Fungsi komposisi

1
Fungsi Komposisi
2
Setelah menyaksikan
tayangan ini anda dapat
Menentukan:
•fungsi komposisi
•salah satu fungsi
jika fungsi komposisi
dan fungsi yang lain
diketahui
3
Fungsi
Suatu relasi dari A ke B
yang memasangkan
setiap anggota A ke
tepat satu anggota B
disebut fungsi atau pemetaan
dari A ke B
4
Notasi Fungsi
Suatu fungsi atau pemetaan
umumnya dinotasikan dengan
huruf kecil.
Misal, f adalah fungsi dari A ke B
ditulis f: A → B
A disebut domain
B disebut kodomain
5
Range atau Daerah Hasil
Jika f memetakan
x  A ke y  B
dikatakan y adalah peta dari x
ditulis f: x → y atau y = f(x).
Himpunan y  B
yang merupakan peta dari x  A
disebut range atau daerah hasil
6
contoh 1
Perhatikan gambar pemetaan
f : A → B
a
b
c
d
1
2
3
4
5
f
A
B
domain adalah
A = {a, b, c, d}
kodomain adalah
B = {1, 2, 3, 4, 5}
7
Perhatikan gambar pemetaan
f : A → B
a
b
c
d
1
2
3
4
5
f
A
B
f(a) = 1, f(b) = 2
f(c) = 3, f(d) = 4
range adalah
R = {1, 2, 3, 4}
8
contoh 2
Misal f: R → R
dengan f(x) = √1 - x2
Tentukan domain dari fungsi f.
9
Jawab
Supaya f: R→R dengan f(x)=√1-x2
maka haruslah 1 – x2 ≥ 0.
1 – x2 ≥ 0 → x2 – 1 ≤ 0 atau
(x - 1)(x + 1) ≤ 0 atau -1 ≤ x ≤ 1.
Jadi, domain fungsi tersebut
adalah -1 ≤ x ≤ 1.
10
contoh 3
Misal f: R → R
dengan f(x – 1) = x2 + 5x
Tentukan : a. f(x)
b. f(-3)
11
Jawab
a.Misal y = x – 1 maka x = y + 1
karena f(x – 1) = x2 + 5x
maka f(y) = (y + 1)2 + 5(y + 1)
f(y) = y2 + 2y + 1 + 5y + 5
f(y) = y2 + 7y + 6
12
f(y) = y2 + 7y + 6
a. f(x) = x2 + 7x + 6
b. f(-3) = (-3)2 + 7(-3) + 6
= 9 – 21 + 6
= -6
13
Komposisi Fungsi
Penggabungan operasi dua fungsi
secara berurutan akan
menghasilkan sebuah fungsi baru.
Penggabungan tersebut disebut
komposisi fungsi dan hasilnya
disebut fungsi komposisi.
14
x  A dipetakan oleh f ke y  B
ditulis f : x → y atau y = f(x)
y  B dipetakan oleh g ke z  C
ditulis g : y → z atau z = g(y)
atau z = g(f(x))
A
x
C
z
B
y
f g
15
maka fungsi yang memetakan
x  A ke z  C
adalah komposisi fungsi f dan g
ditulis (g o f)(x) = g(f(x))
A B C
x z
y
f g
g o f
16
contoh 1
f : A → B dan g: B → C
didefinisikan seperti pada gambar
Tentukan (g o f)(a) dan (g o f)(b)
A B C
a
b
p
q
1
2
3
f g
17
Jawab:
A B C
a
b
p
q
1
2
3
f g
f(a) = 1 dan g(1) = q
Jadi (g o f)(a) = g(f(a)) = g(1) q
(g o f)(a) = ?
18
A B C
a
b
p
q
1
2
3
f g
f(b) = 3 dan g(3) = p
Jadi (g o f) = g(f(b)) = g(3) = p
(g o f)(b) = ?
19
contoh 2
Ditentukan g(f(x)) = f(g(x)).
Jika f(x) = 2x + p dan
g(x) = 3x + 120
maka nilai p = … .
20
Jawab:
f(x) = 2x + p dan g(x) = 3x + 120
g(f(x)) = f(g(x))
g(2x+ p) = f(3x + 120)
3(2x + p) + 120 = 2(3x + 120) + p
6x + 3p + 120 = 6x + 360 + p
3p – p = 360 – 120
2p = 240  p = 120
21
Sifat Komposisi Fungsi
1.Tidak komutatif:
f o g ≠ g o f
2. Bersifat assosiatif:
f o (g o h) = (f o g) o h = f o g o h
3. Memiliki fungsi identitas: I(x) = x
f o I = I o f = f
22
contoh 1
f : R → R dan g : R → R
f(x) = 3x – 1 dan g(x) = 2x2 + 5
Tentukan: a. (g o f)(x)
b. (f o g)(x)
23
Jawab:
f(x) = 3x – 1 dan g(x) = 2x2 + 5
a. (g o f)(x) = g[f(x)] = g(3x – 1)
= 2(3x – 1)2 + 5
= 2(9x2 – 6x + 1) + 5
= 18x2 – 12x + 2 + 5
= 18x2 – 12x + 7
24
f(x) = 3x – 1 dan g(x) = 2x2 + 5
b. (f o g)(x) = f[g(x)] = f(2x2 + 5)
= 3(2x2 + 5) – 1
= 6x2 + 15 – 1
(f o g)(x) = 6x2 + 14
(g o f)(x) = 18x2 – 12x + 7
(g o f)(x) ≠ (f o g )(x)
tidak bersifat komutatif
25
contoh 2
f(x) = x – 1, g(x) = x2 – 1 dan
h(x) = 1/x
Tentukan: a. (f o g) o h
b. f o (g o h)
26
Jawab:
f(x) = x – 1, g(x) = x2 – 1
dan h(x) = 1/x
((f o g) o h)(x) = (f o g)(h(x))
(f o g)(x) = (x2 – 1) – 1
= x2 – 2
(f o g(h(x))) = (f o g)(1/x)
= (1/x)2 – 2
27
f(x) = x – 1, g(x) = x2 – 1
dan h(x) = 1/x
(f o (g o h))(x) = (f(g oh)(x))
(g o h)(x)= g(1/x)
= (1/x)2 – 1
= 1/x2 - 1
f(g o h)(x)= f(1/x2 – 1)
= (1/x2 – 1) – 1
=(1/x)2 – 2
28
contoh 3
I(x) = x, f(x) = x2 dan g(x) = x + 1
Tentukan:
a.(f o I)(x) dan (g o I)
b.(I o f) dan (I o g)
29
Jawab:
I(x) = x, f(x) = x2 dan g(x) = x + 1
(f o I)(x) = x2
(g o I)(x) = x + 1
(I o f)(x) = x2
(I o g)(x) = x + 1
(I o f)(x) = (f o I) = f
30
Menentukan
Suatu Fungsi
Jika Fungsi Komposisi
dan
Fungsi Yang Lain Diketahui
31
Contoh 1
Diketahui f(x) = 3x – 1
dan (f o g)(x) = x2 + 5
Tentukan g(x).
32
Jawab
f(x) = 3x – 1dan (f o g)(x) = x2 + 5
fg(x)] = x2 + 5
3.g(x) – 1 = x2 + 5
3.g(x) = x2 + 5 + 1 = x2 + 6
Jadi g(x) = ⅓(x2 + 6)
33
contoh 2
Diketahui g(x) = x + 9 dan
(f o g)(x) = ⅓x2 – 6
maka f(x) = … .
34
Jawab:
g(x) = x + 9
(f o g)(x) = f(g(x)) = ⅓x2 – 6
f(x + 9) = ⅓x2 – 6
Misal: x + 9 = y  x = y – 9
f(y) = ⅓(y – 9)2 – 6
35
f(y) = ⅓(y – 9)2 – 6
= ⅓(y2 – 18y + 81) – 6
= ⅓y2 – 6y + 27 – 6
Jadi f(x) = ⅓x2 – 6x + 21
36
contoh 3
Diketahui f(x) = x – 3 dan
(g of)(x) = x2 + 6x + 9
maka g(x – 1) = … .
37
Jawab:
f(x) = x – 3;
(g o f)(x) = g (f(x)) = x2 + 6x + 9
g(x – 3) = x2 + 6x + 9
Misal: x – 3 = y  x = y + 3
g(y) = (y + 3)2 + 6(y + 3) + 9
= y2 + 6y + 9 + 6y + 18 + 9
38
g(y) = y2 + 6y + 9 + 6y + 18 + 9
= y2 + 12y + 36
g(x – 1) = (x – 1)2 + 12(x – 1) + 36
= x2 – 2x + 1 + 12x – 12 + 36
= x2 + 10x + 25
Jadi g(x – 1) = x2 + 10x + 25
39
Contoh 4
Diketahui f(x) = 2x + 1
dan (f o g)(x + 1)= -2x2 – 4x + 1
Nilai g(-2) =….
40
Jawaban:
f(g(x + 1))= -2x2 – 4x + 1
f(x) = 2x + 1 → f(g(x))= 2g(x) + 1
f(g(x + 1)) = 2g (x + 1) + 1
2g(x + 1) + 1 = -2x2 – 4x – 1
2g(x + 1) = -2x2 – 4x – 2
g(x + 1) = -x2 – 2x – 1
41
g(x + 1) = -x2 – 2x – 1
g(x) = -(x – 1)2 – 2(x – 1) – 1
g(2) = -(2 – 1)2 – 2(2 – 1) – 1
= -1 – 2 – 1 = -4
Jadi g(2) = - 4
42
1 sur 42

Recommandé

Fungsi komposisi par
Fungsi komposisiFungsi komposisi
Fungsi komposisiNurul Wulandari
1.8K vues41 diapositives
Fungsi komposisi dan fungsi invers par
Fungsi komposisi dan fungsi inversFungsi komposisi dan fungsi invers
Fungsi komposisi dan fungsi inversnoussevarenna
20.1K vues39 diapositives
Komposisi fungsi par
Komposisi fungsiKomposisi fungsi
Komposisi fungsiLien Wu
7.2K vues18 diapositives
Fungsi Komposisi dan Fungsi Invers par
Fungsi Komposisi dan Fungsi InversFungsi Komposisi dan Fungsi Invers
Fungsi Komposisi dan Fungsi InversMoh Hari Rusli
5.4K vues8 diapositives
Sifat sifat operasi fungsi dan komposisi fungsi par
Sifat sifat operasi fungsi dan komposisi fungsiSifat sifat operasi fungsi dan komposisi fungsi
Sifat sifat operasi fungsi dan komposisi fungsiOSIS
3.8K vues5 diapositives
Fungsi komposisi par
Fungsi komposisiFungsi komposisi
Fungsi komposisiErwan Sukwanto
12.5K vues42 diapositives

Contenu connexe

Tendances

Fungsi, komposisi fungsi, dan invers fungsi par
Fungsi, komposisi fungsi, dan invers fungsiFungsi, komposisi fungsi, dan invers fungsi
Fungsi, komposisi fungsi, dan invers fungsiksaaann
7.5K vues21 diapositives
Lks komposisi par
Lks komposisiLks komposisi
Lks komposisirianika safitri
1.8K vues1 diapositive
komposisi dan fungsi invers sma kelas 11 par
komposisi dan fungsi invers sma kelas 11komposisi dan fungsi invers sma kelas 11
komposisi dan fungsi invers sma kelas 11kartika_shichi
1.7K vues30 diapositives
Fungsi aljabar pada matematika par
Fungsi aljabar pada matematikaFungsi aljabar pada matematika
Fungsi aljabar pada matematikaDinda Candra
14.4K vues12 diapositives
Fungsi 1 par
Fungsi 1Fungsi 1
Fungsi 1tri cahyani
2.3K vues35 diapositives
Fungsi Invers par
Fungsi Invers Fungsi Invers
Fungsi Invers ayunsr3
362 vues25 diapositives

Tendances(17)

Fungsi, komposisi fungsi, dan invers fungsi par ksaaann
Fungsi, komposisi fungsi, dan invers fungsiFungsi, komposisi fungsi, dan invers fungsi
Fungsi, komposisi fungsi, dan invers fungsi
ksaaann7.5K vues
komposisi dan fungsi invers sma kelas 11 par kartika_shichi
komposisi dan fungsi invers sma kelas 11komposisi dan fungsi invers sma kelas 11
komposisi dan fungsi invers sma kelas 11
kartika_shichi1.7K vues
Fungsi aljabar pada matematika par Dinda Candra
Fungsi aljabar pada matematikaFungsi aljabar pada matematika
Fungsi aljabar pada matematika
Dinda Candra14.4K vues
Fungsi Invers par ayunsr3
Fungsi Invers Fungsi Invers
Fungsi Invers
ayunsr3362 vues
Komposisi fungsi xi ips par Pay Ran
Komposisi fungsi xi ipsKomposisi fungsi xi ips
Komposisi fungsi xi ips
Pay Ran16.1K vues
13. soal soal fungsi komposisi dan fungsi invers par maman wijaya
13. soal soal fungsi komposisi dan fungsi invers13. soal soal fungsi komposisi dan fungsi invers
13. soal soal fungsi komposisi dan fungsi invers
maman wijaya77.4K vues
Fungsi Komposisi Dan Fungsi Invers par Joey Leomanz B
Fungsi Komposisi Dan Fungsi Invers Fungsi Komposisi Dan Fungsi Invers
Fungsi Komposisi Dan Fungsi Invers
Joey Leomanz B4.1K vues
Matematik Tambahan: Fungsi par Cikgu Marzuqi
Matematik Tambahan: FungsiMatematik Tambahan: Fungsi
Matematik Tambahan: Fungsi
Cikgu Marzuqi8.9K vues
7. fungsi komposisi dan invers par transilmu
7. fungsi komposisi dan invers7. fungsi komposisi dan invers
7. fungsi komposisi dan invers
transilmu2.2K vues
Komposisi dan fungsi par kusnadiyoan
Komposisi dan fungsiKomposisi dan fungsi
Komposisi dan fungsi
kusnadiyoan29.4K vues
Fungsi komposisi dan fungsi invers xi mat wajib par Any Herawati
Fungsi  komposisi dan fungsi invers xi mat wajibFungsi  komposisi dan fungsi invers xi mat wajib
Fungsi komposisi dan fungsi invers xi mat wajib
Any Herawati22.4K vues
Soal fungsi dan komposisi par Faisol Hasan
Soal fungsi dan komposisiSoal fungsi dan komposisi
Soal fungsi dan komposisi
Faisol Hasan238 vues

Similaire à Fungsi komposisi

KOMPOSISI FUNGSI.pdf par
KOMPOSISI FUNGSI.pdfKOMPOSISI FUNGSI.pdf
KOMPOSISI FUNGSI.pdfJuliRahmiati
22 vues42 diapositives
Bab 12-fungsi-komposisi-dan-fungsi-invers par
Bab 12-fungsi-komposisi-dan-fungsi-inversBab 12-fungsi-komposisi-dan-fungsi-invers
Bab 12-fungsi-komposisi-dan-fungsi-inversalfin syahrin
1.7K vues12 diapositives
Pert 4-fungsi-operasi-dan-sifat (1) par
Pert 4-fungsi-operasi-dan-sifat (1)Pert 4-fungsi-operasi-dan-sifat (1)
Pert 4-fungsi-operasi-dan-sifat (1)Wahyu Miratni
186 vues17 diapositives
fungsi komposisi dan fungsi invers 1 par
fungsi komposisi dan fungsi invers 1fungsi komposisi dan fungsi invers 1
fungsi komposisi dan fungsi invers 1Taofik Dinata
1.4K vues12 diapositives
fungsi komposisi dan fungsi invers par
fungsi komposisi dan fungsi inversfungsi komposisi dan fungsi invers
fungsi komposisi dan fungsi inversTaofik Dinata
16K vues12 diapositives
Menemukan fungsi yang dikomposisikan pjj ds par
Menemukan fungsi yang dikomposisikan pjj dsMenemukan fungsi yang dikomposisikan pjj ds
Menemukan fungsi yang dikomposisikan pjj dsYayasan Kemurnian Jakarta
278 vues9 diapositives

Similaire à Fungsi komposisi(20)

Bab 12-fungsi-komposisi-dan-fungsi-invers par alfin syahrin
Bab 12-fungsi-komposisi-dan-fungsi-inversBab 12-fungsi-komposisi-dan-fungsi-invers
Bab 12-fungsi-komposisi-dan-fungsi-invers
alfin syahrin1.7K vues
Pert 4-fungsi-operasi-dan-sifat (1) par Wahyu Miratni
Pert 4-fungsi-operasi-dan-sifat (1)Pert 4-fungsi-operasi-dan-sifat (1)
Pert 4-fungsi-operasi-dan-sifat (1)
Wahyu Miratni186 vues
fungsi komposisi dan fungsi invers 1 par Taofik Dinata
fungsi komposisi dan fungsi invers 1fungsi komposisi dan fungsi invers 1
fungsi komposisi dan fungsi invers 1
Taofik Dinata1.4K vues
fungsi komposisi dan fungsi invers par Taofik Dinata
fungsi komposisi dan fungsi inversfungsi komposisi dan fungsi invers
fungsi komposisi dan fungsi invers
Taofik Dinata16K vues
Komposisi dua-fungsi par said hannaf
Komposisi dua-fungsiKomposisi dua-fungsi
Komposisi dua-fungsi
said hannaf18.9K vues
komposisi fungsi dan fungsi invers.pptx par TutikRahayu16
komposisi fungsi dan fungsi invers.pptxkomposisi fungsi dan fungsi invers.pptx
komposisi fungsi dan fungsi invers.pptx
TutikRahayu1610 vues
Integral fungsi rasional1 par Zhand Radja
Integral fungsi rasional1Integral fungsi rasional1
Integral fungsi rasional1
Zhand Radja10.5K vues
Fungsi komposisi par Sharie Oppa
Fungsi komposisi Fungsi komposisi
Fungsi komposisi
Sharie Oppa1.8K vues
dokumen.tips_fungsi-komposisi-13-komposisi-fungsi-penggabungan-operasi-dua-fu... par RikiPrasojo1
dokumen.tips_fungsi-komposisi-13-komposisi-fungsi-penggabungan-operasi-dua-fu...dokumen.tips_fungsi-komposisi-13-komposisi-fungsi-penggabungan-operasi-dua-fu...
dokumen.tips_fungsi-komposisi-13-komposisi-fungsi-penggabungan-operasi-dua-fu...
RikiPrasojo11 vue
PRINT MATERI FUNGSI FIKS.pdf par MariaImud1
PRINT MATERI FUNGSI FIKS.pdfPRINT MATERI FUNGSI FIKS.pdf
PRINT MATERI FUNGSI FIKS.pdf
MariaImud1106 vues

Dernier

Link2 MATERI & RENCANA Training _"Effective LEADERSHIP"di OMAZAKI BSD City - ... par
Link2 MATERI & RENCANA Training _"Effective LEADERSHIP"di OMAZAKI BSD City - ...Link2 MATERI & RENCANA Training _"Effective LEADERSHIP"di OMAZAKI BSD City - ...
Link2 MATERI & RENCANA Training _"Effective LEADERSHIP"di OMAZAKI BSD City - ...Kanaidi ken
28 vues70 diapositives
ARTIKEL GEGURITAN.docx par
ARTIKEL GEGURITAN.docxARTIKEL GEGURITAN.docx
ARTIKEL GEGURITAN.docxpujiastutikbaledono
10 vues4 diapositives
Tugas PPT 6_Selviana Fitri_E1G022081.pptx par
Tugas PPT 6_Selviana Fitri_E1G022081.pptxTugas PPT 6_Selviana Fitri_E1G022081.pptx
Tugas PPT 6_Selviana Fitri_E1G022081.pptxselvianafitri2k17
12 vues9 diapositives
SOAL PAI UJIAN AKHIR SEKOLAH9.docx par
SOAL PAI UJIAN AKHIR SEKOLAH9.docxSOAL PAI UJIAN AKHIR SEKOLAH9.docx
SOAL PAI UJIAN AKHIR SEKOLAH9.docxrahman abdika
7 vues12 diapositives
Sumber Daya Kekuatan Pemimpin _Training "Effective Leadership and Supervisory... par
Sumber Daya Kekuatan Pemimpin _Training "Effective Leadership and Supervisory...Sumber Daya Kekuatan Pemimpin _Training "Effective Leadership and Supervisory...
Sumber Daya Kekuatan Pemimpin _Training "Effective Leadership and Supervisory...Kanaidi ken
6 vues46 diapositives
Materi Ai dan Persiapan Khotbah par
Materi Ai dan Persiapan KhotbahMateri Ai dan Persiapan Khotbah
Materi Ai dan Persiapan KhotbahSABDA
11 vues26 diapositives

Dernier(20)

Link2 MATERI & RENCANA Training _"Effective LEADERSHIP"di OMAZAKI BSD City - ... par Kanaidi ken
Link2 MATERI & RENCANA Training _"Effective LEADERSHIP"di OMAZAKI BSD City - ...Link2 MATERI & RENCANA Training _"Effective LEADERSHIP"di OMAZAKI BSD City - ...
Link2 MATERI & RENCANA Training _"Effective LEADERSHIP"di OMAZAKI BSD City - ...
Kanaidi ken28 vues
Sumber Daya Kekuatan Pemimpin _Training "Effective Leadership and Supervisory... par Kanaidi ken
Sumber Daya Kekuatan Pemimpin _Training "Effective Leadership and Supervisory...Sumber Daya Kekuatan Pemimpin _Training "Effective Leadership and Supervisory...
Sumber Daya Kekuatan Pemimpin _Training "Effective Leadership and Supervisory...
Kanaidi ken6 vues
Materi Ai dan Persiapan Khotbah par SABDA
Materi Ai dan Persiapan KhotbahMateri Ai dan Persiapan Khotbah
Materi Ai dan Persiapan Khotbah
SABDA11 vues
Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ... par Kanaidi ken
Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ...Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ...
Tahapan Leaderhip dalam Mengatur Bawahan _Training "Effective Leadership and ...
Kanaidi ken6 vues
PELAKSANAAN & Link2 MATERI Workshop _"Pembangunan SDM_INDONESIA EMAS 2045". par Kanaidi ken
PELAKSANAAN  & Link2 MATERI Workshop _"Pembangunan SDM_INDONESIA EMAS 2045".PELAKSANAAN  & Link2 MATERI Workshop _"Pembangunan SDM_INDONESIA EMAS 2045".
PELAKSANAAN & Link2 MATERI Workshop _"Pembangunan SDM_INDONESIA EMAS 2045".
Kanaidi ken86 vues
instrumen BK RENCANA KONSELING INDIVIDUAL (RKI).pdf par mariamandesy
instrumen BK RENCANA KONSELING INDIVIDUAL (RKI).pdfinstrumen BK RENCANA KONSELING INDIVIDUAL (RKI).pdf
instrumen BK RENCANA KONSELING INDIVIDUAL (RKI).pdf
mariamandesy6 vues
PELAKSANAAN & Link2 MATERI Training "Effective SERVICE EXCELLENCE" bagi Para ... par Kanaidi ken
PELAKSANAAN & Link2 MATERI Training "Effective SERVICE EXCELLENCE" bagi Para ...PELAKSANAAN & Link2 MATERI Training "Effective SERVICE EXCELLENCE" bagi Para ...
PELAKSANAAN & Link2 MATERI Training "Effective SERVICE EXCELLENCE" bagi Para ...
Kanaidi ken35 vues
PPT PENGEMBANGAN KEWIRAUSAHAAN SEKOLAH.pptx par WartoyoWartoyo3
PPT PENGEMBANGAN KEWIRAUSAHAAN SEKOLAH.pptxPPT PENGEMBANGAN KEWIRAUSAHAAN SEKOLAH.pptx
PPT PENGEMBANGAN KEWIRAUSAHAAN SEKOLAH.pptx
WartoyoWartoyo311 vues

Fungsi komposisi

  • 2. 2 Setelah menyaksikan tayangan ini anda dapat Menentukan: •fungsi komposisi •salah satu fungsi jika fungsi komposisi dan fungsi yang lain diketahui
  • 3. 3 Fungsi Suatu relasi dari A ke B yang memasangkan setiap anggota A ke tepat satu anggota B disebut fungsi atau pemetaan dari A ke B
  • 4. 4 Notasi Fungsi Suatu fungsi atau pemetaan umumnya dinotasikan dengan huruf kecil. Misal, f adalah fungsi dari A ke B ditulis f: A → B A disebut domain B disebut kodomain
  • 5. 5 Range atau Daerah Hasil Jika f memetakan x  A ke y  B dikatakan y adalah peta dari x ditulis f: x → y atau y = f(x). Himpunan y  B yang merupakan peta dari x  A disebut range atau daerah hasil
  • 6. 6 contoh 1 Perhatikan gambar pemetaan f : A → B a b c d 1 2 3 4 5 f A B domain adalah A = {a, b, c, d} kodomain adalah B = {1, 2, 3, 4, 5}
  • 7. 7 Perhatikan gambar pemetaan f : A → B a b c d 1 2 3 4 5 f A B f(a) = 1, f(b) = 2 f(c) = 3, f(d) = 4 range adalah R = {1, 2, 3, 4}
  • 8. 8 contoh 2 Misal f: R → R dengan f(x) = √1 - x2 Tentukan domain dari fungsi f.
  • 9. 9 Jawab Supaya f: R→R dengan f(x)=√1-x2 maka haruslah 1 – x2 ≥ 0. 1 – x2 ≥ 0 → x2 – 1 ≤ 0 atau (x - 1)(x + 1) ≤ 0 atau -1 ≤ x ≤ 1. Jadi, domain fungsi tersebut adalah -1 ≤ x ≤ 1.
  • 10. 10 contoh 3 Misal f: R → R dengan f(x – 1) = x2 + 5x Tentukan : a. f(x) b. f(-3)
  • 11. 11 Jawab a.Misal y = x – 1 maka x = y + 1 karena f(x – 1) = x2 + 5x maka f(y) = (y + 1)2 + 5(y + 1) f(y) = y2 + 2y + 1 + 5y + 5 f(y) = y2 + 7y + 6
  • 12. 12 f(y) = y2 + 7y + 6 a. f(x) = x2 + 7x + 6 b. f(-3) = (-3)2 + 7(-3) + 6 = 9 – 21 + 6 = -6
  • 13. 13 Komposisi Fungsi Penggabungan operasi dua fungsi secara berurutan akan menghasilkan sebuah fungsi baru. Penggabungan tersebut disebut komposisi fungsi dan hasilnya disebut fungsi komposisi.
  • 14. 14 x  A dipetakan oleh f ke y  B ditulis f : x → y atau y = f(x) y  B dipetakan oleh g ke z  C ditulis g : y → z atau z = g(y) atau z = g(f(x)) A x C z B y f g
  • 15. 15 maka fungsi yang memetakan x  A ke z  C adalah komposisi fungsi f dan g ditulis (g o f)(x) = g(f(x)) A B C x z y f g g o f
  • 16. 16 contoh 1 f : A → B dan g: B → C didefinisikan seperti pada gambar Tentukan (g o f)(a) dan (g o f)(b) A B C a b p q 1 2 3 f g
  • 17. 17 Jawab: A B C a b p q 1 2 3 f g f(a) = 1 dan g(1) = q Jadi (g o f)(a) = g(f(a)) = g(1) q (g o f)(a) = ?
  • 18. 18 A B C a b p q 1 2 3 f g f(b) = 3 dan g(3) = p Jadi (g o f) = g(f(b)) = g(3) = p (g o f)(b) = ?
  • 19. 19 contoh 2 Ditentukan g(f(x)) = f(g(x)). Jika f(x) = 2x + p dan g(x) = 3x + 120 maka nilai p = … .
  • 20. 20 Jawab: f(x) = 2x + p dan g(x) = 3x + 120 g(f(x)) = f(g(x)) g(2x+ p) = f(3x + 120) 3(2x + p) + 120 = 2(3x + 120) + p 6x + 3p + 120 = 6x + 360 + p 3p – p = 360 – 120 2p = 240  p = 120
  • 21. 21 Sifat Komposisi Fungsi 1.Tidak komutatif: f o g ≠ g o f 2. Bersifat assosiatif: f o (g o h) = (f o g) o h = f o g o h 3. Memiliki fungsi identitas: I(x) = x f o I = I o f = f
  • 22. 22 contoh 1 f : R → R dan g : R → R f(x) = 3x – 1 dan g(x) = 2x2 + 5 Tentukan: a. (g o f)(x) b. (f o g)(x)
  • 23. 23 Jawab: f(x) = 3x – 1 dan g(x) = 2x2 + 5 a. (g o f)(x) = g[f(x)] = g(3x – 1) = 2(3x – 1)2 + 5 = 2(9x2 – 6x + 1) + 5 = 18x2 – 12x + 2 + 5 = 18x2 – 12x + 7
  • 24. 24 f(x) = 3x – 1 dan g(x) = 2x2 + 5 b. (f o g)(x) = f[g(x)] = f(2x2 + 5) = 3(2x2 + 5) – 1 = 6x2 + 15 – 1 (f o g)(x) = 6x2 + 14 (g o f)(x) = 18x2 – 12x + 7 (g o f)(x) ≠ (f o g )(x) tidak bersifat komutatif
  • 25. 25 contoh 2 f(x) = x – 1, g(x) = x2 – 1 dan h(x) = 1/x Tentukan: a. (f o g) o h b. f o (g o h)
  • 26. 26 Jawab: f(x) = x – 1, g(x) = x2 – 1 dan h(x) = 1/x ((f o g) o h)(x) = (f o g)(h(x)) (f o g)(x) = (x2 – 1) – 1 = x2 – 2 (f o g(h(x))) = (f o g)(1/x) = (1/x)2 – 2
  • 27. 27 f(x) = x – 1, g(x) = x2 – 1 dan h(x) = 1/x (f o (g o h))(x) = (f(g oh)(x)) (g o h)(x)= g(1/x) = (1/x)2 – 1 = 1/x2 - 1 f(g o h)(x)= f(1/x2 – 1) = (1/x2 – 1) – 1 =(1/x)2 – 2
  • 28. 28 contoh 3 I(x) = x, f(x) = x2 dan g(x) = x + 1 Tentukan: a.(f o I)(x) dan (g o I) b.(I o f) dan (I o g)
  • 29. 29 Jawab: I(x) = x, f(x) = x2 dan g(x) = x + 1 (f o I)(x) = x2 (g o I)(x) = x + 1 (I o f)(x) = x2 (I o g)(x) = x + 1 (I o f)(x) = (f o I) = f
  • 30. 30 Menentukan Suatu Fungsi Jika Fungsi Komposisi dan Fungsi Yang Lain Diketahui
  • 31. 31 Contoh 1 Diketahui f(x) = 3x – 1 dan (f o g)(x) = x2 + 5 Tentukan g(x).
  • 32. 32 Jawab f(x) = 3x – 1dan (f o g)(x) = x2 + 5 fg(x)] = x2 + 5 3.g(x) – 1 = x2 + 5 3.g(x) = x2 + 5 + 1 = x2 + 6 Jadi g(x) = ⅓(x2 + 6)
  • 33. 33 contoh 2 Diketahui g(x) = x + 9 dan (f o g)(x) = ⅓x2 – 6 maka f(x) = … .
  • 34. 34 Jawab: g(x) = x + 9 (f o g)(x) = f(g(x)) = ⅓x2 – 6 f(x + 9) = ⅓x2 – 6 Misal: x + 9 = y  x = y – 9 f(y) = ⅓(y – 9)2 – 6
  • 35. 35 f(y) = ⅓(y – 9)2 – 6 = ⅓(y2 – 18y + 81) – 6 = ⅓y2 – 6y + 27 – 6 Jadi f(x) = ⅓x2 – 6x + 21
  • 36. 36 contoh 3 Diketahui f(x) = x – 3 dan (g of)(x) = x2 + 6x + 9 maka g(x – 1) = … .
  • 37. 37 Jawab: f(x) = x – 3; (g o f)(x) = g (f(x)) = x2 + 6x + 9 g(x – 3) = x2 + 6x + 9 Misal: x – 3 = y  x = y + 3 g(y) = (y + 3)2 + 6(y + 3) + 9 = y2 + 6y + 9 + 6y + 18 + 9
  • 38. 38 g(y) = y2 + 6y + 9 + 6y + 18 + 9 = y2 + 12y + 36 g(x – 1) = (x – 1)2 + 12(x – 1) + 36 = x2 – 2x + 1 + 12x – 12 + 36 = x2 + 10x + 25 Jadi g(x – 1) = x2 + 10x + 25
  • 39. 39 Contoh 4 Diketahui f(x) = 2x + 1 dan (f o g)(x + 1)= -2x2 – 4x + 1 Nilai g(-2) =….
  • 40. 40 Jawaban: f(g(x + 1))= -2x2 – 4x + 1 f(x) = 2x + 1 → f(g(x))= 2g(x) + 1 f(g(x + 1)) = 2g (x + 1) + 1 2g(x + 1) + 1 = -2x2 – 4x – 1 2g(x + 1) = -2x2 – 4x – 2 g(x + 1) = -x2 – 2x – 1
  • 41. 41 g(x + 1) = -x2 – 2x – 1 g(x) = -(x – 1)2 – 2(x – 1) – 1 g(2) = -(2 – 1)2 – 2(2 – 1) – 1 = -1 – 2 – 1 = -4 Jadi g(2) = - 4
  • 42. 42