SlideShare a Scribd company logo
Soumettre la recherche
Mettre en ligne
S’identifier
S’inscrire
翻訳精度の最大化による同時音声翻訳のための文分割法 (NLP2014)
Signaler
Yusuke Oda
Suivre
Software Engineer à Google
18 Mar 2014
•
0 j'aime
•
1,434 vues
1
sur
24
翻訳精度の最大化による同時音声翻訳のための文分割法 (NLP2014)
18 Mar 2014
•
0 j'aime
•
1,434 vues
Télécharger maintenant
Télécharger pour lire hors ligne
Signaler
Technologie
言語処理学会第20回年次大会で発表したスライドです。
Yusuke Oda
Suivre
Software Engineer à Google
Recommandé
国際会議運営記
Takayuki Itoh
6.4K vues
•
46 diapositives
データプロダクト開発を成功に導くには
Recruit Lifestyle Co., Ltd.
2.2K vues
•
41 diapositives
Webページが表示されるまで
Masataka Suzuki
7.6K vues
•
44 diapositives
論文に関する基礎知識2015
Mai Otsuki
27.7K vues
•
36 diapositives
[DL輪読会]Learning to Generalize: Meta-Learning for Domain Generalization
Deep Learning JP
4.4K vues
•
32 diapositives
[DL輪読会]Relational inductive biases, deep learning, and graph networks
Deep Learning JP
4.1K vues
•
32 diapositives
Contenu connexe
Tendances
【2017年】ディープラーニングのフレームワーク比較
Ryota Suzuki
24.9K vues
•
20 diapositives
MapReduceによる大規模データ処理 at Yahoo! JAPAN
Yahoo!デベロッパーネットワーク
5.7K vues
•
67 diapositives
Active Learning 入門
Shuyo Nakatani
51.5K vues
•
60 diapositives
[DL Hacks]Self-Attention Generative Adversarial Networks
Deep Learning JP
2.6K vues
•
86 diapositives
【DL輪読会】HyperTree Proof Search for Neural Theorem Proving
Deep Learning JP
369 vues
•
23 diapositives
G社のNMT論文を読んでみた
Toshiaki Nakazawa
11.2K vues
•
16 diapositives
Tendances
(20)
【2017年】ディープラーニングのフレームワーク比較
Ryota Suzuki
•
24.9K vues
MapReduceによる大規模データ処理 at Yahoo! JAPAN
Yahoo!デベロッパーネットワーク
•
5.7K vues
Active Learning 入門
Shuyo Nakatani
•
51.5K vues
[DL Hacks]Self-Attention Generative Adversarial Networks
Deep Learning JP
•
2.6K vues
【DL輪読会】HyperTree Proof Search for Neural Theorem Proving
Deep Learning JP
•
369 vues
G社のNMT論文を読んでみた
Toshiaki Nakazawa
•
11.2K vues
CNNの構造最適化手法について
MasanoriSuganuma
•
3.7K vues
【DL輪読会】Efficiently Modeling Long Sequences with Structured State Spaces
Deep Learning JP
•
4.4K vues
20230216_Python機械学習プログラミング.pdf
Shintaro Fukushima
•
520 vues
【DL輪読会】The Forward-Forward Algorithm: Some Preliminary
Deep Learning JP
•
2.1K vues
[DLHacks]Comet ML -機械学習のためのGitHub-
Deep Learning JP
•
7.1K vues
ナレッジグラフ推論チャレンジ2019技術勉強会(10/21開催)
KnowledgeGraph
•
613 vues
信号の独立性に基づく多チャンネル音源分離
NU_I_TODALAB
•
379 vues
「機械学習:技術的負債の高利子クレジットカード」のまとめ
Recruit Technologies
•
19.9K vues
ドメイン適応の原理と応用
Yoshitaka Ushiku
•
5.1K vues
AIのラボからロボティクスへ --- 東大松尾研究室のWRS2020パートナーロボットチャレンジへの挑戦
Tatsuya Matsushima
•
672 vues
【DL輪読会】Visual Classification via Description from Large Language Models (ICLR...
Deep Learning JP
•
1.7K vues
2018年01月27日 TensorBoardによる学習の可視化
aitc_jp
•
4.4K vues
画像キャプションの自動生成
Yoshitaka Ushiku
•
57.9K vues
Neural networks for Graph Data NeurIPS2018読み会@PFN
emakryo
•
11.7K vues
En vedette
Learning to Generate Pseudo-code from Source Code using Statistical Machine T...
Yusuke Oda
3.4K vues
•
27 diapositives
ACL Reading @NAIST: Fast and Robust Neural Network Joint Model for Statistica...
Yusuke Oda
2K vues
•
17 diapositives
Test
Yusuke Oda
1.1K vues
•
11 diapositives
Tree-based Translation Models (『機械翻訳』§6.2-6.3)
Yusuke Oda
1.9K vues
•
39 diapositives
複数の事前並べ替え候補を用いた句に基づく統計的機械翻訳
Yusuke Oda
2.6K vues
•
21 diapositives
Pattern Recognition and Machine Learning: Section 3.3
Yusuke Oda
2.7K vues
•
38 diapositives
En vedette
(11)
Learning to Generate Pseudo-code from Source Code using Statistical Machine T...
Yusuke Oda
•
3.4K vues
ACL Reading @NAIST: Fast and Robust Neural Network Joint Model for Statistica...
Yusuke Oda
•
2K vues
Test
Yusuke Oda
•
1.1K vues
Tree-based Translation Models (『機械翻訳』§6.2-6.3)
Yusuke Oda
•
1.9K vues
複数の事前並べ替え候補を用いた句に基づく統計的機械翻訳
Yusuke Oda
•
2.6K vues
Pattern Recognition and Machine Learning: Section 3.3
Yusuke Oda
•
2.7K vues
ChainerによるRNN翻訳モデルの実装+@
Yusuke Oda
•
9.5K vues
Encoder-decoder 翻訳 (TISハンズオン資料)
Yusuke Oda
•
10.7K vues
最近のDeep Learning (NLP) 界隈におけるAttention事情
Yuta Kikuchi
•
72.1K vues
Algorithmique
elharraj
•
7K vues
Deep learning を用いた画像から説明文の自動生成に関する研究の紹介
株式会社メタップス
•
37.8K vues
Similaire à 翻訳精度の最大化による同時音声翻訳のための文分割法 (NLP2014)
英語リスニング研究最前線:実験音声学からのアプローチ
Kosuke Sugai
2K vues
•
45 diapositives
複数の事前並べ替え候補を用いた句に基づく統計的機械翻訳
奈良先端大 情報科学研究科
1.8K vues
•
21 diapositives
Interspeech2022 参加報告
Yuki Saito
530 vues
•
52 diapositives
seminar-paper_ForeignAccentConv.pptx
Natsumi KOBAYASHI
38 vues
•
36 diapositives
中間⾔語モデルを⽤いた 多⾔語機械翻訳の精度向上
奈良先端大 情報科学研究科
2.3K vues
•
24 diapositives
Phonetic Posteriorgrams for Many-to-One Voice Conversion without Parallel Dat...
KCS Keio Computer Society
9.2K vues
•
13 diapositives
Similaire à 翻訳精度の最大化による同時音声翻訳のための文分割法 (NLP2014)
(7)
英語リスニング研究最前線:実験音声学からのアプローチ
Kosuke Sugai
•
2K vues
複数の事前並べ替え候補を用いた句に基づく統計的機械翻訳
奈良先端大 情報科学研究科
•
1.8K vues
Interspeech2022 参加報告
Yuki Saito
•
530 vues
seminar-paper_ForeignAccentConv.pptx
Natsumi KOBAYASHI
•
38 vues
中間⾔語モデルを⽤いた 多⾔語機械翻訳の精度向上
奈良先端大 情報科学研究科
•
2.3K vues
Phonetic Posteriorgrams for Many-to-One Voice Conversion without Parallel Dat...
KCS Keio Computer Society
•
9.2K vues
半教師あり非負値行列因子分解における音源分離性能向上のための効果的な基底学習法
Daichi Kitamura
•
4.2K vues
Dernier
ReonHata_JSAI2023
Matsushita Laboratory
13 vues
•
33 diapositives
gtk4_gem_usage.pdf
ssuser0ef4681
11 vues
•
6 diapositives
IGDA Japan SIG Audio #20-1 室内・野外でのマイク収録と整音.pdf
IGDA Japan SIG-Audio
91 vues
•
31 diapositives
テスト自動化.pdf
ssuserf8ea02
13 vues
•
26 diapositives
松下研究室紹介_関西大学高槻キャンパスオープンキャンパス
Matsushita Laboratory
22 vues
•
23 diapositives
20230912JSSST大会基調講演_丸山.pdf
Hiroshi Maruyama
163 vues
•
58 diapositives
Dernier
(8)
ReonHata_JSAI2023
Matsushita Laboratory
•
13 vues
gtk4_gem_usage.pdf
ssuser0ef4681
•
11 vues
IGDA Japan SIG Audio #20-1 室内・野外でのマイク収録と整音.pdf
IGDA Japan SIG-Audio
•
91 vues
テスト自動化.pdf
ssuserf8ea02
•
13 vues
松下研究室紹介_関西大学高槻キャンパスオープンキャンパス
Matsushita Laboratory
•
22 vues
20230912JSSST大会基調講演_丸山.pdf
Hiroshi Maruyama
•
163 vues
HarukiShinkawa_FIT2023
Matsushita Laboratory
•
18 vues
機械学習モデルを REST API としてサービングするシステム開発における上流プロセスの絞り込みと効果検証(PM学会2023年度秋季研究発表大会 発表資料)
NTT DATA Technology & Innovation
•
23 vues
翻訳精度の最大化による同時音声翻訳のための文分割法 (NLP2014)
1.
翻訳精度の最大化による 同時音声翻訳のための文分割法 小田 悠介 (@odashi_t) Graham
Neubig 清水 宏晃 Sakriani Sakti 戸田 智基 中村 哲 情報科学研究科, NAIST 2014/3/18 (NLP2014) 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 1
2.
1. 研究背景 2. 関連研究 3.
提案手法 4. 実験と結果 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 2
3.
同時音声翻訳 ― 機械翻訳の応用 ©2014
by Yusuke Oda, AHC-Lab, IS, NAIST2014/3/18 (NLP2014) 3 • 講義・スピーチの同時音声翻訳 (Simultaneous Speech Translation: SST) – 原発話を連続的に音声認識、翻訳(、音声合成) – 同時性(訳出時間の短さ)を重視 同時音声翻訳システム(English → Japanese) 今から18分間で 皆様を旅にご案内します 可能な限り 短時間で訳出 In the next 18 minutes I'm going to take you on a journey
4.
従来の音声翻訳と文分割法 • 従来の音声翻訳 … 2014/3/18
(NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 4 しかし… 同時性が大きく損失• 講義など 「文が長い」 「文末が曖昧」 EN JA in the next 18 minutes I 'm going to take you on a journey and it 's a journey that you and i have been on for many years now and ... 翻訳単位 = 文末推定 [Matusov+ 2006] in the next 18 minutes I 'm going to take you on a journey 文分割 より短い単位の翻訳が必要 文分割法の適用 今から18分間で あなたを連れていきます 旅に 翻訳 翻訳単位を細分化 高速な訳出を実現 (翻訳精度も低下:トレードオフ)
5.
1. 研究背景 2. 関連研究 3.
提案手法 4. 実験と結果 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 5
6.
関連研究 2014/3/18 (NLP2014) ©2014
by Yusuke Oda, AHC-Lab, IS, NAIST 6 • [Rangarajan-Sridhar+ 2013] – 予測された句読点の挿入位置 (コンマ、ピリオド、その他) を使用 • 線型SVMで学習 (素性: word 1,2,3-gram / POS 1, 2, 3-gram) • 数種類の手法を比較検討 … 句読点による手法が最高性能 • [Fujita+ 2013] – 分割位置の右確率 (Right Probability: RP) を使用 • 右確率 … ある位置の前後で語順が同じになる確率 • [Bangalore+ 2012] – 音声認識の無音区間(=発話の休止)を用いて文を分割
7.
すべてヒューリスティクスに基づく手法 音韻的情報、言語的情報 … 関連研究の問題点 • 分割位置が翻訳精度に与える影響を考慮せず •
翻訳器に対して分割位置が最適化されていない 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 7
8.
1. 研究背景 2. 関連研究 3.
提案手法 4. 実験と結果 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 8
9.
提案手法への要件 • 提案手法が満たすべき要件 2014/3/18 (NLP2014)
©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 9 機械翻訳の評価尺度に基づいて 最適な分割位置を決定 1. 定式化 2. 文分割アルゴリズムの提案
10.
文ごとの評価値の総和: 文分割 →個別に翻訳 →結合 定式化 2014/3/18 (NLP2014) ©2014
by Yusuke Oda, AHC-Lab, IS, NAIST 10 学習データ中の 文分割位置集合 機械翻訳の 評価尺度 学習済み 翻訳器 対訳文 (学習データ) • 対訳文・翻訳器・評価尺度が与えられたとき、 文ごとの評価尺度の合計を最大化する文分割位置を探索
11.
文分割 モデル モデル化 S* 分割位置の 選択 アルゴリズムの概要 2014/3/18 (NLP2014) ©2014
by Yusuke Oda, AHC-Lab, IS, NAIST 11 3. 分割位置を素性でモデル化 2. 個の分割位置を学習データから選択 翻訳器 MT対訳 𝒇 𝑗, 𝒆𝑗 評価尺度 EV K 今回メインの話題 3種類の手法 1. 学習データ(対訳コーパス)全体で分割する数 を決定 (=分割頻度の制約)
12.
例 I ate lunch
but she left 手法 1: 貪欲法に基づく探索 • 次の分割位置を決めるとき、今までに選んだ分割位置を保持 (=貪欲法: greedy search) 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 12 最初の分割位置 ω = 0.7 ω = 0.5 ω = 0.8 ω = 0.6 ω = 0.6 2番目の分割位置 ω = 0.7 ω = 0.5 ω = 0.7 ω = 0.8 3番目の分割位置 ω = 0.5 ω = 0.8ω = 0.9 I ate lunch but she left I ate lunch but she left 選ばれた分割位置の素性をSVMで学習
13.
I ate lunch
but she left 代名詞 動詞 名詞 接続詞 代名詞 動詞 I ate an apple and an orange 代名詞 動詞 限定詞 名詞 接続詞 限定詞 名詞 例 (素性:前後の品詞) 手法 2: 素性によるグループ化 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 13 • 翻訳器・評価尺度 … 複雑な関数 ノイズが多い – 学習データの性能が偶然良くなる分割位置で過学習 • 解決策 … 同じ素性を持つ分割位置をグループ化、同時に分割 グループ(代名詞+動詞) グループ(名詞+接続詞) グループ(限定詞+名詞) • 動的計画法(DP)で探索、 探索で素性が得られるので モデル化は不要
14.
手法 3: 正則化の追加 2014/3/18
(NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 14 • 素性によるグループ化を行っても、 滅多に現れない素性に対して過学習してしまう可能性 正則化項 • 素性の数に対する正則化項を導入 • 大きな α … 最終的に選択される素性の数が減少 – α = 0 のときはグループ化のみの場合と等価
15.
1. 研究背景 2. 関連研究 3.
提案手法 4. 実験と結果 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 15
16.
実験設定 • テストデータのドメイン …
TED翻訳タスク [WIT3: Cettolo+ 2012] • 言語対 ... 英語→ドイツ語 ・ 英語→日本語 • トークン化・品詞推定 ... Stanford POS Tagger, KyTea • ... BLEU+1 • ... Moses(PBMT) • テストデータの評価 ... BLEU, RIBES 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 16 言語対 用途 形態素数(英) 形態素数(独/日) 英語→ドイツ語 PBMT 学習 21.8M 20.3M 文分割 学習 424k 390k テスト 27.6k 25.4k 英語→日本語 PBMT 学習 13.7M 19.7M 文分割 学習 401k 550k テスト 8.20k 11.9k
17.
比較対象 手法名 概要 従来手法 Punct-Predict 句読点位置の予測
[Rangarajan+ 2013] RP 右確率 [Fujita+ 2013] 提案手法 Greedy 手法1: 貪欲法(+SVMによるモデル化) Greedy+DP 手法2: 貪欲法+素性によるグループ化 Greedy+DP (α = 0.5) 手法3: 貪欲法+素性によるグループ化+正則化 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 17
18.
実験結果 - BLEU 2014/3/18
(NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 18 翻訳単位の平均単語数 BLEU Greedyは性能が低い (過学習?) Greedy+DPは RPよりも高性能 (英→独:1程度向上) 翻訳性能を維持して 未分割より3~5倍、 句読点予測より2~3倍 の分割頻度を実現
19.
実験結果 - RIBES 2014/3/18
(NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 19 翻訳単位の平均単語数 RIBES 英→独、英→日 両方でRPより高性能 (英→独:1程度向上) (英→日:3程度向上)
20.
実験結果 - 学習データのBLEU 2014/3/18
(NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 20 翻訳単位の平均単語数 BLEU Greedyは 学習データに対し 非常に高い性能 しかし テスト結果は悪い 過学習 Greedy+DP グループ化制約 過学習を抑制
21.
学習結果 (Greedy+GP) (高頻度順) 2014/3/18 (NLP2014)
©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 21 1 NN / CC 7 NN / RB 2 NN / VBZ 8 NNS / VBP 3 CC / PRP 9 NN / VBD 4 NN / PRP 10 CC / IN 5 CC / DT 11 CC / NN 6 CC / RB 12 CC / LS
22.
まとめ • 同時音声翻訳の実現には文分割法が必要 • 従来手法
= ヒューリスティクス • 提案手法 = 翻訳精度を直接最適化 – 貪欲法 – 動的計画法 – 素性の数による正則化 • 実験結果 – BLEU 英→独 で性能向上 – RIBES 英→独、英→日 で性能向上 – 分割頻度 未適用より3~5倍、従来手法(句読点予測)より2~3倍 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 22
23.
今後の課題 • Greedy+DPアルゴリズムの改良 – 多数の素性を使用できるようにする –
学習データの大規模化 (要:高速化・省メモリ化) • 履歴を考慮した翻訳[Rangarajan-Sridhar+ 2013]の適用 – 翻訳精度が向上することが既知 • 文末推定・品詞推定のオンライン化 • 人手評価による検証 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 23
24.
References • [Matusov+ 2006] Evgeny
Matusov, Arne Mauser, and Hermann Ney. Automatic sentence segmentation and punctuation prediction for spoken language translation. In Proc. IWSLT, pages 158-165, 2006. • [Bangalore+ 2012] Srinivas Bangalore, Vivek Kumar Rangarajan Sridhar, Prakash Kolan, Ladan Golipour, and Aura Jimenez. Real-time incremental speech-to-speech translation of dialogs. In Proc. NAACL HLT, pages 437-445, 2012. • [Rangarajan-Sridhar+ 2013] Vivek Kumar Rangarajan Sridhar, John Chen, Srinivas Bangalore, Andrej Ljolje, and Rathinavelu Chengalvarayan. Segmentation strategies for streaming speech translation. In Proc. NAACL HLT, pages 230-238, 2013. • [Fujita+ 2013] Tomoki Fujita, Graham Neubig, Sakriani Sakti, Tomoki Toda, and Satoshi Nakamura. Simple, lexicalized choice of translation timing for simultaneous speech translation. In InterSpeech, 2013. • [WIT3: Cettolo+ 2012] Mauro Cettolo, Christian Girardi, and Marcello Federico.2012. Wit3: Web inventory of transcribed and translated talks. In Proc. EAMT, pages 261–268. 2014/3/18 (NLP2014) ©2014 by Yusuke Oda, AHC-Lab, IS, NAIST 24