SlideShare a Scribd company logo
1 of 21
Subsidence in coal mines
Subsidence can be defined as movement of the ground
surface as a result of readjustments of the overburden due
to collapse or failure of underground mine workings.
Surface subsidence features usually take the form of either
sinkholes or troughs.
By: Aakash Deep Singhal (111MN0436)
Theories of subsidence
 Vertical and normal theory
 Dome theory
 Beam or plate theory
 Trough theory
 continum theory
 Particulate theory
Terminology
Limit angle or angle of draw:
the angle of inclination between the
vertical at the edge of the workings and
the point of zero vertical displacement
at the edge of the trough.
Angle of break or angle of fracture:
The inclination to the vertical of the
line connecting the edge of the mined
area with the surface point exhibiting
the maximum tensile strain
Inflection point:
On the major cross-section of the
subsidence basin, the point dividing the
concave and convex portions of the
subsidence profile is called the
inflection point. At the inflection point
the subsidence is equal to half of the
maximum possible subsidence at the
center, the surface slope is maximum
and the curvature is zero.
Several geologic and mining parameters and the nature of the structure affect the
magnitude and extent of subsidence that occur due to coal mining
Factors Affecting Mine Subsidence
 Effective Seam Thickness
 Multiple Seams
 Seam Depth
 Dip of Seam – flat, moderately inclined, steeply inclined
 Competence of Mine Roof and Floor – strong or weak
 Nature of Overburden
 Near-surface Geology
 Geologic Discontinuities – bedding planes, faults, folds,
etc
 Time Elapse
 Structural Characteristics of buildings, monuments etc
 Fractures and Lineaments
 In Situ Stresses- vertical and Horizontal stresses
 Degree of Extraction
 Surface Topography – flat, sloping, hilly area
 Groundwater
 Water Level Elevation and Fluctuations
 Mined Area- sub critical, critical, super critical
 Method of Working – Board & Pillar , long wall
 Rate of Face Advance
 Backfilling of the Gob
 Effective Seam Thickness
 Multiple Seams
 Seam Depth
 Dip of Seam – flat, moderately inclined, steeply inclined
 Competence of Mine Roof and Floor – strong or weak
 Nature of Overburden
 Near-surface Geology
 Geologic Discontinuities – bedding planes, faults, folds,
etc
 Time Elapse
 Structural Characteristics of buildings, monuments etc
Damages due to subsidence
Methods of subsidence control
 By suitable design of surface structure
 By surface stabilization.
- grout column - grout case
- piers constructed within the mine - deep foundations
 Filling methods for void elimination
- hydraulic filling or back filling - dowel process
- pneumatic filling - fly ash injection
- grouting - over excavation and backfilling
- blasting the rock in the roof and floor of the mine
 Underground methods of subsidence control
1. Single face advance
a. directional control
b. rate of advance
c. location
2. Harmonious extraction
a. multiple seam
b. stepped face
3. Partial extraction
a. panel and pillar
b. yield pillar
4. Back filling
Measurement Techniques
 Surface observations
 Sub surface measurement
 Layout of subsidence stations
 Routine measurements by levelling of vertical components
 Measurement of magnitude and direction of principal surface strains
 Subsurface measurement of subsidence
- wireline method
- Time domain reflectometry (TDR) method
- Mechanical grouting method
Measurement of Subsurface Strata Movement
 Mainly consists of monitoring strata separation as a function of face location
 Can be done by either underground or surface boreholes
 U/G boreholes are usually drilled in the roof, then roof sag measurements devices are installed
for monitoring strata
 With the surface borehole technique, NX-sized boreholes are drilled from the surface all the
way down to the coal seam to be mined
 Movement of strata at different horizons above the seam is then monitored from surface as a
function of face location using any of the following methods
Wireline Method
 This technique makes use of electronic logging devices commonly used in oil fields
 A bullet perforator is lowered into the well, positioned at the desired level & fired into the wall of
the well by means of a surface control
 A small amount of radioactive material is inserted in the bullet, so when it is shot into the strata
surrounding the borehole & remains there strata movement can be followed
 Bullets are shot into various strata along the borehole, and their positions are identified with
high peaks of intensity in a radioactive log
 The change in a bullet’s position indicates the amount & direction of movement of stratum in
which bullet is inserted
TDR Method
 TDR or Time Domain Reflectometry, works on the same principle as radar
 A good cable is grouted in the borehole all the way down to the coal seam
 Caving or separation of the roof strata create some sort of faults in the cable
 An ultrafast rise time voltage step is sent down the cable, which is reflected by the
fault
 A sampler picks it up & superimposes on incoming signal resulting in a step-up or
down which can be seen on CRT
 The time delay between the initial signal & the arrival multiplied by the travel velocity
indicates the distance where fault occurs.
Subsidence prediction methods
 Theoretical methods: Use of continuum mechanics concepts of elastic,
plastic or elastic-plastic material properties of overburden strata
 Profile function method: Profile functions are developed based on
measured subsidence data. There are about 20 profile functions are
developed in all over the world.
 Influence function method: Incorporates the mathematical modeling of
influence function
 Zone Area Method
 Empirical Modeling: Based on the measured subsidence data empirical
models are developed.
 Physical Modeling: Parametric study of the subsidence prone area
 Numerical Modeling : The most popular technique and cheaper
method for
estimating surface subsidence and displacements. It can incorporate any
material, bedding plane, anisotropy, etc.
SUBSIDENCE PREDICTION- EMPIRICAL METHODS
The relation between maximum subsidence, Non-effective width, depth and
height of extraction and other parameters recommended by NIRM is presented
below:
LONGWALL METHOD
Smax = he*0.6(1+(W/H)/0.754)-12.68)
BORD & PILLAR METHOD
Smax = he*0.65(1+(w/H)/0.75)-8)
Smax = Maximum subsidence for a given width to depth ratio ‘x’
he = Effective height of extraction (Height of extraction x % of extraction)
W = Width of the panel, ‘m’
H = Depth of the panel, ‘m’
Sheorey et al., 2000, suggested the following equation for predicting the subsidence
for multiple seam cases
where,
S = Maximum subsidence, m
X = Ratio of width to depth ratio and Non Effective Width
Subsidence in case of closely spaced multiple seams could be calculated using the following
empirical equation {NIRM, 2001}:
where,
S = Maximum subsidence, m
H = Average of minimum depths of the panels W =
Average width of the panels
he = Total extraction thickness X % of extraction
Numerical Modelling
The numerical method for prediction of
surface subsidence is now gaining
popularity over the profile or influence
function due to its capability to considered
geological complexities, irregular shaped
structures, complex constitutive behavior of
coal, coal measure strata, goaf, bed
separation and re-contact, roof failure
mechanism, goaf behavior etc. It has a
capability to consider sequential excavation
process in the simulation. This will give
realistic results in terms of subsidence as
well as strain.
Subsidence Profile over multiple number of Bord &
Pillar Panels of a Coal Mine
References






More Related Content

What's hot

Underground mining method
Underground mining methodUnderground mining method
Underground mining methodSafdar Ali
 
Mining terminology
Mining terminologyMining terminology
Mining terminologyGhulam Mehdi
 
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINE
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINEDESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINE
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINEAnurag Jha
 
Mine Opening and Development
Mine Opening and DevelopmentMine Opening and Development
Mine Opening and DevelopmentAnurag Jha
 
Subsidence control in coal mines
Subsidence control in coal minesSubsidence control in coal mines
Subsidence control in coal minesSunil Varma
 
Mine explosions
Mine explosionsMine explosions
Mine explosionsSafdar Ali
 
Blast design in opencast mining
Blast design in opencast miningBlast design in opencast mining
Blast design in opencast mininggopal karmakar
 
Flame safety lamp fsl
Flame safety lamp fslFlame safety lamp fsl
Flame safety lamp fslSathwik Sunny
 
Optimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast minesOptimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast minesAnurag Jha
 
Underground mining methods
Underground mining methodsUnderground mining methods
Underground mining methodsTayyab Anwar
 
Underground metal mining methods
Underground metal mining methodsUnderground metal mining methods
Underground metal mining methodsSafdar Ali
 

What's hot (20)

Underground mining method
Underground mining methodUnderground mining method
Underground mining method
 
Mining terminology
Mining terminologyMining terminology
Mining terminology
 
Lecture 4: Underground Mining
Lecture 4: Underground MiningLecture 4: Underground Mining
Lecture 4: Underground Mining
 
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINE
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINEDESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINE
DESIGN OF SUPPORT SYSTEM IN BORD AND PILLAR MINE
 
depllaring in coal mines
depllaring in coal minesdepllaring in coal mines
depllaring in coal mines
 
Mine Opening and Development
Mine Opening and DevelopmentMine Opening and Development
Mine Opening and Development
 
Caving Underground Mining Methods (longwall, Sublevel caving, & Block caving)
Caving Underground Mining Methods (longwall, Sublevel caving, &  Block caving)Caving Underground Mining Methods (longwall, Sublevel caving, &  Block caving)
Caving Underground Mining Methods (longwall, Sublevel caving, & Block caving)
 
Subsidence control in coal mines
Subsidence control in coal minesSubsidence control in coal mines
Subsidence control in coal mines
 
Cut and Fill Stoping
Cut and Fill StopingCut and Fill Stoping
Cut and Fill Stoping
 
Blasting Gallery Method
Blasting Gallery MethodBlasting Gallery Method
Blasting Gallery Method
 
Mine explosions
Mine explosionsMine explosions
Mine explosions
 
Blast design in opencast mining
Blast design in opencast miningBlast design in opencast mining
Blast design in opencast mining
 
Surface miner
Surface minerSurface miner
Surface miner
 
Flame safety lamp fsl
Flame safety lamp fslFlame safety lamp fsl
Flame safety lamp fsl
 
Optimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast minesOptimization of Blasting Parameters in open cast mines
Optimization of Blasting Parameters in open cast mines
 
Subsidence in coal mines
Subsidence in coal minesSubsidence in coal mines
Subsidence in coal mines
 
Longwall mining
Longwall miningLongwall mining
Longwall mining
 
Underground mining methods
Underground mining methodsUnderground mining methods
Underground mining methods
 
Underground metal mining methods
Underground metal mining methodsUnderground metal mining methods
Underground metal mining methods
 
Mine waste dump
Mine waste dumpMine waste dump
Mine waste dump
 

Similar to Subsidence in coal mines

Press wing
Press wing Press wing
Press wing VR M
 
Fpt 3163 water_science_chapter_4_level_survey
Fpt 3163 water_science_chapter_4_level_surveyFpt 3163 water_science_chapter_4_level_survey
Fpt 3163 water_science_chapter_4_level_surveyRione Drevale
 
TOTAL EARTH SOLUTIONS - PETROLEUM EXPLORATION SERVICES
TOTAL EARTH SOLUTIONS - PETROLEUM EXPLORATION SERVICESTOTAL EARTH SOLUTIONS - PETROLEUM EXPLORATION SERVICES
TOTAL EARTH SOLUTIONS - PETROLEUM EXPLORATION SERVICESBrett Johnson
 
Seismic Refraction Test
Seismic Refraction TestSeismic Refraction Test
Seismic Refraction TestMaliha Mehr
 
Hydrauliska egenskaper vid tunnelvägg och sula - Lars O. Eriksson, patrik vid...
Hydrauliska egenskaper vid tunnelvägg och sula - Lars O. Eriksson, patrik vid...Hydrauliska egenskaper vid tunnelvägg och sula - Lars O. Eriksson, patrik vid...
Hydrauliska egenskaper vid tunnelvägg och sula - Lars O. Eriksson, patrik vid...Geological Survey of Sweden
 
Log acquisition and processing
Log acquisition and processingLog acquisition and processing
Log acquisition and processingOYLex LMS
 
Seismic landstreamers and rapid Vs imaging
Seismic landstreamers and rapid Vs imagingSeismic landstreamers and rapid Vs imaging
Seismic landstreamers and rapid Vs imagingAdam O'Neill
 
foundation engg group activity.pptx
foundation engg group activity.pptxfoundation engg group activity.pptx
foundation engg group activity.pptxjeevikakp
 
Seismic_Interpretation slides, presentation
Seismic_Interpretation slides, presentationSeismic_Interpretation slides, presentation
Seismic_Interpretation slides, presentationOlumideAjayi22
 

Similar to Subsidence in coal mines (20)

subsidence.ppt
subsidence.pptsubsidence.ppt
subsidence.ppt
 
Introduction to Seismic Method
Introduction to Seismic Method Introduction to Seismic Method
Introduction to Seismic Method
 
Press wing
Press wing Press wing
Press wing
 
Testing of bored_pile_inclination
Testing of bored_pile_inclinationTesting of bored_pile_inclination
Testing of bored_pile_inclination
 
Testing of bored_pile_inclination
Testing of bored_pile_inclinationTesting of bored_pile_inclination
Testing of bored_pile_inclination
 
20200727 IEM WEBINAR .pdf
20200727 IEM WEBINAR .pdf20200727 IEM WEBINAR .pdf
20200727 IEM WEBINAR .pdf
 
Subsurface exploration
Subsurface exploration  Subsurface exploration
Subsurface exploration
 
2392-3449
2392-34492392-3449
2392-3449
 
Fpt 3163 water_science_chapter_4_level_survey
Fpt 3163 water_science_chapter_4_level_surveyFpt 3163 water_science_chapter_4_level_survey
Fpt 3163 water_science_chapter_4_level_survey
 
Seismic waves geometry
Seismic waves geometrySeismic waves geometry
Seismic waves geometry
 
TOTAL EARTH SOLUTIONS - PETROLEUM EXPLORATION SERVICES
TOTAL EARTH SOLUTIONS - PETROLEUM EXPLORATION SERVICESTOTAL EARTH SOLUTIONS - PETROLEUM EXPLORATION SERVICES
TOTAL EARTH SOLUTIONS - PETROLEUM EXPLORATION SERVICES
 
Seismic Refraction Test
Seismic Refraction TestSeismic Refraction Test
Seismic Refraction Test
 
Hydrauliska egenskaper vid tunnelvägg och sula - Lars O. Eriksson, patrik vid...
Hydrauliska egenskaper vid tunnelvägg och sula - Lars O. Eriksson, patrik vid...Hydrauliska egenskaper vid tunnelvägg och sula - Lars O. Eriksson, patrik vid...
Hydrauliska egenskaper vid tunnelvägg och sula - Lars O. Eriksson, patrik vid...
 
Log acquisition and processing
Log acquisition and processingLog acquisition and processing
Log acquisition and processing
 
Geogrid wall
Geogrid wallGeogrid wall
Geogrid wall
 
SURVEYING UNIT-1 31033
SURVEYING UNIT-1 31033SURVEYING UNIT-1 31033
SURVEYING UNIT-1 31033
 
Seismic landstreamers and rapid Vs imaging
Seismic landstreamers and rapid Vs imagingSeismic landstreamers and rapid Vs imaging
Seismic landstreamers and rapid Vs imaging
 
SEISMIC METHOD
SEISMIC METHODSEISMIC METHOD
SEISMIC METHOD
 
foundation engg group activity.pptx
foundation engg group activity.pptxfoundation engg group activity.pptx
foundation engg group activity.pptx
 
Seismic_Interpretation slides, presentation
Seismic_Interpretation slides, presentationSeismic_Interpretation slides, presentation
Seismic_Interpretation slides, presentation
 

More from Aakash deep Singhal

Lecture 15 data structures and algorithms
Lecture 15 data structures and algorithmsLecture 15 data structures and algorithms
Lecture 15 data structures and algorithmsAakash deep Singhal
 
Lecture 14 data structures and algorithms
Lecture 14 data structures and algorithmsLecture 14 data structures and algorithms
Lecture 14 data structures and algorithmsAakash deep Singhal
 
Lecture 13 data structures and algorithms
Lecture 13 data structures and algorithmsLecture 13 data structures and algorithms
Lecture 13 data structures and algorithmsAakash deep Singhal
 
Lecture 12 data structures and algorithms
Lecture 12 data structures and algorithmsLecture 12 data structures and algorithms
Lecture 12 data structures and algorithmsAakash deep Singhal
 
Lecture 11 data structures and algorithms
Lecture 11 data structures and algorithmsLecture 11 data structures and algorithms
Lecture 11 data structures and algorithmsAakash deep Singhal
 
Lecture 10 data structures and algorithms
Lecture 10 data structures and algorithmsLecture 10 data structures and algorithms
Lecture 10 data structures and algorithmsAakash deep Singhal
 
Lecture 9 data structures and algorithms
Lecture 9 data structures and algorithmsLecture 9 data structures and algorithms
Lecture 9 data structures and algorithmsAakash deep Singhal
 
Lecture 8 data structures and algorithms
Lecture 8 data structures and algorithmsLecture 8 data structures and algorithms
Lecture 8 data structures and algorithmsAakash deep Singhal
 
Lecture 7 data structures and algorithms
Lecture 7 data structures and algorithmsLecture 7 data structures and algorithms
Lecture 7 data structures and algorithmsAakash deep Singhal
 
Lecture 6 data structures and algorithms
Lecture 6 data structures and algorithmsLecture 6 data structures and algorithms
Lecture 6 data structures and algorithmsAakash deep Singhal
 
Lecture 5 data structures and algorithms
Lecture 5 data structures and algorithmsLecture 5 data structures and algorithms
Lecture 5 data structures and algorithmsAakash deep Singhal
 
Lecture 4 data structures and algorithms
Lecture 4 data structures and algorithmsLecture 4 data structures and algorithms
Lecture 4 data structures and algorithmsAakash deep Singhal
 
Lecture 3 data structures and algorithms
Lecture 3 data structures and algorithmsLecture 3 data structures and algorithms
Lecture 3 data structures and algorithmsAakash deep Singhal
 
Lecture 2 data structures and algorithms
Lecture 2 data structures and algorithmsLecture 2 data structures and algorithms
Lecture 2 data structures and algorithmsAakash deep Singhal
 
Lecture 1 data structures and algorithms
Lecture 1 data structures and algorithmsLecture 1 data structures and algorithms
Lecture 1 data structures and algorithmsAakash deep Singhal
 
Lecture 16 data structures and algorithms
Lecture 16 data structures and algorithmsLecture 16 data structures and algorithms
Lecture 16 data structures and algorithmsAakash deep Singhal
 

More from Aakash deep Singhal (16)

Lecture 15 data structures and algorithms
Lecture 15 data structures and algorithmsLecture 15 data structures and algorithms
Lecture 15 data structures and algorithms
 
Lecture 14 data structures and algorithms
Lecture 14 data structures and algorithmsLecture 14 data structures and algorithms
Lecture 14 data structures and algorithms
 
Lecture 13 data structures and algorithms
Lecture 13 data structures and algorithmsLecture 13 data structures and algorithms
Lecture 13 data structures and algorithms
 
Lecture 12 data structures and algorithms
Lecture 12 data structures and algorithmsLecture 12 data structures and algorithms
Lecture 12 data structures and algorithms
 
Lecture 11 data structures and algorithms
Lecture 11 data structures and algorithmsLecture 11 data structures and algorithms
Lecture 11 data structures and algorithms
 
Lecture 10 data structures and algorithms
Lecture 10 data structures and algorithmsLecture 10 data structures and algorithms
Lecture 10 data structures and algorithms
 
Lecture 9 data structures and algorithms
Lecture 9 data structures and algorithmsLecture 9 data structures and algorithms
Lecture 9 data structures and algorithms
 
Lecture 8 data structures and algorithms
Lecture 8 data structures and algorithmsLecture 8 data structures and algorithms
Lecture 8 data structures and algorithms
 
Lecture 7 data structures and algorithms
Lecture 7 data structures and algorithmsLecture 7 data structures and algorithms
Lecture 7 data structures and algorithms
 
Lecture 6 data structures and algorithms
Lecture 6 data structures and algorithmsLecture 6 data structures and algorithms
Lecture 6 data structures and algorithms
 
Lecture 5 data structures and algorithms
Lecture 5 data structures and algorithmsLecture 5 data structures and algorithms
Lecture 5 data structures and algorithms
 
Lecture 4 data structures and algorithms
Lecture 4 data structures and algorithmsLecture 4 data structures and algorithms
Lecture 4 data structures and algorithms
 
Lecture 3 data structures and algorithms
Lecture 3 data structures and algorithmsLecture 3 data structures and algorithms
Lecture 3 data structures and algorithms
 
Lecture 2 data structures and algorithms
Lecture 2 data structures and algorithmsLecture 2 data structures and algorithms
Lecture 2 data structures and algorithms
 
Lecture 1 data structures and algorithms
Lecture 1 data structures and algorithmsLecture 1 data structures and algorithms
Lecture 1 data structures and algorithms
 
Lecture 16 data structures and algorithms
Lecture 16 data structures and algorithmsLecture 16 data structures and algorithms
Lecture 16 data structures and algorithms
 

Recently uploaded

Presentation on Slab, Beam, Column, and Foundation/Footing
Presentation on Slab,  Beam, Column, and Foundation/FootingPresentation on Slab,  Beam, Column, and Foundation/Footing
Presentation on Slab, Beam, Column, and Foundation/FootingEr. Suman Jyoti
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptamrabdallah9
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
Introduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxIntroduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxProfASKolap
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsVIEW
 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docxrahulmanepalli02
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...ronahami
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfJNTUA
 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfKira Dess
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...archanaece3
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashidFaiyazSheikh
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsMathias Magdowski
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书c3384a92eb32
 
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...AshwaniAnuragi1
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...josephjonse
 
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样A
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Studentskannan348865
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentationsj9399037128
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...Amil baba
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxKarpagam Institute of Teechnology
 

Recently uploaded (20)

Presentation on Slab, Beam, Column, and Foundation/Footing
Presentation on Slab,  Beam, Column, and Foundation/FootingPresentation on Slab,  Beam, Column, and Foundation/Footing
Presentation on Slab, Beam, Column, and Foundation/Footing
 
Passive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.pptPassive Air Cooling System and Solar Water Heater.ppt
Passive Air Cooling System and Solar Water Heater.ppt
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
Introduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptxIntroduction-to- Metrology and Quality.pptx
Introduction-to- Metrology and Quality.pptx
 
What is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, FunctionsWhat is Coordinate Measuring Machine? CMM Types, Features, Functions
What is Coordinate Measuring Machine? CMM Types, Features, Functions
 
21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx21P35A0312 Internship eccccccReport.docx
21P35A0312 Internship eccccccReport.docx
 
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...Max. shear stress theory-Maximum Shear Stress Theory ​  Maximum Distortional ...
Max. shear stress theory-Maximum Shear Stress Theory ​ Maximum Distortional ...
 
Diploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdfDiploma Engineering Drawing Qp-2024 Ece .pdf
Diploma Engineering Drawing Qp-2024 Ece .pdf
 
Artificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdfArtificial intelligence presentation2-171219131633.pdf
Artificial intelligence presentation2-171219131633.pdf
 
5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...5G and 6G refer to generations of mobile network technology, each representin...
5G and 6G refer to generations of mobile network technology, each representin...
 
Raashid final report on Embedded Systems
Raashid final report on Embedded SystemsRaashid final report on Embedded Systems
Raashid final report on Embedded Systems
 
Filters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility ApplicationsFilters for Electromagnetic Compatibility Applications
Filters for Electromagnetic Compatibility Applications
 
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
一比一原版(Griffith毕业证书)格里菲斯大学毕业证成绩单学位证书
 
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
01-vogelsanger-stanag-4178-ed-2-the-new-nato-standard-for-nitrocellulose-test...
 
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...8th International Conference on Soft Computing, Mathematics and Control (SMC ...
8th International Conference on Soft Computing, Mathematics and Control (SMC ...
 
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
一比一原版(NEU毕业证书)东北大学毕业证成绩单原件一模一样
 
Basics of Relay for Engineering Students
Basics of Relay for Engineering StudentsBasics of Relay for Engineering Students
Basics of Relay for Engineering Students
 
engineering chemistry power point presentation
engineering chemistry  power point presentationengineering chemistry  power point presentation
engineering chemistry power point presentation
 
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
NO1 Best Powerful Vashikaran Specialist Baba Vashikaran Specialist For Love V...
 
analog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptxanalog-vs-digital-communication (concept of analog and digital).pptx
analog-vs-digital-communication (concept of analog and digital).pptx
 

Subsidence in coal mines

  • 1. Subsidence in coal mines Subsidence can be defined as movement of the ground surface as a result of readjustments of the overburden due to collapse or failure of underground mine workings. Surface subsidence features usually take the form of either sinkholes or troughs. By: Aakash Deep Singhal (111MN0436)
  • 2.
  • 3. Theories of subsidence  Vertical and normal theory  Dome theory  Beam or plate theory  Trough theory  continum theory  Particulate theory
  • 4. Terminology Limit angle or angle of draw: the angle of inclination between the vertical at the edge of the workings and the point of zero vertical displacement at the edge of the trough. Angle of break or angle of fracture: The inclination to the vertical of the line connecting the edge of the mined area with the surface point exhibiting the maximum tensile strain Inflection point: On the major cross-section of the subsidence basin, the point dividing the concave and convex portions of the subsidence profile is called the inflection point. At the inflection point the subsidence is equal to half of the maximum possible subsidence at the center, the surface slope is maximum and the curvature is zero.
  • 5. Several geologic and mining parameters and the nature of the structure affect the magnitude and extent of subsidence that occur due to coal mining Factors Affecting Mine Subsidence  Effective Seam Thickness  Multiple Seams  Seam Depth  Dip of Seam – flat, moderately inclined, steeply inclined  Competence of Mine Roof and Floor – strong or weak  Nature of Overburden  Near-surface Geology  Geologic Discontinuities – bedding planes, faults, folds, etc  Time Elapse  Structural Characteristics of buildings, monuments etc  Fractures and Lineaments  In Situ Stresses- vertical and Horizontal stresses  Degree of Extraction  Surface Topography – flat, sloping, hilly area  Groundwater  Water Level Elevation and Fluctuations  Mined Area- sub critical, critical, super critical  Method of Working – Board & Pillar , long wall  Rate of Face Advance  Backfilling of the Gob  Effective Seam Thickness  Multiple Seams  Seam Depth  Dip of Seam – flat, moderately inclined, steeply inclined  Competence of Mine Roof and Floor – strong or weak  Nature of Overburden  Near-surface Geology  Geologic Discontinuities – bedding planes, faults, folds, etc  Time Elapse  Structural Characteristics of buildings, monuments etc
  • 6. Damages due to subsidence
  • 7.
  • 8.
  • 9. Methods of subsidence control  By suitable design of surface structure  By surface stabilization. - grout column - grout case - piers constructed within the mine - deep foundations  Filling methods for void elimination - hydraulic filling or back filling - dowel process - pneumatic filling - fly ash injection - grouting - over excavation and backfilling - blasting the rock in the roof and floor of the mine
  • 10.  Underground methods of subsidence control 1. Single face advance a. directional control b. rate of advance c. location 2. Harmonious extraction a. multiple seam b. stepped face 3. Partial extraction a. panel and pillar b. yield pillar 4. Back filling
  • 11. Measurement Techniques  Surface observations  Sub surface measurement  Layout of subsidence stations  Routine measurements by levelling of vertical components  Measurement of magnitude and direction of principal surface strains  Subsurface measurement of subsidence - wireline method - Time domain reflectometry (TDR) method - Mechanical grouting method
  • 12. Measurement of Subsurface Strata Movement  Mainly consists of monitoring strata separation as a function of face location  Can be done by either underground or surface boreholes  U/G boreholes are usually drilled in the roof, then roof sag measurements devices are installed for monitoring strata  With the surface borehole technique, NX-sized boreholes are drilled from the surface all the way down to the coal seam to be mined  Movement of strata at different horizons above the seam is then monitored from surface as a function of face location using any of the following methods
  • 13. Wireline Method  This technique makes use of electronic logging devices commonly used in oil fields  A bullet perforator is lowered into the well, positioned at the desired level & fired into the wall of the well by means of a surface control  A small amount of radioactive material is inserted in the bullet, so when it is shot into the strata surrounding the borehole & remains there strata movement can be followed  Bullets are shot into various strata along the borehole, and their positions are identified with high peaks of intensity in a radioactive log  The change in a bullet’s position indicates the amount & direction of movement of stratum in which bullet is inserted
  • 14. TDR Method  TDR or Time Domain Reflectometry, works on the same principle as radar  A good cable is grouted in the borehole all the way down to the coal seam  Caving or separation of the roof strata create some sort of faults in the cable  An ultrafast rise time voltage step is sent down the cable, which is reflected by the fault  A sampler picks it up & superimposes on incoming signal resulting in a step-up or down which can be seen on CRT  The time delay between the initial signal & the arrival multiplied by the travel velocity indicates the distance where fault occurs.
  • 15. Subsidence prediction methods  Theoretical methods: Use of continuum mechanics concepts of elastic, plastic or elastic-plastic material properties of overburden strata  Profile function method: Profile functions are developed based on measured subsidence data. There are about 20 profile functions are developed in all over the world.  Influence function method: Incorporates the mathematical modeling of influence function  Zone Area Method
  • 16.  Empirical Modeling: Based on the measured subsidence data empirical models are developed.  Physical Modeling: Parametric study of the subsidence prone area  Numerical Modeling : The most popular technique and cheaper method for estimating surface subsidence and displacements. It can incorporate any material, bedding plane, anisotropy, etc.
  • 17. SUBSIDENCE PREDICTION- EMPIRICAL METHODS The relation between maximum subsidence, Non-effective width, depth and height of extraction and other parameters recommended by NIRM is presented below: LONGWALL METHOD Smax = he*0.6(1+(W/H)/0.754)-12.68) BORD & PILLAR METHOD Smax = he*0.65(1+(w/H)/0.75)-8) Smax = Maximum subsidence for a given width to depth ratio ‘x’ he = Effective height of extraction (Height of extraction x % of extraction) W = Width of the panel, ‘m’ H = Depth of the panel, ‘m’
  • 18.
  • 19. Sheorey et al., 2000, suggested the following equation for predicting the subsidence for multiple seam cases where, S = Maximum subsidence, m X = Ratio of width to depth ratio and Non Effective Width Subsidence in case of closely spaced multiple seams could be calculated using the following empirical equation {NIRM, 2001}: where, S = Maximum subsidence, m H = Average of minimum depths of the panels W = Average width of the panels he = Total extraction thickness X % of extraction
  • 20. Numerical Modelling The numerical method for prediction of surface subsidence is now gaining popularity over the profile or influence function due to its capability to considered geological complexities, irregular shaped structures, complex constitutive behavior of coal, coal measure strata, goaf, bed separation and re-contact, roof failure mechanism, goaf behavior etc. It has a capability to consider sequential excavation process in the simulation. This will give realistic results in terms of subsidence as well as strain. Subsidence Profile over multiple number of Bord & Pillar Panels of a Coal Mine