SlideShare une entreprise Scribd logo
1  sur  107
Télécharger pour lire hors ligne
Explainable AI for identifying
regional climate change patterns
@ZLabe
Zachary M. Labe
Postdoc at Princeton University and NOAA GFDL
13 January 2023 – University of Leeds
Scientific Machine Learning Community (SciML)
https://zacklabe.com/
• Do it better
• e.g., parameterizations in climate models are not
perfect, use ML to make them more accurate
• Do it faster
• e.g., code in climate models is very slow (but we
know the right answer) - use ML methods to speed
things up
• Do something new
• e.g., go looking for non-linear relationships you
didn’t know were there
Very relevant for
research: may be
slower and worse,
but can still learn
something
WHY SHOULD WE CONSIDER
MACHINE LEARNING?
GROWING DATA
Today’s weather or climate
scientist is far more likely to be
debugging code written in
Python… than to be poring over
satellite images or releasing
radiosondes.
“
D. Irving| Bulletin of the American Meteorological Society| 2016
Machine learning for weather
IDENTIFYING SEVERE THUNDERSTORMS
Molina et al. 2021
Toms et al. 2021
CLASSIFYING PHASE OF MADDEN-JULLIAN OSCILLATION
SATELLITE DETECTION
Lee et al. 2021
DETECTING TORNADOES
McGovern et al. 2019
Machine learning for climate
FINDING FORECASTS OF OPPORTUNITY
Mayer and Barnes, 2021
PREDICTING CLIMATE MODES OF VARIABILITY
Gordon et al. 2021
TIMING OF CLIMATE CHANGE
Barnes et al. 2019
Machine learning for oceanography
CLASSIFYING ARCTIC OCEAN ACIDIFICATION
Krasting et al. 2022
TRACK AND REVEAL DEEP WATER MASSES
Sonnewald and Lguensat, 2021
ESTIMATING OCEAN SURFACE CURRENTS
Sinha and Abernathey, 2021
INPUT
[DATA]
PREDICTION
Machine
Learning
INPUT
[DATA]
PREDICTION
~Statistical
Algorithm~
INPUT
[DATA]
PREDICTION
Machine
Learning
TEMPERATURE
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
TEMPERATURE
TEMPERATURE
Neural network learns nonlinear
combinations of forced climate
patterns to identify the year
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
----ANN----
2 Hidden Layers
10 Nodes each
Ridge Regularization
Early Stopping
[e.g., Barnes et al. 2019, 2020]
[e.g., Labe and Barnes, 2021]
TIMING OF EMERGENCE
(COMBINED VARIABLES)
RESPONSES TO
EXTERNAL CLIMATE
FORCINGS
PATTERNS OF
CLIMATE INDICATORS
[e.g., Rader et al. 2022]
Surface Temperature Map Precipitation Map
+
TEMPERATURE
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
----ANN----
2 Hidden Layers
10 Nodes each
Ridge Regularization
Early Stopping
[e.g., Barnes et al. 2019, 2020]
[e.g., Labe and Barnes, 2021]
TIMING OF EMERGENCE
(COMBINED VARIABLES)
RESPONSES TO
EXTERNAL CLIMATE
FORCINGS
PATTERNS OF
CLIMATE INDICATORS
Surface Temperature Map Precipitation Map
+
TEMPERATURE
[e.g., Rader et al. 2022]
We know some metadata…
+ What year is it?
+ Where did it come from?
[Labe and Barnes, 2022; ESS]
THE REAL WORLD
(Observations)
What is the annual mean temperature of Earth?
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Anomaly is relative to 1951-1980
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
again
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
Let’s run a
climate model
again & again
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
CLIMATE MODEL
ENSEMBLES
What is the annual mean temperature of Earth?
THE REAL WORLD
(Observations)
CLIMATE MODEL
ENSEMBLES
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
What is the annual mean temperature of Earth?
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
But let’s remove
climate change…
What is the annual mean temperature of Earth?
Range of ensembles
= internal variability (noise)
Mean of ensembles
= forced response (climate change)
After removing the
forced response…
anomalies/noise!
What is the annual mean temperature of Earth?
• Increasing greenhouse gases (CO2, CH4, N2O)
• Changes in industrial aerosols (SO4, BC, OC)
• Changes in biomass burning (aerosols)
• Changes in land-use & land-cover (albedo)
What is the annual mean temperature of Earth?
• Increasing greenhouse gases (CO2, CH4, N2O)
• Changes in industrial aerosols (SO4, BC, OC)
• Changes in biomass burning (aerosols)
• Changes in land-use & land-cover (albedo)
Plus everything else…
(Natural/internal variability)
What is the annual mean temperature of Earth?
Greenhouse gases fixed to 1920 levels
All forcings (CESM-LE)
Industrial aerosols fixed to 1920 levels
[Deser et al. 2020, JCLI]
Fully-coupled CESM1.1
20 Ensemble Members
Run from 1920-2080
Observations
So what?
Greenhouse gases = warming
Aerosols = ?? (though mostly cooling)
What are the relative responses
between greenhouse gas
and aerosol forcing?
Surface Temperature Map
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
Surface Temperature Map
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Layer-wise Relevance Propagation
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
[Barnes et al. 2020, JAMES]
[Labe and Barnes 2021, JAMES]
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Volcano
Great White
Shark
Timber
Wolf
Image Classification LRP
https://heatmapping.org/
LRP heatmaps show regions
of “relevance” that
contribute to the neural
network’s decision-making
process for a sample
belonging to a particular
output category
Neural Network
WHY
WHY
WHY
Backpropagation – LRP
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Volcano
Great White
Shark
Timber
Wolf
Image Classification LRP
https://heatmapping.org/
LRP heatmaps show regions
of “relevance” that
contribute to the neural
network’s decision-making
process for a sample
belonging to a particular
output category
Neural Network
WHY
WHY
WHY
Backpropagation – LRP
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Volcano
Great White
Shark
Timber
Wolf
Image Classification LRP
https://heatmapping.org/
LRP heatmaps show regions
of “relevance” that
contribute to the neural
network’s decision-making
process for a sample
belonging to a particular
output category
Neural Network
Backpropagation – LRP
WHY
WHY
WHY
LAYER-WISE RELEVANCE PROPAGATION (LRP)
Image Classification LRP
https://heatmapping.org/
NOT PERFECT
Crock
Pot
Neural Network
Backpropagation – LRP
WHY
[Adapted from Adebayo et al., 2020]
EXPLAINABLE AI IS
NOT PERFECT
THERE ARE MANY
METHODS
[Adapted from Adebayo et al., 2020]
THERE ARE MANY
METHODS
EXPLAINABLE AI IS
NOT PERFECT
Visualizing something we already know…
Neural
Network
[0] La Niña [1] El Niño
[Toms et al. 2020, JAMES]
Input a map of sea surface temperatures
Visualizing something we already know…
Input maps of sea surface
temperatures to identify
El Niño or La Niña
Use ‘LRP’ to see how the
neural network is making
its decision
[Toms et al. 2020, JAMES]
Layer-wise Relevance Propagation
Composite Observations
LRP [Relevance]
SST Anomaly [°C]
0.00 0.75
0.0 1.5
-1.5
INPUT LAYER
HIDDEN LAYERS
OUTPUT LAYER
Layer-wise Relevance Propagation
Surface Temperature Map
“2000-2009”
DECADE CLASS
“2070-2079”
“1920-1929”
BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI
ARTIFICIAL NEURAL NETWORK (ANN)
[Barnes et al. 2020, JAMES]
[Labe and Barnes 2021, JAMES]
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
1960-1999: ANNUAL MEAN TEMPERATURE TRENDS
Greenhouse gases fixed
to 1920 levels
[AEROSOLS PREVAIL]
Industrial aerosols fixed
to 1920 levels
[GREENHOUSE GASES PREVAIL]
All forcings
[STANDARD CESM-LE]
DATA
CLIMATE MODEL DATA PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
OBSERVATIONS PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
OBSERVATIONS
SLOPES
PREDICT THE YEAR FROM MAPS OF TEMPERATURE
AEROSOLS
PREVAIL
GREENHOUSE GASES
PREVAIL
STANDARD
CLIMATE MODEL
[Labe and Barnes 2021, JAMES]
[Labe
and
Barnes
2021,
JAMES]
ARE THE RESULTS ROBUST?
YES!
COMBINATIONS OF TRAINING/TESTING DATA
HOW DID THE ANN
MAKE ITS
PREDICTIONS?
HOW DID THE ANN
MAKE ITS
PREDICTIONS?
WHY IS THERE
GREATER SKILL
FOR GHG+?
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
RESULTS FROM LRP
[Labe and Barnes 2021, JAMES]
Low High
Higher LRP values indicate greater relevance
for the ANN’s prediction
AVERAGED OVER 1960-2039
Aerosol-driven
Greenhouse gas-driven
All forcings
Low High
[Labe and Barnes 2021, JAMES]
Greenhouse gas-driven
Aerosol-driven
All forcings
AVERAGED OVER 1960-2039
[Labe and Barnes 2021, JAMES]
DISTRIBUTIONS OF LRP
AVERAGED OVER 1960-2039
[Labe and Barnes 2021, JAMES]
DISTRIBUTIONS OF LRP
AVERAGED OVER 1960-2039
[Labe and Barnes 2021, JAMES]
Earth is warming!
OBSERVATIONS
Adapted
from
Peings
et
al.
2018,
ERL
AA
UTW
LENS
Stratosphere
Troposphere
2100-2070
minus
1981-2010
Antarctic Equator Arctic
CLIMATE MODEL PROJECTION
https://www.realclimate.org/index.php/climate-model-projections-compared-to-observations/
Climate models exhibit 2x as much
warming as observations…
TMT = tropical mid-troposphere
[Po-Chedley
et
al.
2022,
PNAS]
PREDICT:
INTERNAL + EXTERNAL
COMPONENTS
[Po-Chedley et al. 2022, PNAS]
Partial least squares regression with CMIP6 large ensembles (test observations)
[Po-Chedley et al. 2022, PNAS]
UNDERSTANDING OUR
PREDICTIONS
–
Patterns of internal variability
(e.g., Interdecadal Pacific
Oscillation)
[Po-Chedley et al. 2022, PNAS]
Earth is warming!
https://research.noaa.gov/article/ArtMID/587/ArticleID/2756/Simulated-
geoengineering-evaluation-cooler-planet-but-with-side-effects
Could we detect whether we were under the
influence of stratospheric aerosol injection (SAI)
using regional climate patterns?
TEMPERATURE
YEAR 2045
SAI? SAI?
PRECIPITATION
YEAR 2045
SAI? SAI?
LET’S TRY ANOMALIES
YEAR 2045
PROJECTIONS OF
TEMPERATURE
[Labe et al. 2023, EarthArXiv]
PROJECTIONS OF
PRECIPITATION
[Labe et al. 2023, EarthArXiv]
CAN WE DETECT A SAI WORLD?
LOGISTIC REGRESSION [Labe et al. 2023, EarthArXiv]
CLIMATOLOGICAL MAPS OF ARISE-SAI-1.5 IN 2050-2069
MEAN STATE
[Labe et al. 2023, EarthArXiv]
DECADAL TRENDS
TEMPERATURE [Labe et al. 2023, EarthArXiv]
DECADAL TRENDS
TEMPERATURE [Labe et al. 2023, EarthArXiv]
DECADAL TRENDS
PRECIPITATION [Labe et al. 2023, EarthArXiv]
DECADAL TRENDS
PRECIPITATION [Labe et al. 2023, EarthArXiv]
N
Y
HIDDEN LAYERS
INPUT LAYER
INPUT LAYER
SAI WORLD?
or
or
map of near-surface temperature
map of near-surface temperature
map of total precipitation
map of total precipitation
Years Since
SAI Injection
OUTPUT
LOGISTIC
REGRESSION
ARTIFICAL
NEURAL
NETWORK
softmax
[Labe et al. 2023, EarthArXiv]
N
Y
HIDDEN LAYERS
INPUT LAYER
INPUT LAYER
SAI WORLD?
or
or
map of near-surface temperature
map of near-surface temperature
map of total precipitation
map of total precipitation
Years Since
SAI Injection
OUTPUT
LOGISTIC
REGRESSION
ARTIFICAL
NEURAL
NETWORK
softmax
[Labe et al. 2023, EarthArXiv]
CAN WE DETECT A SAI WORLD?
[Labe et al. 2023, EarthArXiv]
[Labe et al. 2023, EarthArXiv]
[Labe et al. 2023, EarthArXiv]
Central
Africa
[Labe et al. 2023, EarthArXiv]
HOW DID THE ML MODEL KNOW?
[Labe et al. 2023, EarthArXiv]
…Using regional climate patterns!
[Labe et al. 2023, EarthArXiv]
CAN WE DETECT A SAI WORLD?
[Labe et al. 2023, EarthArXiv]
N
Y
HIDDEN LAYERS
INPUT LAYER
INPUT LAYER
SAI WORLD?
or
or
map of near-surface temperature
map of near-surface temperature
map of total precipitation
map of total precipitation
Years Since
SAI Injection
OUTPUT
LOGISTIC
REGRESSION
ARTIFICAL
NEURAL
NETWORK
softmax
[Labe et al. 2023, EarthArXiv]
TEMPERATURE
[Labe et al. 2023, EarthArXiv]
INPUT
[DATA]
PREDICTION
Machine
Learning
Explainable AI
Learn new
science!
MACHINE LEARNING IS JUST
ANOTHER TOOL TO ADD TO OUR
WORKFLOW.
1)
MACHINE LEARNING IS
NO LONGER A BLACK BOX.
2)
WE CAN LEARN NEW SCIENCE
FROM EXPLAINABLE AI.
3)
KEY POINTS
1. Machine learning is just another tool to add to our scientific workflow
2. We can use explainable AI (XAI) methods to peer into the black box of machine learning
3. We can learn new science by using XAI methods in conjunction with existing statistical tools
Zachary Labe
zachary.labe@noaa.gov
Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing
large ensembles. Journal of Advances in Modeling Earth Systems, DOI: 10.1029/2021MS002464
Po-Chedley, S., J.T. Fasullo, N. Siler, Z.M. Labe, E.A. Barnes, C.J.W. Bonfils, and B.D. Santer (2022). Internal
variability and forcing influence model-satellite differences in the rate of tropical tropospheric
warming. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.2209431119
Labe, Z.M., E.A. Barnes, and J.W. Hurrell (2023). Identifying the regional emergence of climate patterns
in a simulation of stratospheric aerosol injection. EarthArXiv, DOI: 10.31223/X5394Z
Explainable AI for identifying regional climate change patterns

Contenu connexe

Tendances

Deep Learning: Application Landscape - March 2018
Deep Learning: Application Landscape - March 2018Deep Learning: Application Landscape - March 2018
Deep Learning: Application Landscape - March 2018Grigory Sapunov
 
Adversarial machine learning
Adversarial machine learningAdversarial machine learning
Adversarial machine learningRama Chetan
 
Introduction to machine learning
Introduction to machine learningIntroduction to machine learning
Introduction to machine learningRahul Sahai
 
Convolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep LearningConvolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep LearningMohamed Loey
 
Transfer Learning: An overview
Transfer Learning: An overviewTransfer Learning: An overview
Transfer Learning: An overviewjins0618
 
Notes from Coursera Deep Learning courses by Andrew Ng
Notes from Coursera Deep Learning courses by Andrew NgNotes from Coursera Deep Learning courses by Andrew Ng
Notes from Coursera Deep Learning courses by Andrew NgdataHacker. rs
 
Deep Learning Explained: The future of Artificial Intelligence and Smart Netw...
Deep Learning Explained: The future of Artificial Intelligence and Smart Netw...Deep Learning Explained: The future of Artificial Intelligence and Smart Netw...
Deep Learning Explained: The future of Artificial Intelligence and Smart Netw...Melanie Swan
 
Image Classification using deep learning
Image Classification using deep learning Image Classification using deep learning
Image Classification using deep learning Asma-AH
 
Artificial intelligence
Artificial intelligenceArtificial intelligence
Artificial intelligencesaloni sharma
 
AI_ 8 Weak Slot and Filler Structure
AI_ 8 Weak Slot and Filler  StructureAI_ 8 Weak Slot and Filler  Structure
AI_ 8 Weak Slot and Filler StructureKhushali Kathiriya
 
Convolution Neural Network (CNN)
Convolution Neural Network (CNN)Convolution Neural Network (CNN)
Convolution Neural Network (CNN)Suraj Aavula
 
Machine learning ppt.
Machine learning ppt.Machine learning ppt.
Machine learning ppt.ASHOK KUMAR
 
What is Deep Learning?
What is Deep Learning?What is Deep Learning?
What is Deep Learning?NVIDIA
 
Introduction to Artificial Intelligence
Introduction to Artificial IntelligenceIntroduction to Artificial Intelligence
Introduction to Artificial IntelligenceAdri Jovin
 
Convolutional Neural Networks
Convolutional Neural NetworksConvolutional Neural Networks
Convolutional Neural NetworksAshray Bhandare
 
Explainable AI
Explainable AIExplainable AI
Explainable AIDinesh V
 

Tendances (20)

Deep Learning: Application Landscape - March 2018
Deep Learning: Application Landscape - March 2018Deep Learning: Application Landscape - March 2018
Deep Learning: Application Landscape - March 2018
 
Adversarial machine learning
Adversarial machine learningAdversarial machine learning
Adversarial machine learning
 
Deep learning
Deep learningDeep learning
Deep learning
 
Introduction to machine learning
Introduction to machine learningIntroduction to machine learning
Introduction to machine learning
 
Convolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep LearningConvolutional Neural Network Models - Deep Learning
Convolutional Neural Network Models - Deep Learning
 
Transfer Learning: An overview
Transfer Learning: An overviewTransfer Learning: An overview
Transfer Learning: An overview
 
1.Introduction to deep learning
1.Introduction to deep learning1.Introduction to deep learning
1.Introduction to deep learning
 
Artificial Intelligence = ML + DL with Tensor Flow
Artificial Intelligence = ML + DL with Tensor FlowArtificial Intelligence = ML + DL with Tensor Flow
Artificial Intelligence = ML + DL with Tensor Flow
 
Notes from Coursera Deep Learning courses by Andrew Ng
Notes from Coursera Deep Learning courses by Andrew NgNotes from Coursera Deep Learning courses by Andrew Ng
Notes from Coursera Deep Learning courses by Andrew Ng
 
Deep Learning Explained: The future of Artificial Intelligence and Smart Netw...
Deep Learning Explained: The future of Artificial Intelligence and Smart Netw...Deep Learning Explained: The future of Artificial Intelligence and Smart Netw...
Deep Learning Explained: The future of Artificial Intelligence and Smart Netw...
 
Image Classification using deep learning
Image Classification using deep learning Image Classification using deep learning
Image Classification using deep learning
 
Artificial intelligence
Artificial intelligenceArtificial intelligence
Artificial intelligence
 
AI_ 8 Weak Slot and Filler Structure
AI_ 8 Weak Slot and Filler  StructureAI_ 8 Weak Slot and Filler  Structure
AI_ 8 Weak Slot and Filler Structure
 
Convolution Neural Network (CNN)
Convolution Neural Network (CNN)Convolution Neural Network (CNN)
Convolution Neural Network (CNN)
 
Machine learning ppt.
Machine learning ppt.Machine learning ppt.
Machine learning ppt.
 
What is Deep Learning?
What is Deep Learning?What is Deep Learning?
What is Deep Learning?
 
Introduction to Artificial Intelligence
Introduction to Artificial IntelligenceIntroduction to Artificial Intelligence
Introduction to Artificial Intelligence
 
Convolutional Neural Networks
Convolutional Neural NetworksConvolutional Neural Networks
Convolutional Neural Networks
 
Explainable AI
Explainable AIExplainable AI
Explainable AI
 
Knowledge based agents
Knowledge based agentsKnowledge based agents
Knowledge based agents
 

Similaire à Explainable AI for identifying regional climate change patterns

Assessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networksAssessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networksZachary Labe
 
Forced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensemblesForced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensemblesZachary Labe
 
Applications of machine learning for climate change and variability
Applications of machine learning for climate change and variabilityApplications of machine learning for climate change and variability
Applications of machine learning for climate change and variabilityZachary Labe
 
Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...Zachary Labe
 
Exploring climate change signals with explainable AI
Exploring climate change signals with explainable AIExploring climate change signals with explainable AI
Exploring climate change signals with explainable AIZachary Labe
 
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Zachary Labe
 
Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Zachary Labe
 
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Zachary Labe
 
Revealing climate change signals with explainable AI
Revealing climate change signals with explainable AIRevealing climate change signals with explainable AI
Revealing climate change signals with explainable AIZachary Labe
 
Climate change extremes by season in the United States
Climate change extremes by season in the United StatesClimate change extremes by season in the United States
Climate change extremes by season in the United StatesZachary Labe
 
Exploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climateExploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climateZachary Labe
 
Using explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate changeUsing explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate changeZachary Labe
 
Evaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionEvaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionZachary Labe
 
Learning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningLearning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningZachary Labe
 
Learning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxLearning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxZachary Labe
 
Explainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticExplainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticZachary Labe
 
Machine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsMachine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsZachary Labe
 
Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...Zachary Labe
 
Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Zachary Labe
 
Exploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networksExploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networksZachary Labe
 

Similaire à Explainable AI for identifying regional climate change patterns (20)

Assessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networksAssessing climate variability and change with explainable neural networks
Assessing climate variability and change with explainable neural networks
 
Forced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensemblesForced climate signals with explainable AI and large ensembles
Forced climate signals with explainable AI and large ensembles
 
Applications of machine learning for climate change and variability
Applications of machine learning for climate change and variabilityApplications of machine learning for climate change and variability
Applications of machine learning for climate change and variability
 
Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...Using neural networks to explore regional climate patterns in single-forcing ...
Using neural networks to explore regional climate patterns in single-forcing ...
 
Exploring climate change signals with explainable AI
Exploring climate change signals with explainable AIExploring climate change signals with explainable AI
Exploring climate change signals with explainable AI
 
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
Disentangling Climate Forcing in Multi-Model Large Ensembles Using Neural Net...
 
Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...Distinguishing the regional emergence of United States summer temperatures be...
Distinguishing the regional emergence of United States summer temperatures be...
 
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
Climate Signals in CESM1 Single-Forcing Large Ensembles Revealed by Explainab...
 
Revealing climate change signals with explainable AI
Revealing climate change signals with explainable AIRevealing climate change signals with explainable AI
Revealing climate change signals with explainable AI
 
Climate change extremes by season in the United States
Climate change extremes by season in the United StatesClimate change extremes by season in the United States
Climate change extremes by season in the United States
 
Exploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climateExploring explainable machine learning for detecting changes in climate
Exploring explainable machine learning for detecting changes in climate
 
Using explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate changeUsing explainable machine learning for evaluating patterns of climate change
Using explainable machine learning for evaluating patterns of climate change
 
Evaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projectionEvaluating and communicating Arctic climate change projection
Evaluating and communicating Arctic climate change projection
 
Learning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learningLearning new climate science by thinking creatively with machine learning
Learning new climate science by thinking creatively with machine learning
 
Learning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black boxLearning new climate science by opening the machine learning black box
Learning new climate science by opening the machine learning black box
 
Explainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the ArcticExplainable AI approach for evaluating climate models in the Arctic
Explainable AI approach for evaluating climate models in the Arctic
 
Machine learning for evaluating climate model projections
Machine learning for evaluating climate model projectionsMachine learning for evaluating climate model projections
Machine learning for evaluating climate model projections
 
Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...Using artificial neural networks to predict temporary slowdowns in global war...
Using artificial neural networks to predict temporary slowdowns in global war...
 
Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...Explainable neural networks for evaluating patterns of climate change and var...
Explainable neural networks for evaluating patterns of climate change and var...
 
Exploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networksExploring climate model large ensembles with explainable neural networks
Exploring climate model large ensembles with explainable neural networks
 

Plus de Zachary Labe

Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosZachary Labe
 
Reexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesReexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesZachary Labe
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaZachary Labe
 
An intro to explainable AI for polar climate science
An intro to  explainable AI for  polar climate scienceAn intro to  explainable AI for  polar climate science
An intro to explainable AI for polar climate scienceZachary Labe
 
Using accessible data to communicate global climate change
Using accessible data to communicate global climate changeUsing accessible data to communicate global climate change
Using accessible data to communicate global climate changeZachary Labe
 
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesWater in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesZachary Labe
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...Zachary Labe
 
Researching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateResearching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateZachary Labe
 
Revisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesRevisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesZachary Labe
 
Visualizing climate change through data
Visualizing climate change through dataVisualizing climate change through data
Visualizing climate change through dataZachary Labe
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsZachary Labe
 
Contrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureContrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureZachary Labe
 
Guest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureGuest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureZachary Labe
 
Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Zachary Labe
 
Making effective science figures
Making effective science figuresMaking effective science figures
Making effective science figuresZachary Labe
 
Monitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationMonitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationZachary Labe
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaZachary Labe
 
Career pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesCareer pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesZachary Labe
 
Creative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionCreative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionZachary Labe
 

Plus de Zachary Labe (20)

Explainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenariosExplainable AI for distinguishing future climate change scenarios
Explainable AI for distinguishing future climate change scenarios
 
Reexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkagesReexamining future projections of Arctic climate linkages
Reexamining future projections of Arctic climate linkages
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online Media
 
An intro to explainable AI for polar climate science
An intro to  explainable AI for  polar climate scienceAn intro to  explainable AI for  polar climate science
An intro to explainable AI for polar climate science
 
Using accessible data to communicate global climate change
Using accessible data to communicate global climate changeUsing accessible data to communicate global climate change
Using accessible data to communicate global climate change
 
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary PerspectivesWater in a Frozen Arctic: Cross-Disciplinary Perspectives
Water in a Frozen Arctic: Cross-Disciplinary Perspectives
 
data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...data-driven approach to identifying key regions of change associated with fut...
data-driven approach to identifying key regions of change associated with fut...
 
Researching and Communicating Our Changing Climate
Researching and Communicating Our Changing ClimateResearching and Communicating Our Changing Climate
Researching and Communicating Our Changing Climate
 
Revisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkagesRevisiting projections of Arctic climate change linkages
Revisiting projections of Arctic climate change linkages
 
Visualizing climate change through data
Visualizing climate change through dataVisualizing climate change through data
Visualizing climate change through data
 
Using explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projectionsUsing explainable machine learning to evaluate climate change projections
Using explainable machine learning to evaluate climate change projections
 
Contrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and futureContrasting polar climate change in the past, present, and future
Contrasting polar climate change in the past, present, and future
 
Guest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and futureGuest Lecture: Our changing Arctic in the past and future
Guest Lecture: Our changing Arctic in the past and future
 
Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?Climate Projections - What Really is Business as Usual?
Climate Projections - What Really is Business as Usual?
 
Making effective science figures
Making effective science figuresMaking effective science figures
Making effective science figures
 
Monitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualizationMonitoring indicators of climate change through data-driven visualization
Monitoring indicators of climate change through data-driven visualization
 
Sea Ice Anomalies
Sea Ice AnomaliesSea Ice Anomalies
Sea Ice Anomalies
 
Techniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online MediaTechniques and Considerations for Improving Accessibility in Online Media
Techniques and Considerations for Improving Accessibility in Online Media
 
Career pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciencesCareer pathways and research opportunities in the Earth sciences
Career pathways and research opportunities in the Earth sciences
 
Creative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detectionCreative machine learning approaches for climate change detection
Creative machine learning approaches for climate change detection
 

Dernier

The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionJadeNovelo1
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxGiDMOh
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11GelineAvendao
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPRPirithiRaju
 
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...Chayanika Das
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxRitchAndruAgustin
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests GlycosidesNandakishor Bhaurao Deshmukh
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Sérgio Sacani
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPRPirithiRaju
 
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaEGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaDr.Mahmoud Abbas
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learningvschiavoni
 
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsTimeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsDanielBaumann11
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPirithiRaju
 
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasBACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasChayanika Das
 
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxEnvironmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxpriyankatabhane
 

Dernier (20)

The Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and FunctionThe Sensory Organs, Anatomy and Function
The Sensory Organs, Anatomy and Function
 
DNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptxDNA isolation molecular biology practical.pptx
DNA isolation molecular biology practical.pptx
 
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
WEEK 4 PHYSICAL SCIENCE QUARTER 3 FOR G11
 
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
6.2 Pests of Sesame_Identification_Binomics_Dr.UPR
 
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
ESSENTIAL FEATURES REQUIRED FOR ESTABLISHING FOUR TYPES OF BIOSAFETY LABORATO...
 
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptxGENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
GENERAL PHYSICS 2 REFRACTION OF LIGHT SENIOR HIGH SCHOOL GENPHYS2.pptx
 
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests GlycosidesGLYCOSIDES Classification Of GLYCOSIDES  Chemical Tests Glycosides
GLYCOSIDES Classification Of GLYCOSIDES Chemical Tests Glycosides
 
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
Observation of Gravitational Waves from the Coalescence of a 2.5–4.5 M⊙ Compa...
 
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
6.1 Pests of Groundnut_Binomics_Identification_Dr.UPR
 
Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?Let’s Say Someone Did Drop the Bomb. Then What?
Let’s Say Someone Did Drop the Bomb. Then What?
 
Ultrastructure and functions of Chloroplast.pptx
Ultrastructure and functions of Chloroplast.pptxUltrastructure and functions of Chloroplast.pptx
Ultrastructure and functions of Chloroplast.pptx
 
Interferons.pptx.
Interferons.pptx.Interferons.pptx.
Interferons.pptx.
 
PLASMODIUM. PPTX
PLASMODIUM. PPTXPLASMODIUM. PPTX
PLASMODIUM. PPTX
 
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer ZahanaEGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
EGYPTIAN IMPRINT IN SPAIN Lecture by Dr Abeer Zahana
 
AZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTXAZOTOBACTER AS BIOFERILIZER.PPTX
AZOTOBACTER AS BIOFERILIZER.PPTX
 
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep LearningCombining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
Combining Asynchronous Task Parallelism and Intel SGX for Secure Deep Learning
 
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological CorrelationsTimeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
Timeless Cosmology: Towards a Geometric Origin of Cosmological Correlations
 
Pests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPRPests of Sunflower_Binomics_Identification_Dr.UPR
Pests of Sunflower_Binomics_Identification_Dr.UPR
 
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika DasBACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
BACTERIAL DEFENSE SYSTEM by Dr. Chayanika Das
 
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptxEnvironmental Acoustics- Speech interference level, acoustics calibrator.pptx
Environmental Acoustics- Speech interference level, acoustics calibrator.pptx
 

Explainable AI for identifying regional climate change patterns

  • 1. Explainable AI for identifying regional climate change patterns @ZLabe Zachary M. Labe Postdoc at Princeton University and NOAA GFDL 13 January 2023 – University of Leeds Scientific Machine Learning Community (SciML) https://zacklabe.com/
  • 2. • Do it better • e.g., parameterizations in climate models are not perfect, use ML to make them more accurate • Do it faster • e.g., code in climate models is very slow (but we know the right answer) - use ML methods to speed things up • Do something new • e.g., go looking for non-linear relationships you didn’t know were there Very relevant for research: may be slower and worse, but can still learn something WHY SHOULD WE CONSIDER MACHINE LEARNING?
  • 4.
  • 5. Today’s weather or climate scientist is far more likely to be debugging code written in Python… than to be poring over satellite images or releasing radiosondes. “ D. Irving| Bulletin of the American Meteorological Society| 2016
  • 6. Machine learning for weather IDENTIFYING SEVERE THUNDERSTORMS Molina et al. 2021 Toms et al. 2021 CLASSIFYING PHASE OF MADDEN-JULLIAN OSCILLATION SATELLITE DETECTION Lee et al. 2021 DETECTING TORNADOES McGovern et al. 2019
  • 7. Machine learning for climate FINDING FORECASTS OF OPPORTUNITY Mayer and Barnes, 2021 PREDICTING CLIMATE MODES OF VARIABILITY Gordon et al. 2021 TIMING OF CLIMATE CHANGE Barnes et al. 2019
  • 8. Machine learning for oceanography CLASSIFYING ARCTIC OCEAN ACIDIFICATION Krasting et al. 2022 TRACK AND REVEAL DEEP WATER MASSES Sonnewald and Lguensat, 2021 ESTIMATING OCEAN SURFACE CURRENTS Sinha and Abernathey, 2021
  • 13. TEMPERATURE We know some metadata… + What year is it? + Where did it come from?
  • 14. We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS] TEMPERATURE
  • 15. TEMPERATURE Neural network learns nonlinear combinations of forced climate patterns to identify the year We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 16. ----ANN---- 2 Hidden Layers 10 Nodes each Ridge Regularization Early Stopping [e.g., Barnes et al. 2019, 2020] [e.g., Labe and Barnes, 2021] TIMING OF EMERGENCE (COMBINED VARIABLES) RESPONSES TO EXTERNAL CLIMATE FORCINGS PATTERNS OF CLIMATE INDICATORS [e.g., Rader et al. 2022] Surface Temperature Map Precipitation Map + TEMPERATURE We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 17. ----ANN---- 2 Hidden Layers 10 Nodes each Ridge Regularization Early Stopping [e.g., Barnes et al. 2019, 2020] [e.g., Labe and Barnes, 2021] TIMING OF EMERGENCE (COMBINED VARIABLES) RESPONSES TO EXTERNAL CLIMATE FORCINGS PATTERNS OF CLIMATE INDICATORS Surface Temperature Map Precipitation Map + TEMPERATURE [e.g., Rader et al. 2022] We know some metadata… + What year is it? + Where did it come from? [Labe and Barnes, 2022; ESS]
  • 18. THE REAL WORLD (Observations) What is the annual mean temperature of Earth?
  • 19. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Anomaly is relative to 1951-1980
  • 20. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model
  • 21. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model again
  • 22. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) Let’s run a climate model again & again
  • 23. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) CLIMATE MODEL ENSEMBLES
  • 24. What is the annual mean temperature of Earth? THE REAL WORLD (Observations) CLIMATE MODEL ENSEMBLES Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change)
  • 25. What is the annual mean temperature of Earth? Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change) But let’s remove climate change…
  • 26. What is the annual mean temperature of Earth? Range of ensembles = internal variability (noise) Mean of ensembles = forced response (climate change) After removing the forced response… anomalies/noise!
  • 27. What is the annual mean temperature of Earth? • Increasing greenhouse gases (CO2, CH4, N2O) • Changes in industrial aerosols (SO4, BC, OC) • Changes in biomass burning (aerosols) • Changes in land-use & land-cover (albedo)
  • 28. What is the annual mean temperature of Earth? • Increasing greenhouse gases (CO2, CH4, N2O) • Changes in industrial aerosols (SO4, BC, OC) • Changes in biomass burning (aerosols) • Changes in land-use & land-cover (albedo) Plus everything else… (Natural/internal variability)
  • 29. What is the annual mean temperature of Earth?
  • 30. Greenhouse gases fixed to 1920 levels All forcings (CESM-LE) Industrial aerosols fixed to 1920 levels [Deser et al. 2020, JCLI] Fully-coupled CESM1.1 20 Ensemble Members Run from 1920-2080 Observations
  • 31. So what? Greenhouse gases = warming Aerosols = ?? (though mostly cooling) What are the relative responses between greenhouse gas and aerosol forcing?
  • 32. Surface Temperature Map ARTIFICIAL NEURAL NETWORK (ANN)
  • 33. INPUT LAYER Surface Temperature Map ARTIFICIAL NEURAL NETWORK (ANN)
  • 34. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” ARTIFICIAL NEURAL NETWORK (ANN)
  • 35. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN)
  • 36. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Layer-wise Relevance Propagation Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN) [Barnes et al. 2020, JAMES] [Labe and Barnes 2021, JAMES]
  • 37. LAYER-WISE RELEVANCE PROPAGATION (LRP) Volcano Great White Shark Timber Wolf Image Classification LRP https://heatmapping.org/ LRP heatmaps show regions of “relevance” that contribute to the neural network’s decision-making process for a sample belonging to a particular output category Neural Network WHY WHY WHY Backpropagation – LRP
  • 38. LAYER-WISE RELEVANCE PROPAGATION (LRP) Volcano Great White Shark Timber Wolf Image Classification LRP https://heatmapping.org/ LRP heatmaps show regions of “relevance” that contribute to the neural network’s decision-making process for a sample belonging to a particular output category Neural Network WHY WHY WHY Backpropagation – LRP
  • 39. LAYER-WISE RELEVANCE PROPAGATION (LRP) Volcano Great White Shark Timber Wolf Image Classification LRP https://heatmapping.org/ LRP heatmaps show regions of “relevance” that contribute to the neural network’s decision-making process for a sample belonging to a particular output category Neural Network Backpropagation – LRP WHY WHY WHY
  • 40. LAYER-WISE RELEVANCE PROPAGATION (LRP) Image Classification LRP https://heatmapping.org/ NOT PERFECT Crock Pot Neural Network Backpropagation – LRP WHY
  • 41. [Adapted from Adebayo et al., 2020] EXPLAINABLE AI IS NOT PERFECT THERE ARE MANY METHODS
  • 42. [Adapted from Adebayo et al., 2020] THERE ARE MANY METHODS EXPLAINABLE AI IS NOT PERFECT
  • 43. Visualizing something we already know…
  • 44. Neural Network [0] La Niña [1] El Niño [Toms et al. 2020, JAMES] Input a map of sea surface temperatures
  • 45. Visualizing something we already know… Input maps of sea surface temperatures to identify El Niño or La Niña Use ‘LRP’ to see how the neural network is making its decision [Toms et al. 2020, JAMES] Layer-wise Relevance Propagation Composite Observations LRP [Relevance] SST Anomaly [°C] 0.00 0.75 0.0 1.5 -1.5
  • 46. INPUT LAYER HIDDEN LAYERS OUTPUT LAYER Layer-wise Relevance Propagation Surface Temperature Map “2000-2009” DECADE CLASS “2070-2079” “1920-1929” BACK-PROPAGATE THROUGH NETWORK = EXPLAINABLE AI ARTIFICIAL NEURAL NETWORK (ANN) [Barnes et al. 2020, JAMES] [Labe and Barnes 2021, JAMES]
  • 47. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 48. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 49. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 50. 1960-1999: ANNUAL MEAN TEMPERATURE TRENDS Greenhouse gases fixed to 1920 levels [AEROSOLS PREVAIL] Industrial aerosols fixed to 1920 levels [GREENHOUSE GASES PREVAIL] All forcings [STANDARD CESM-LE] DATA
  • 51. CLIMATE MODEL DATA PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 52. OBSERVATIONS PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 53. OBSERVATIONS SLOPES PREDICT THE YEAR FROM MAPS OF TEMPERATURE AEROSOLS PREVAIL GREENHOUSE GASES PREVAIL STANDARD CLIMATE MODEL [Labe and Barnes 2021, JAMES]
  • 54. [Labe and Barnes 2021, JAMES] ARE THE RESULTS ROBUST? YES! COMBINATIONS OF TRAINING/TESTING DATA
  • 55. HOW DID THE ANN MAKE ITS PREDICTIONS?
  • 56. HOW DID THE ANN MAKE ITS PREDICTIONS? WHY IS THERE GREATER SKILL FOR GHG+?
  • 57. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High
  • 58. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High
  • 59. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High
  • 60. RESULTS FROM LRP [Labe and Barnes 2021, JAMES] Low High
  • 61. Higher LRP values indicate greater relevance for the ANN’s prediction AVERAGED OVER 1960-2039 Aerosol-driven Greenhouse gas-driven All forcings Low High [Labe and Barnes 2021, JAMES]
  • 62. Greenhouse gas-driven Aerosol-driven All forcings AVERAGED OVER 1960-2039 [Labe and Barnes 2021, JAMES]
  • 63. DISTRIBUTIONS OF LRP AVERAGED OVER 1960-2039 [Labe and Barnes 2021, JAMES]
  • 64. DISTRIBUTIONS OF LRP AVERAGED OVER 1960-2039 [Labe and Barnes 2021, JAMES]
  • 70. [Po-Chedley et al. 2022, PNAS] Partial least squares regression with CMIP6 large ensembles (test observations)
  • 71. [Po-Chedley et al. 2022, PNAS] UNDERSTANDING OUR PREDICTIONS – Patterns of internal variability (e.g., Interdecadal Pacific Oscillation)
  • 72. [Po-Chedley et al. 2022, PNAS]
  • 74.
  • 75.
  • 77. Could we detect whether we were under the influence of stratospheric aerosol injection (SAI) using regional climate patterns?
  • 81.
  • 82.
  • 83. PROJECTIONS OF TEMPERATURE [Labe et al. 2023, EarthArXiv]
  • 84. PROJECTIONS OF PRECIPITATION [Labe et al. 2023, EarthArXiv]
  • 85. CAN WE DETECT A SAI WORLD? LOGISTIC REGRESSION [Labe et al. 2023, EarthArXiv]
  • 86. CLIMATOLOGICAL MAPS OF ARISE-SAI-1.5 IN 2050-2069 MEAN STATE [Labe et al. 2023, EarthArXiv]
  • 87. DECADAL TRENDS TEMPERATURE [Labe et al. 2023, EarthArXiv]
  • 88. DECADAL TRENDS TEMPERATURE [Labe et al. 2023, EarthArXiv]
  • 89. DECADAL TRENDS PRECIPITATION [Labe et al. 2023, EarthArXiv]
  • 90. DECADAL TRENDS PRECIPITATION [Labe et al. 2023, EarthArXiv]
  • 91. N Y HIDDEN LAYERS INPUT LAYER INPUT LAYER SAI WORLD? or or map of near-surface temperature map of near-surface temperature map of total precipitation map of total precipitation Years Since SAI Injection OUTPUT LOGISTIC REGRESSION ARTIFICAL NEURAL NETWORK softmax [Labe et al. 2023, EarthArXiv]
  • 92. N Y HIDDEN LAYERS INPUT LAYER INPUT LAYER SAI WORLD? or or map of near-surface temperature map of near-surface temperature map of total precipitation map of total precipitation Years Since SAI Injection OUTPUT LOGISTIC REGRESSION ARTIFICAL NEURAL NETWORK softmax [Labe et al. 2023, EarthArXiv]
  • 93. CAN WE DETECT A SAI WORLD? [Labe et al. 2023, EarthArXiv]
  • 94. [Labe et al. 2023, EarthArXiv]
  • 95. [Labe et al. 2023, EarthArXiv]
  • 96. Central Africa [Labe et al. 2023, EarthArXiv]
  • 97. HOW DID THE ML MODEL KNOW? [Labe et al. 2023, EarthArXiv]
  • 98. …Using regional climate patterns! [Labe et al. 2023, EarthArXiv]
  • 99. CAN WE DETECT A SAI WORLD? [Labe et al. 2023, EarthArXiv]
  • 100. N Y HIDDEN LAYERS INPUT LAYER INPUT LAYER SAI WORLD? or or map of near-surface temperature map of near-surface temperature map of total precipitation map of total precipitation Years Since SAI Injection OUTPUT LOGISTIC REGRESSION ARTIFICAL NEURAL NETWORK softmax [Labe et al. 2023, EarthArXiv]
  • 101. TEMPERATURE [Labe et al. 2023, EarthArXiv]
  • 103. MACHINE LEARNING IS JUST ANOTHER TOOL TO ADD TO OUR WORKFLOW. 1)
  • 104. MACHINE LEARNING IS NO LONGER A BLACK BOX. 2)
  • 105. WE CAN LEARN NEW SCIENCE FROM EXPLAINABLE AI. 3)
  • 106. KEY POINTS 1. Machine learning is just another tool to add to our scientific workflow 2. We can use explainable AI (XAI) methods to peer into the black box of machine learning 3. We can learn new science by using XAI methods in conjunction with existing statistical tools Zachary Labe zachary.labe@noaa.gov Labe, Z.M. and E.A. Barnes (2021), Detecting climate signals using explainable AI with single-forcing large ensembles. Journal of Advances in Modeling Earth Systems, DOI: 10.1029/2021MS002464 Po-Chedley, S., J.T. Fasullo, N. Siler, Z.M. Labe, E.A. Barnes, C.J.W. Bonfils, and B.D. Santer (2022). Internal variability and forcing influence model-satellite differences in the rate of tropical tropospheric warming. Proceedings of the National Academy of Sciences, DOI: 10.1073/pnas.2209431119 Labe, Z.M., E.A. Barnes, and J.W. Hurrell (2023). Identifying the regional emergence of climate patterns in a simulation of stratospheric aerosol injection. EarthArXiv, DOI: 10.31223/X5394Z