of autocorrelations to be in the interval
1
1.96 1.96 0.07 0.139
200
      
ρ1≠0, ρ2≠0 και ρτ≠0 για τ=3,4,…
Example of GICP
The Portmanteau significance test
A test for each lag 1, ,k 
0H : 0, 1, ,k  
Test statistic Q:
2
1
k
Q n r
 
 
2
1
( 2) / ( )
k
Q n n r n j
 
  
Box-Pierce
Ljung-Box
2
~ kQ rejection region  2
;1k aR Q  
0 5 10 15
-0.4
-0.3
-0.2
-0.1
0
0.1
0.2
0.3

r()
GICP residual: autocorrelation
10k 
24.06Q 
2
;1 18.30k a 
H0 for τ=10
is rejected
0 5 10 15
0
5
10
15
20
25
30
35
k
Q(k)
GICP residual: Portmanteau (Ljung-Box)
One test for all lags together ?
0 10 20 30 40 50 60 70 80 90 100
0
0.2
0.4
0.6
0.8
1
t
x(t) random time series
0 2 4 6 8 10
-0.3
-0.2
-0.1
0
0.1
0.2

r()
random time series: autocorrelation
0 10 20 30 40 50 60 70 80 90 100
0
0.2
0.4
0.6
0.8
1
t
x(t)
logistic time series
0 2 4 6 8 10
-0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
0.2

r()
logistic time series: autocorrelation
An appropriate significance test ?
Is there correlation in the returns time series of the
ASE index (time period 2007-2011)?
07 08 09 10 11 12
0
1000
2000
3000
4000
5000
6000
years
closeindex
ASE index, period 2007 - 2011
0 2 4 6 8 10
0
5
10
15
20
k
Q(k)
ASE returns: Portmanteau (Ljung-Box)
sample Q
X2
(k,1)
0 2 4 6 8 10
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08

r()
ASE first differences: autocorrelation
0 2 4 6 8 10
0
5
10
15
20
k
Q(k)
ASE first differences: Portmanteau (Ljung-Box)
sample Q
X2
(k,1)
0 2 4 6 8 10
-0.08
-0.06
-0.04
-0.02
0
0.02
0.04
0.06
0.08

r()
ASE returns: autocorrelation
Is there correlation?
0 2 4 6 8 10
0
50
100
150
200
250
300
350
k
Q(k)
ASE square returns: Portmanteau (Ljung-Box)
sample Q
X2
(k,1)
0 2 4 6 8 10
-0.1
-0.05
0
0.05
0.1
0.15
0.2
0.25
0.3

r()
ASE square returns: autocorrelation
07 08 09 10 11 12
-300
-200
-100
0
100
200
300
400
years
closeindex
ASE index: first differences, period 2007 - 2011
07 08 09 10 11 12
-0.2
-0.15
-0.1
-0.05
0
0.05
0.1
0.15
years
closeindex
ASE index: returns, period 2007 - 2011
What is the appropriate stationary time series:
first differences or returns ?
first
differences
returns
1t t tx y y  
1ln lnt t tx y y  
07 08 09 10 11 12
0
0.005
0.01
0.015
0.02
years
closeindex
ASE index: square returns, period 2007 - 2011
square of
returns
1ln lnt t tx y y 
  
2
( )t tx x
… nonlinear ? 2 2
E t tX X 
  

More Related Content

What's hot

discrete time signals and systems
 discrete time signals and systems  discrete time signals and systems
discrete time signals and systems
Zlatan Ahmadovic
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
nozomuhamada
 
Sampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methodsSampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methods
Stephane Senecal
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
Alexander Decker
 
Hidden markovmodel
Hidden markovmodelHidden markovmodel
Hidden markovmodel
Piyorot
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 

What's hot (20)

discrete time signals and systems
 discrete time signals and systems  discrete time signals and systems
discrete time signals and systems
 
2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter2012 mdsp pr03 kalman filter
2012 mdsp pr03 kalman filter
 
Sampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methodsSampling strategies for Sequential Monte Carlo (SMC) methods
Sampling strategies for Sequential Monte Carlo (SMC) methods
 
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
Computational Motor Control: Optimal Control for Deterministic Systems (JAIST...
 
SinogramReconstruction
SinogramReconstructionSinogramReconstruction
SinogramReconstruction
 
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
Modern Control - Lec 04 - Analysis and Design of Control Systems using Root L...
 
A current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systemsA current perspectives of corrected operator splitting (os) for systems
A current perspectives of corrected operator splitting (os) for systems
 
Deconvolution
DeconvolutionDeconvolution
Deconvolution
 
4. operations of signals
4. operations of signals 4. operations of signals
4. operations of signals
 
Hidden markovmodel
Hidden markovmodelHidden markovmodel
Hidden markovmodel
 
Unit-1 Classification of Signals
Unit-1 Classification of SignalsUnit-1 Classification of Signals
Unit-1 Classification of Signals
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
 
linear tranformation- VC&LA
linear tranformation- VC&LAlinear tranformation- VC&LA
linear tranformation- VC&LA
 
SIGNAL OPERATIONS
SIGNAL OPERATIONSSIGNAL OPERATIONS
SIGNAL OPERATIONS
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Linear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.comLinear transformations-thestuffpoint.com
Linear transformations-thestuffpoint.com
 
Unit 1 -Introduction to signals and standard signals
Unit 1 -Introduction to signals  and standard signalsUnit 1 -Introduction to signals  and standard signals
Unit 1 -Introduction to signals and standard signals
 
Fourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time SignalsFourier Series for Continuous Time & Discrete Time Signals
Fourier Series for Continuous Time & Discrete Time Signals
 
Modern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI SystemsModern Control - Lec07 - State Space Modeling of LTI Systems
Modern Control - Lec07 - State Space Modeling of LTI Systems
 
Dynamics of structures with uncertainties
Dynamics of structures with uncertaintiesDynamics of structures with uncertainties
Dynamics of structures with uncertainties
 

Similar to 2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climate Change and Finance, part 1

Anomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language ModelsAnomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language Models
Cynthia Freeman
 

Similar to 2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climate Change and Finance, part 1 (20)

Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...
Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...
Efficient Numerical PDE Methods to Solve Calibration and Pricing Problems in ...
 
Time-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SSTTime-Frequency Representation of Microseismic Signals using the SST
Time-Frequency Representation of Microseismic Signals using the SST
 
Anomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language ModelsAnomaly Detection in Sequences of Short Text Using Iterative Language Models
Anomaly Detection in Sequences of Short Text Using Iterative Language Models
 
lecture3.pdf
lecture3.pdflecture3.pdf
lecture3.pdf
 
LeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.pptLeastSquaresParameterEstimation.ppt
LeastSquaresParameterEstimation.ppt
 
Viktor Urumov - Time-delay feedback control of nonlinear oscillators
Viktor Urumov -  Time-delay feedback control of nonlinear oscillatorsViktor Urumov -  Time-delay feedback control of nonlinear oscillators
Viktor Urumov - Time-delay feedback control of nonlinear oscillators
 
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
Optimum Algorithm for Computing the Standardized Moments Using MATLAB 7.10(R2...
 
pres06-main
pres06-mainpres06-main
pres06-main
 
Control Analysis of a mass- loaded String
Control Analysis of a mass- loaded StringControl Analysis of a mass- loaded String
Control Analysis of a mass- loaded String
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
Machiwal, D. y Jha, MK (2012). Modelado estocástico de series de tiempo. En A...
Machiwal, D. y Jha, MK (2012). Modelado estocástico de series de tiempo. En A...Machiwal, D. y Jha, MK (2012). Modelado estocástico de series de tiempo. En A...
Machiwal, D. y Jha, MK (2012). Modelado estocástico de series de tiempo. En A...
 
Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.Project report on simulink analysis of tool chtter vibration on lathe.
Project report on simulink analysis of tool chtter vibration on lathe.
 
Mathematical support for preventive maintenance periodicity optimization of r...
Mathematical support for preventive maintenance periodicity optimization of r...Mathematical support for preventive maintenance periodicity optimization of r...
Mathematical support for preventive maintenance periodicity optimization of r...
 
Group01_Project3
Group01_Project3Group01_Project3
Group01_Project3
 
extreme times in finance heston model.ppt
extreme times in finance heston model.pptextreme times in finance heston model.ppt
extreme times in finance heston model.ppt
 
Time alignment techniques for experimental sensor data
Time alignment techniques for experimental sensor dataTime alignment techniques for experimental sensor data
Time alignment techniques for experimental sensor data
 
Achieving Consistent Modeling Of VIX and Equities Derivatives
Achieving Consistent Modeling Of VIX and Equities DerivativesAchieving Consistent Modeling Of VIX and Equities Derivatives
Achieving Consistent Modeling Of VIX and Equities Derivatives
 
Computing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCDComputing the Nucleon Spin from Lattice QCD
Computing the Nucleon Spin from Lattice QCD
 
Ec8352 signals and systems 2 marks with answers
Ec8352 signals and systems   2 marks with answersEc8352 signals and systems   2 marks with answers
Ec8352 signals and systems 2 marks with answers
 
1notes
1notes1notes
1notes
 

More from NUI Galway

More from NUI Galway (20)

Vincenzo MacCarrone, Explaining the trajectory of collective bargaining in Ir...
Vincenzo MacCarrone, Explaining the trajectory of collective bargaining in Ir...Vincenzo MacCarrone, Explaining the trajectory of collective bargaining in Ir...
Vincenzo MacCarrone, Explaining the trajectory of collective bargaining in Ir...
 
Tom Turner, Tipping the scales for labour in Ireland?
Tom Turner, Tipping the scales for labour in Ireland? Tom Turner, Tipping the scales for labour in Ireland?
Tom Turner, Tipping the scales for labour in Ireland?
 
Tom McDonnell, Medium-term trends in the Irish labour market and possibilitie...
Tom McDonnell, Medium-term trends in the Irish labour market and possibilitie...Tom McDonnell, Medium-term trends in the Irish labour market and possibilitie...
Tom McDonnell, Medium-term trends in the Irish labour market and possibilitie...
 
Stephen Byrne, A non-employment index for Ireland
Stephen Byrne, A non-employment index for IrelandStephen Byrne, A non-employment index for Ireland
Stephen Byrne, A non-employment index for Ireland
 
Sorcha Foster, The risk of automation of work in Ireland
Sorcha Foster, The risk of automation of work in IrelandSorcha Foster, The risk of automation of work in Ireland
Sorcha Foster, The risk of automation of work in Ireland
 
Sinead Pembroke, Living with uncertainty: The social implications of precario...
Sinead Pembroke, Living with uncertainty: The social implications of precario...Sinead Pembroke, Living with uncertainty: The social implications of precario...
Sinead Pembroke, Living with uncertainty: The social implications of precario...
 
Paul MacFlynn, A low skills equilibrium in Northern Ireland
Paul MacFlynn, A low skills equilibrium in Northern IrelandPaul MacFlynn, A low skills equilibrium in Northern Ireland
Paul MacFlynn, A low skills equilibrium in Northern Ireland
 
Nuala Whelan, The role of labour market activation in building a healthy work...
Nuala Whelan, The role of labour market activation in building a healthy work...Nuala Whelan, The role of labour market activation in building a healthy work...
Nuala Whelan, The role of labour market activation in building a healthy work...
 
Michéal Collins, and Dr Michelle Maher, Auto enrolment
 Michéal Collins, and Dr Michelle Maher, Auto enrolment Michéal Collins, and Dr Michelle Maher, Auto enrolment
Michéal Collins, and Dr Michelle Maher, Auto enrolment
 
Michael Taft, A new enterprise model
Michael Taft, A new enterprise modelMichael Taft, A new enterprise model
Michael Taft, A new enterprise model
 
Luke Rehill, Patterns of firm-level productivity in Ireland
Luke Rehill, Patterns of firm-level productivity in IrelandLuke Rehill, Patterns of firm-level productivity in Ireland
Luke Rehill, Patterns of firm-level productivity in Ireland
 
Lucy Pyne, Evidence from the Social Inclusion and Community Activation Programme
Lucy Pyne, Evidence from the Social Inclusion and Community Activation ProgrammeLucy Pyne, Evidence from the Social Inclusion and Community Activation Programme
Lucy Pyne, Evidence from the Social Inclusion and Community Activation Programme
 
Lisa Wilson, The gendered nature of job quality and job insecurity
Lisa Wilson, The gendered nature of job quality and job insecurityLisa Wilson, The gendered nature of job quality and job insecurity
Lisa Wilson, The gendered nature of job quality and job insecurity
 
Karina Doorley, axation, labour force participation and gender equality in Ir...
Karina Doorley, axation, labour force participation and gender equality in Ir...Karina Doorley, axation, labour force participation and gender equality in Ir...
Karina Doorley, axation, labour force participation and gender equality in Ir...
 
Jason Loughrey, Household income volatility in Ireland
Jason Loughrey, Household income volatility in IrelandJason Loughrey, Household income volatility in Ireland
Jason Loughrey, Household income volatility in Ireland
 
Ivan Privalko, What do Workers get from Mobility?
Ivan Privalko, What do Workers get from Mobility?Ivan Privalko, What do Workers get from Mobility?
Ivan Privalko, What do Workers get from Mobility?
 
Helen Johnston, Labour market transitions: barriers and enablers
Helen Johnston, Labour market transitions: barriers and enablersHelen Johnston, Labour market transitions: barriers and enablers
Helen Johnston, Labour market transitions: barriers and enablers
 
Gail Irvine, Fulfilling work in Ireland
Gail Irvine, Fulfilling work in IrelandGail Irvine, Fulfilling work in Ireland
Gail Irvine, Fulfilling work in Ireland
 
Frank Walsh, Assessing competing explanations for the decline in trade union ...
Frank Walsh, Assessing competing explanations for the decline in trade union ...Frank Walsh, Assessing competing explanations for the decline in trade union ...
Frank Walsh, Assessing competing explanations for the decline in trade union ...
 
Eamon Murphy, An overview of labour market participation in Ireland over the ...
Eamon Murphy, An overview of labour market participation in Ireland over the ...Eamon Murphy, An overview of labour market participation in Ireland over the ...
Eamon Murphy, An overview of labour market participation in Ireland over the ...
 

Recently uploaded

➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men 🔝Sambalpur🔝 Esc...
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men  🔝Sambalpur🔝   Esc...➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men  🔝Sambalpur🔝   Esc...
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men 🔝Sambalpur🔝 Esc...
amitlee9823
 
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
amitlee9823
 
➥🔝 7737669865 🔝▻ Bangalore Call-girls in Women Seeking Men 🔝Bangalore🔝 Esc...
➥🔝 7737669865 🔝▻ Bangalore Call-girls in Women Seeking Men  🔝Bangalore🔝   Esc...➥🔝 7737669865 🔝▻ Bangalore Call-girls in Women Seeking Men  🔝Bangalore🔝   Esc...
➥🔝 7737669865 🔝▻ Bangalore Call-girls in Women Seeking Men 🔝Bangalore🔝 Esc...
amitlee9823
 
Just Call Vip call girls Bellary Escorts ☎️9352988975 Two shot with one girl ...
Just Call Vip call girls Bellary Escorts ☎️9352988975 Two shot with one girl ...Just Call Vip call girls Bellary Escorts ☎️9352988975 Two shot with one girl ...
Just Call Vip call girls Bellary Escorts ☎️9352988975 Two shot with one girl ...
gajnagarg
 
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night StandCall Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
amitlee9823
 
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Call Girls In Shivaji Nagar ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Shivaji Nagar ☎ 7737669865 🥵 Book Your One night StandCall Girls In Shivaji Nagar ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Shivaji Nagar ☎ 7737669865 🥵 Book Your One night Stand
amitlee9823
 
Just Call Vip call girls kakinada Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls kakinada Escorts ☎️9352988975 Two shot with one girl...Just Call Vip call girls kakinada Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls kakinada Escorts ☎️9352988975 Two shot with one girl...
gajnagarg
 
Just Call Vip call girls Palakkad Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls Palakkad Escorts ☎️9352988975 Two shot with one girl...Just Call Vip call girls Palakkad Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls Palakkad Escorts ☎️9352988975 Two shot with one girl...
gajnagarg
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
amitlee9823
 
➥🔝 7737669865 🔝▻ Dindigul Call-girls in Women Seeking Men 🔝Dindigul🔝 Escor...
➥🔝 7737669865 🔝▻ Dindigul Call-girls in Women Seeking Men  🔝Dindigul🔝   Escor...➥🔝 7737669865 🔝▻ Dindigul Call-girls in Women Seeking Men  🔝Dindigul🔝   Escor...
➥🔝 7737669865 🔝▻ Dindigul Call-girls in Women Seeking Men 🔝Dindigul🔝 Escor...
amitlee9823
 
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
amitlee9823
 
➥🔝 7737669865 🔝▻ malwa Call-girls in Women Seeking Men 🔝malwa🔝 Escorts Ser...
➥🔝 7737669865 🔝▻ malwa Call-girls in Women Seeking Men  🔝malwa🔝   Escorts Ser...➥🔝 7737669865 🔝▻ malwa Call-girls in Women Seeking Men  🔝malwa🔝   Escorts Ser...
➥🔝 7737669865 🔝▻ malwa Call-girls in Women Seeking Men 🔝malwa🔝 Escorts Ser...
amitlee9823
 
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men 🔝Ongole🔝 Escorts S...
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men  🔝Ongole🔝   Escorts S...➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men  🔝Ongole🔝   Escorts S...
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men 🔝Ongole🔝 Escorts S...
amitlee9823
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
amitlee9823
 

Recently uploaded (20)

DATA SUMMIT 24 Building Real-Time Pipelines With FLaNK
DATA SUMMIT 24  Building Real-Time Pipelines With FLaNKDATA SUMMIT 24  Building Real-Time Pipelines With FLaNK
DATA SUMMIT 24 Building Real-Time Pipelines With FLaNK
 
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men 🔝Sambalpur🔝 Esc...
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men  🔝Sambalpur🔝   Esc...➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men  🔝Sambalpur🔝   Esc...
➥🔝 7737669865 🔝▻ Sambalpur Call-girls in Women Seeking Men 🔝Sambalpur🔝 Esc...
 
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
5CL-ADBA,5cladba, Chinese supplier, safety is guaranteed
 
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
Escorts Service Kumaraswamy Layout ☎ 7737669865☎ Book Your One night Stand (B...
 
➥🔝 7737669865 🔝▻ Bangalore Call-girls in Women Seeking Men 🔝Bangalore🔝 Esc...
➥🔝 7737669865 🔝▻ Bangalore Call-girls in Women Seeking Men  🔝Bangalore🔝   Esc...➥🔝 7737669865 🔝▻ Bangalore Call-girls in Women Seeking Men  🔝Bangalore🔝   Esc...
➥🔝 7737669865 🔝▻ Bangalore Call-girls in Women Seeking Men 🔝Bangalore🔝 Esc...
 
Just Call Vip call girls Bellary Escorts ☎️9352988975 Two shot with one girl ...
Just Call Vip call girls Bellary Escorts ☎️9352988975 Two shot with one girl ...Just Call Vip call girls Bellary Escorts ☎️9352988975 Two shot with one girl ...
Just Call Vip call girls Bellary Escorts ☎️9352988975 Two shot with one girl ...
 
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night StandCall Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Attibele ☎ 7737669865 🥵 Book Your One night Stand
 
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
Call Girls Jalahalli Just Call 👗 7737669865 👗 Top Class Call Girl Service Ban...
 
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night StandCall Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Bellandur ☎ 7737669865 🥵 Book Your One night Stand
 
Call Girls In Shivaji Nagar ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Shivaji Nagar ☎ 7737669865 🥵 Book Your One night StandCall Girls In Shivaji Nagar ☎ 7737669865 🥵 Book Your One night Stand
Call Girls In Shivaji Nagar ☎ 7737669865 🥵 Book Your One night Stand
 
Predicting Loan Approval: A Data Science Project
Predicting Loan Approval: A Data Science ProjectPredicting Loan Approval: A Data Science Project
Predicting Loan Approval: A Data Science Project
 
Just Call Vip call girls kakinada Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls kakinada Escorts ☎️9352988975 Two shot with one girl...Just Call Vip call girls kakinada Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls kakinada Escorts ☎️9352988975 Two shot with one girl...
 
Just Call Vip call girls Palakkad Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls Palakkad Escorts ☎️9352988975 Two shot with one girl...Just Call Vip call girls Palakkad Escorts ☎️9352988975 Two shot with one girl...
Just Call Vip call girls Palakkad Escorts ☎️9352988975 Two shot with one girl...
 
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
Chintamani Call Girls: 🍓 7737669865 🍓 High Profile Model Escorts | Bangalore ...
 
Aspirational Block Program Block Syaldey District - Almora
Aspirational Block Program Block Syaldey District - AlmoraAspirational Block Program Block Syaldey District - Almora
Aspirational Block Program Block Syaldey District - Almora
 
➥🔝 7737669865 🔝▻ Dindigul Call-girls in Women Seeking Men 🔝Dindigul🔝 Escor...
➥🔝 7737669865 🔝▻ Dindigul Call-girls in Women Seeking Men  🔝Dindigul🔝   Escor...➥🔝 7737669865 🔝▻ Dindigul Call-girls in Women Seeking Men  🔝Dindigul🔝   Escor...
➥🔝 7737669865 🔝▻ Dindigul Call-girls in Women Seeking Men 🔝Dindigul🔝 Escor...
 
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
Vip Mumbai Call Girls Thane West Call On 9920725232 With Body to body massage...
 
➥🔝 7737669865 🔝▻ malwa Call-girls in Women Seeking Men 🔝malwa🔝 Escorts Ser...
➥🔝 7737669865 🔝▻ malwa Call-girls in Women Seeking Men  🔝malwa🔝   Escorts Ser...➥🔝 7737669865 🔝▻ malwa Call-girls in Women Seeking Men  🔝malwa🔝   Escorts Ser...
➥🔝 7737669865 🔝▻ malwa Call-girls in Women Seeking Men 🔝malwa🔝 Escorts Ser...
 
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men 🔝Ongole🔝 Escorts S...
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men  🔝Ongole🔝   Escorts S...➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men  🔝Ongole🔝   Escorts S...
➥🔝 7737669865 🔝▻ Ongole Call-girls in Women Seeking Men 🔝Ongole🔝 Escorts S...
 
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
Call Girls Hsr Layout Just Call 👗 7737669865 👗 Top Class Call Girl Service Ba...
 

2013.06.17 Time Series Analysis Workshop ..Applications in Physiology, Climate Change and Finance, part 1

  • 1. Time Series, Part 1 Content - Stationarity, autocorrelation, partial autocorrelation, removal of non- stationary components, independence test for time series - Linear Stochastic Processes: autoregressive (AR), moving average (MA), autoregressive moving average (ARMA) - Fit of models AR, MA and ARMA to stationary time series - Linear models for non-stationary time series - Prediction of time series - Nonlinear analysis of time series with stochastic models - Nonlinear analysis of time series and dynamical systems Literature - “The Analysis of Time Series, An Introduction”, Chatfield C., Sixth edition, Chapman & Hall, 2004 - “Introduction to time series and forecasting”, Brockwell P.J. and Davis R.A., Second edition, Springer, 2002 - “Non-Linear Time Series, A Dynamical System Approach”, Tong H., Oxford University Press, 1993 - “Nonlinear Time Series Analysis”, Kantz H. and Schreiber T., Cambridge University Press, 2004
  • 2. Real world time series mechanics physiology geophysics economy univariate time series non-stationarity noise electronics only one time series limited length
  • 3. Definitions / notations observed quantity  variable Χ The observations take place most often at fixed time steps  sampling time The values of the observed quantity change with randomness (stochasticity) at some small or larger degree  random variable (r.v.) Χ For each time point t we consider the value xt of the r.v. Χ The set of the values of xt over a time period n (given in units of the sampling time)  (univariate) time series   1 21 { , , , } n t nt x x x x  If there are simultaneous observations of more than one variable  multivariate time series We apply methods and techniques on the given univariate or multivariate time series in order to get insight for the system that generates it  time series analysis The time series can be considered as realization of a stochastic or deterministic process (dynamical system)  t t X  
  • 4. Exchange index and volume of the Athens Stock Exchange (ASE) 86 88 90 92 94 96 98 00 02 04 06 08 10 12 0 1000 2000 3000 4000 5000 6000 7000 years closeindex ASE index, period 1985 - 2011 07 08 09 10 11 12 0 1000 2000 3000 4000 5000 6000 years closeindex ASE index, period 2007 - 2011 01 02 03 04 05 06 07 08 09 10 11 600 800 1000 1200 1400 1600 1800 months closeindex ASE index, period 2011 98 99 00 01 02 03 04 05 06 07 08 0 5 10 15 x 10 5 years volume ASE volume, period 1998 - 2008 Prediction? Dynamical system ? stochastic process ? What is the index value tomorrow? The day after? What is the mechanism of the Greek stock market?
  • 5. General Index of Consumer Prices (GICP) 01 02 03 04 05 06 100 105 110 115 120 125 years GeneralIndexofComsumerPrices General Index of Comsumer Prices, period Jan 2001 - Aug 2005 Trend ? Seasonality / periodicity ? Autocorrelation ? Autoregression ? Prediction ?
  • 6. Annual sunspot numbers 1700 1750 1800 1850 1900 1950 2000 0 50 100 150 200 years numberofsunspots Annual sunspots, period 1700 - 2010 1900 1920 1940 1960 1980 2000 20 40 60 80 100 120 140 160 180 200 years numberofsunspots Annual sunspots, period 1900 - 2010 What will be the sunspot number in 2013, 2014 … ? What is the mechanism / system / process that generates sunspots? Is it a periodic system + noise ? Is it a stochastic system? Is it a chaotic system? 1960 1970 1980 1990 2000 2010 0 50 100 150 200 years numberofsunspots Annual sunspots, period 1960 - 1995 Given the sunspot number for up to 1995, what is the sunspot number in 1996? and the years after?
  • 7. 1995 2000 2005 2010 2015 2020 0 50 100 150 200 year sunspotnumber Genuine predictions of sunspot data Model comparison Genuine prediction
  • 8. What is the generating system of a real time series? 100 200 300 400 500 periodic + noise time in seconds 100 200 300 400 500 low dimensional chaos time in seconds 100 200 300 400 500 high dimensional chaos time in seconds Candidate deterministic models 0 200 400 time index i x(i) stochastic Candidate stochastic models 100 200 300 400 500 preictal EEG time in seconds Real time series 100 200 300 400 500 ictal EEG time in seconds
  • 9. Dripping water faucet (original experiment at UC Santa Cruz). The observation of the dripping faucet shows that for some flow velocity the drops do not run at constant time intervals. Crutchfield et al, Scientific American, 1986 3x1x 2x 2 1( , )x x 3 2( , )x x The scatter diagram of the data showed that the drop flow is not random. scatter diagram 1( , )i ix x  1 2( , , )i i ix x x  Hénon map 2 1 21 1.4 0.3i i is s s    observed variable i i ix s w  wi noise chaos
  • 10. 01 02 03 04 05 06 100 105 110 115 120 125 years GeneralIndexofComsumerPricesGeneral Index of Comsumer Prices, period Jan 2001 - Aug 2005 Trend? Seasonality / periodicity? Autocorrelation ? 0 50 100 150 200 250 300 350 400 450 500 0 200 400 600 800 1000 1200 1400 time [10 min] AEindex Auroral Electrojet Index Volatility ? Non-stationarity
  • 11. Variance stabilizing transformation simple solution: log( )t tX Y ? Power transform (Box-Cox): 1t t Y X     ? λ Χt Var[yt] -1 -0.5 0 0.5 Other transforms ? 0 50 100 150 200 250 300 350 400 450 500 0 200 400 600 800 1000 1200 1400 time [10 min] AEindex Auroral Electrojet Index  1 2, , , ny y y 0 50 100 150 200 250 300 350 400 450 500 3 4 5 6 7 8 time [10 min] AEindex Logarithm transform of Auroral Electrojet Index  1 2, , , nx x x 1 tY 1 tY tY 4 tc log( )tY 2 tc tc 3 tc Assumption: Var[Υt] changes as a function of the trend μt Transform Χt=T(Υt) that stabilizes the variance of Υt ? Var[ ] consttX 
  • 12. 0 50 100 150 200 250 300 350 400 450 500 0 200 400 600 800 1000 1200 1400 time [10 min] AEindex Auroral Electrojet Index 0 50 100 150 200 250 300 350 400 450 500 3 4 5 6 7 8 time [10 min] AEindex Logarithm transform of Auroral Electrojet Index -1000 -500 0 500 1000 1500 0 1 2 3 4 5 x 10 -3 x f X (x) y normal 0 2 4 6 8 10 0 0.1 0.2 0.3 0.4 0.5 y f Y (y) x=log(y) normal  1 2, , , ny y y log( )t tX Y 0 50 100 150 200 250 300 350 400 450 500 -4 -3 -2 -1 0 1 2 3 4 time [10 min] AEindex Gaussian transform of Auroral Electrojet Index -4 -2 0 2 4 0 0.1 0.2 0.3 0.4 0.5 z f Z (z) x=-1 (FY (y)) normal  1 ( )t Y tX F Y   ?
  • 13. Stationarity - trend Plastic deformationdeterministic trend: a function of time μt = f(t) Trend: slow change of the successive values of yt 82 85 87 90 92 95 97 00 02 05 0 200 400 600 800 1000 1200 1400 1600 years index S&P500  1 2, , , ny y ytime series stochastic trend: random slow change μt
  • 14. Removal of trend t t tY X  1. Deterministic trend : known or estimated function of time μt = f(t) Fit with first degree polynomial Fit with fifth degree polynomial Plastic deformation t t tX Y   {Xt} stationary μt: mean value as function of t (slowly varying mean level) Example: polynomial of degree p 0 1( ) p t pf t a a t a t     
  • 15. Index of the Athens Stock Exchange (ASE) 86 88 90 92 94 96 98 00 02 04 06 08 10 12 0 1000 2000 3000 4000 5000 6000 7000 years closeindex ASE index, period 1985 - 2011 orig 07 08 09 10 11 12 0 1000 2000 3000 4000 5000 6000 years closeindex ASE index, period 2007 - 2011 2. Stochastic trend 2α. Smoothing with moving average filter 86 88 90 92 94 96 98 00 02 04 06 08 10 12 -1000 0 1000 2000 3000 4000 5000 6000 7000 years closeindex ASE index, period 1985 - 2011 orig local linear, 10 breakpoints polynomial,p=20 Simple filter: moving average 1 ˆ 2 1 q t t j j q y q       2 1 3q   1 1 1 1 1 ˆ 3 3 3 t t t ty y y     "2 1" 4q   ? 86 88 90 92 94 96 98 00 02 04 06 08 10 12 0 1000 2000 3000 4000 5000 6000 7000 years closeindex ASE index, period 1985 - 2011 orig MA(31) MA(151) More general filter: moving weighted average ˆ q t j t j j q a y     1 q j j q a   Simple moving average: 1 , , , 2 1 ja j q q q    
  • 16. 2b. Trend removal with differencing If the trend is locally linear, it is removed by first differences: 0 1t a a t   1 1 1t t t t t t tY Y Y X X          1 0 1 0 1 1( 1)t t a a t a a t a         constant! If the trend is locally polynomial or degree p, it is removed by using p tY ? 08 10 12 -600 -400 -200 0 200 400 years closeindex ASE index: first differences, period 2007 - 2011 86 88 90 92 94 96 98 00 02 04 06 08 10 12 -600 -400 -200 0 200 400 years closeindex ASE index: first differences, period 2007 - 2011 Second order lag difference 2 2 1 2( ) (1 )(1 ) (1 2 ) 2t t t t t t tY Y B B Y B B Y Y Y Y              One lag difference or first difference 1 (1 )t t t tY Y Y B Y     1t tBY YB: lag operator [show first: ]!p t tY p c X  
  • 17. Which method for trend removal is best ? 08 10 12 0 1000 2000 3000 4000 5000 6000 years closeindex ASE index, period 2007 - 2011 orig MA(31) MA(151) 08 10 12 -1000 -500 0 500 1000 1500 2000 years closeindex ASE index detrended, period 2007 - 2011 MA(31) MA(151) 08 10 12 0 1000 2000 3000 4000 5000 6000 years closeindex ASE index, period 2007 - 2011 orig local linear, 10 breakpoints polynomial,p=20 08 10 12 -1000 -500 0 500 1000 1500 2000 years closeindex ASE index detrended, period 2007 - 2011 local linear, 10 breakpoints polynomial,p=20 08 10 12 -1000 -500 0 500 1000 1500 2000 years closeindex ASE index: first differences, period 2007 - 2011 Estimation of trend
  • 18. 82 85 87 90 92 95 97 00 02 05 0 200 400 600 800 1000 1200 1400 1600 years index S&P500  1 2, , , ny y y time series 82 85 87 90 92 95 97 00 02 05 -100 -50 0 50 100 years firstdifference S&P500, first differences 1t t tx y y   change of the value 82 85 87 90 92 95 97 00 02 05 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 years relativechange S&P500, relative changes 1t t t t y y x y   relative change of the value 82 85 87 90 92 95 97 00 02 05 -0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 years differenceoflogs S&P500, difference of logs 1ln lnt t tx y y   change of the logarithm of the value … more on differencing transform
  • 19. Removal of seasonality or periodicity t t tY s X  1. known or estimated periodic function st = f(t) st: periodic function of t with period d Annual sunspots 1700 1750 1800 1850 1900 1950 2000 0 50 100 150 200 years numberofsunspots Annual sunspots, period 1700 - 2010 1900 1920 1940 1960 1980 2000 20 40 60 80 100 120 140 160 180 200 years numberofsunspots Annual sunspots, period 1900 - 2010 t t tX Y s  {Xt} stationaryPeriod d and appropriate function st ? 2a. Estimation of si i=1,…,d from the averages for each component Period d is known 1 1 ˆ k i i jd j s y k     /k n d 2b. Removal of periodicity using lag differences of order d (d-differencing) (1 )d d t t t d tY Y Y B Y    
  • 20. Removal of trend and periodicity t t t tY s X   1. Removal of trend t t t t tY Y s X    2. Removal of periodicity t t t t t tX Y s Y s     First remove trend and then periodicity or vice versa ? 01 02 03 04 05 06 100 105 110 115 120 125 year GICP General Index of Comsumer Prices, period 1/2001-8/2005 01 02 03 04 05 06 -3 -2 -1 0 1 2 3 years detrendedGICP GICP: Residual of linear fit 01 02 03 04 05 06 -3 -2 -1 0 1 2 3 year yearcycleofGICP GICP: Year cycle estimate 01 02 03 04 05 06 -3 -2 -1 0 1 2 3 year residualGICP GICP: detrended and deseasoned 01 02 03 04 05 06 100 105 110 115 120 125 year GICP GICP: Linear fit non-stationary  1 2, , , ny y y stationary  1 2, , , nx x x Is there information in the residuals? {Χt}: time series of residuals
  • 21. Time correlation tY 82 85 87 90 92 95 97 00 02 05 0 200 400 600 800 1000 1200 1400 1600 years index S&P500 : the value of the quantity  1 2, , , ny y y time series ( )tYf y 0 500 1000 1500 2000 0 0.5 1 1.5 2 2.5 3 3.5 x 10 -3 Yt f Y t (y) Gaussian pdf superimposed to S&P500 ( )tXf x -0.05 0 0.05 0 10 20 30 40 50 60 Xt f X t (x) Gaussian pdf superimposed to S&P500 returns Static description …  marginal distribution Dynamic description?  Time correlation Stochastic process  t t Y    t t X   82 85 87 90 92 95 97 00 02 05 -100 -50 0 50 100 years firstdifference S&P500, first differences 1t t tx y y   change of the value
  • 22. Distribution and moments of a stochastic process A stochastic process can be fully described in terms of the marginal and joint probability distributions ( ) ( , )tY Yf y f y tt Z  marginal distribution 1 2 , 1 2 1 2 1 2( , ) ( , , , )t tY Y Yf y y f y y t t 1 2 3 , , 1 2 3 1 2 3 1 2 3( , , ) ( , , , , , )t t tY Y Y Yf y y y f y y y t t t joint distribution of 2 r.v. joint distribution of 3 r.v. 1 2,t t Z  1 2 3, ,t t t Z  … The probability distribution and moments may change in time First order moment (mean)   ( , )dt tYY yf y t y       Second order moment 1 2 1 2 1 2 1 2 1 2 1 2( , , , )d d ( , )t t YY Y y y f y y t t y y t t            Higher order moments … Central second order moment 1 1 2 2 1 21 2 1 2( , )( )( ) ( , )t t t t t t t tY Y t t            autocovariance
  • 23. Stationarity The distributions do not change with time (equivalently, all moments are constant) ( ) ( , ) ( )t tY Y Yf y f y t f y t Z  1 2 1 23 , , 1 2 3 , , 1 2 3( , , ) ( , , )tt tt t tY Y Y Y Y Yf y y y f y y y    1 2,t t Z  1 2 3, ,t t t Z  Strict-sense stationarity 1 2 , 1 2 , 1 2( , ) ( , )t tt tY Y Y Yf y y f y y  constant t Z  for τ=0 2 (0)tY     constant variance    22 2 2 (0) (0)t tY Y            Wide-sense stationarity The first two moments are constant in time  tY    1 2 , ( , ) ( )t tt tY Y Y Y t t             constant t Z  1 2( , ) ( , ) ( )t t t t       constant - mean - variance - autocovariance
  • 24. Autocorrelation Stationary time series Autocovariance        2 2 ( )( ) ( )( ) t t t t tX X X X X                  Variance    22 2 2 (0) (0)t tX X            Autocorrelation ( ) ) ) 0 ( (       Time correlation of variables of at a lag τ. Measures the “memory” of  t t X    t t X    t t X   (0) 1  Notation: ( )    ( )    0k  Comments: 1k and k k  k k and Autocovariance matrix 01 201 110            n n n n Autocorrelation matrix 1 1 1 2 1 1 1 1 n n n n          
  • 25. Basic stochastic processes 2 E i j ijX X      white noise (WN), non-correlated r.v. t t X    t t X   independent and identically distributed r.v. (iid) )()()(),,,( 22112211 nnnn xXPxXPxXPxXxXxXP    E 0tX   E 0tX  2 2 E tX      1 0 1E | , , ,t t tY Y Y Y Y  random walk (RW) 1 1 2t t t tY Y X X X X       1t t Y    t t X   iid  E 0tY  2 2 E tY t    Variance increases linearly with time! ? 1 3 2
  • 26. Chatfield C., “The Analysis of Time Series, An Introduction”, 6th edition, p. 38 (Chapter 3): “Some authors prefer to make the weaker assumption that the zt’s are mutually uncorrelated, rather than independent. This is adequate for linear, normal processes, but the stronger independence assumption is needed when considering non-linear models (Chapter 11). Note that a purely random process is sometimes called white noise, particularly by engineers. p. 221 (Chapter 11): When examining the properties of non-linear models, it can be very important to distinguish between independent and uncorrelated random variables. In Section 3.4.1, white noise (or a purely random process) was defined to be a sequence of independent and identically distributed (i.i.d.) random variables. This is sometimes called strict white noise (SWN), and the phrase uncorrelated white noise (UWN) is used when successive values are merely uncorrelated, rather than independent. Of course if successive values follow a normal (Gaussian) distribution, then zero correlation implies independence so that Gaussian UWN is SWN. However, with non-linear models, distributions are generally non-normal and zero correlation need not imply independence. Wei W.W.C., “Time Series Analysis, Univariate and Multivariate Methods”, p. 15: 2.4 White Noise Processes A process {at} is called a white noise process if it is a sequence of uncorrelated random variables from a fixed distribution with constant mean (usually assumed 0), constant variance and zero autocovariance for lags different from 0. Uncorrelated (white noise) and independent (iid) observations
  • 27.  t t X   Gaussian (normal) stochastic process For each order p: is p-dimensional Gaussian distribution 1 1 , , , 1 2( , , , )t t t p X X X pf x x x    Gaussian distribution is completely defined by the first two moments strict stationarity ≡ weak stationarity 4 Example sin( )tX A t  Stochastic process: A r.v. E[ ] 0A  Var[ ] 1A  ~ [ , ]U   θ and A independent E[ ] E[ ]E[sin( )] 0tX A t    Is the process weak stationary? 2 1 E[ ] E sin( )sin( ( ) ) ... cos( ) 2 t tX X A t t               ? The first and second order moments do not depend on time t.
  • 28. Sample autocovariance / autocorrelation  1 2, , , nx x xtime series 1 1 n t t xx n   Sample mean unbiased estimate of the mean μ of the time series ? 2 2 1 1 (0) ( ) n t t c x x n    Another estimate of autocovariance 2 1 ( ) 1 ( ) n t t t x x x n c             Biased estimates: E[ ] ( )Var[ ] n c x n n            E[ ] Var[ ]c x    ( )c c  Notation bias increases with the lag τ Sample autocovariance 2 1 ( )) 1 ( n t t t xc x x n         0,1, , 1n   ( ( ) ) ) (0 c r c   Sample autocorrelation (0) 1r  ( )r r  Notation ~ N( ,Var[ ])r r  For large n: 2 2 21 Var[ ] ( 2 4 )m m m m m m m r n                       Bartlett formula 21 Var[ ] m m r n       very large n
  • 29. Autocorrelation for white noise  1 2, , , nx x x white noise time series 0, 0    1 ~ N(0, )r n  ? Test for independence  1 2, , , nx x x observed stationary time series residual time series after trend or periodicity removal Are there correlations ? Is it iid ? Η0 Η0 Hypotheses Η0: is iid 1 2, , , nx x x Η0: is white noise 1 2, , , nx x x Statistical Significance test for autocorrelation 0H : 0  1H : 0  Rejection region: 1 /2| 1/ t r R r z n          for significance level  Band of insignificant autocorrelation: 1 /2 1 az n  for =0.05 2 n  1 N(0, )r n  white noise 1 2, , , nx x x
  • 30. 0 5 10 15 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3  r() GICP residual: autocorrelation At significance level =0.05, Η0 is rejected for τ=10 Is there any correlation in the GICP time series? Significance test Η0: for each independently 0  Numerical Example For a time series of 200 observations, the autocorrelation for τ=1,…,10 are: 1 2 3 4 5 6 7 8 9 10 -0.38 -0.28 0.11 -0.08 0.02 0.00 0.01 0.07 -0.08 0.05 Assume that the time series is purely random (Η0:ρ=0): 1 Var[ ] 0.005 200 r   for =0.05, we expect 95% of autocorrelations to be in the interval 1 1.96 1.96 0.07 0.139 200        ρ1≠0, ρ2≠0 και ρτ≠0 για τ=3,4,… Example of GICP
  • 31. The Portmanteau significance test A test for each lag 1, ,k  0H : 0, 1, ,k   Test statistic Q: 2 1 k Q n r     2 1 ( 2) / ( ) k Q n n r n j      Box-Pierce Ljung-Box 2 ~ kQ rejection region  2 ;1k aR Q   0 5 10 15 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3  r() GICP residual: autocorrelation 10k  24.06Q  2 ;1 18.30k a  H0 for τ=10 is rejected 0 5 10 15 0 5 10 15 20 25 30 35 k Q(k) GICP residual: Portmanteau (Ljung-Box) One test for all lags together ?
  • 32. 0 10 20 30 40 50 60 70 80 90 100 0 0.2 0.4 0.6 0.8 1 t x(t) random time series 0 2 4 6 8 10 -0.3 -0.2 -0.1 0 0.1 0.2  r() random time series: autocorrelation 0 10 20 30 40 50 60 70 80 90 100 0 0.2 0.4 0.6 0.8 1 t x(t) logistic time series 0 2 4 6 8 10 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2  r() logistic time series: autocorrelation An appropriate significance test ?
  • 33. Is there correlation in the returns time series of the ASE index (time period 2007-2011)? 07 08 09 10 11 12 0 1000 2000 3000 4000 5000 6000 years closeindex ASE index, period 2007 - 2011 0 2 4 6 8 10 0 5 10 15 20 k Q(k) ASE returns: Portmanteau (Ljung-Box) sample Q X2 (k,1) 0 2 4 6 8 10 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08  r() ASE first differences: autocorrelation 0 2 4 6 8 10 0 5 10 15 20 k Q(k) ASE first differences: Portmanteau (Ljung-Box) sample Q X2 (k,1) 0 2 4 6 8 10 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08  r() ASE returns: autocorrelation Is there correlation? 0 2 4 6 8 10 0 50 100 150 200 250 300 350 k Q(k) ASE square returns: Portmanteau (Ljung-Box) sample Q X2 (k,1) 0 2 4 6 8 10 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25 0.3  r() ASE square returns: autocorrelation 07 08 09 10 11 12 -300 -200 -100 0 100 200 300 400 years closeindex ASE index: first differences, period 2007 - 2011 07 08 09 10 11 12 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 years closeindex ASE index: returns, period 2007 - 2011 What is the appropriate stationary time series: first differences or returns ? first differences returns 1t t tx y y   1ln lnt t tx y y   07 08 09 10 11 12 0 0.005 0.01 0.015 0.02 years closeindex ASE index: square returns, period 2007 - 2011 square of returns 1ln lnt t tx y y     2 ( )t tx x … nonlinear ? 2 2 E t tX X    