Ce diaporama a bien été signalé.
Nous utilisons votre profil LinkedIn et vos données d’activité pour vous proposer des publicités personnalisées et pertinentes. Vous pouvez changer vos préférences de publicités à tout moment.
WebFML 
Synthesizing 
Feature 
Models 
Everywhere 
Guillaume 
Bécan, 
Sana 
Ben 
Nasr, 
Mathieu 
Acher 
and 
Benoit 
Baudr...
There are numerous artefacts that 
exhibit features and their dependencies. 
Product 
Line 
Modeling 
variability 
2 
φ
Feature 
Models 
defacto 
standard 
for 
modeling 
variability 
3 
Feature 
Model 
= 
Feature 
Diagram 
+ 
Proposi>onal 
F...
4 
Feature 
Models 
defacto 
standard 
for 
modeling 
variability 
Valid 
configura@on: 
{Wiki, 
Storage, 
License, 
Hos@n...
For 
a 
given 
configura@on 
set, 
many 
(maximal) 
feature 
diagrams 
with 
different 
ontological 
seman@cs 
[She 
et 
a...
For 
a 
given 
configura@on 
set, 
many 
(maximal) 
feature 
diagrams 
with 
different 
ontological 
seman@cs 
[She 
et 
a...
Importance 
of 
ontological 
seman@cs 
(1) 
7
Importance 
of 
ontological 
seman@cs 
(2) 
8
Importance 
of 
ontological 
seman@cs 
(3) 
9 
Communica>on 
Comprehension 
Forward 
engineering 
(e.g., 
genera>on)
10 
Importance 
of 
ontological 
seman@cs 
(4) 
Two 
product 
configurators 
generated 
from 
two 
FMs 
with 
the 
same 
c...
Most 
of 
the 
exis@ng 
approaches 
neglect 
either 
configura@on 
or 
ontological 
seman@cs. 
We 
want 
both! 
11 
φ
Fundamental 
Problem 
Selec@ng 
a 
Spanning 
Tree 
of 
the 
Binary 
Implica@on 
Graph 
(BIG) 
12
13 
Fundamental 
Problem 
Selec@ng 
a 
Spanning 
Tree 
of 
the 
Binary 
Implica@on 
Graph 
(BIG) 
#0 
Op@mum 
branching 
(...
14 
Fundamental 
Problem 
Selec@ng 
a 
Spanning 
Tree 
of 
the 
Binary 
Implica@on 
Graph 
(BIG) 
#1 
Ranking 
lists 
best...
15 
Fundamental 
Problem 
Selec@ng 
a 
Spanning 
Tree 
of 
the 
Binary 
Implica@on 
Graph 
(BIG) 
#2 
Clusters 
~possible ...
16 
Fundamental 
Problem 
Selec@ng 
a 
Spanning 
Tree 
of 
the 
Binary 
Implica@on 
Graph 
(BIG) 
#3 
Cliques 
~bi-­‐impli...
17 
Fundamental 
Problem 
Selec@ng 
a 
Spanning 
Tree 
of 
the 
Binary 
Implica@on 
Graph 
(BIG) 
#4 
small 
BIG
18 
Fundamental 
Problem 
Selec@ng 
a 
Spanning 
Tree 
of 
the 
Binary 
Implica@on 
Graph 
(BIG) 
#4 
reduced 
BIG 
incomp...
Ontological 
Heuris@cs 
• For 
op>mum 
branching, 
compu>ng 
ranking 
lists 
and 
clusters 
– ~ 
« 
closedness 
» 
of 
fea...
WebFML 
20
• Dataset 
– 120+ 
feature 
models 
of 
SPLOT 
– 30+ 
product 
comparison 
matrices 
from 
Wikipedia 
(see 
Becan 
et 
al....
• Dataset 
– 120+ 
feature 
models 
of 
SPLOT 
– 30+ 
product 
comparison 
matrices 
from 
Wikipedia 
(see 
Becan 
et 
al....
• One-­‐step 
synthesis 
is 
far 
from 
the 
ground 
truth 
– despite 
state-­‐of-­‐the-­‐art 
techniques 
we 
have 
devel...
Support 
and 
Empirical 
Study 
(3) 
hgp://@nyurl.com/OntoFMExperiments 
24 
hgp://hal.inria.fr/hal-­‐00874867
WebFML 
25
WebFML 
26
WebFML 
27
WebFML 
28
WebFML 
29
WebFML 
30
h:p://>nyurl.com/WebFMLDemo 
31
• WebFML 
for 
synthesizing 
feature 
models: 
– from 
various 
kinds 
of 
artefacts 
– sound 
and 
meaningful 
– interac>...
Need 
a 
DEMO! 
FraSCAti 
SCAParser 
Java Compiler 
JDK6 JDT 
Optional 
Mandatory 
Alternative- 
Group 
Or-Group 
Assembly...
Prochain SlideShare
Chargement dans…5
×

WebFML: Synthesizing Feature Models Everywhere (@ SPLC 2014)

1 043 vues

Publié le

Feature Models (FMs) are the de-facto standard for documenting, model checking, and reasoning about the configurations of a software system. This paper introduces WebFML a comprehensive environment for synthesizing FMs from various kinds of artefacts (e.g. propositional formula, dependency graph, FMs or product comparison matrices). A key feature of WebFML is an interactive support (through ranking lists, clusters, and logical heuristics) for choosing a sound and meaningful hierarchy. WebFML opens avenues for numerous practical applications (e.g., merging multiple product lines, slicing a configuration process, reverse engineering configurable systems).

tinyurl.com/WebFMLDemo

Publié dans : Ingénierie
  • Soyez le premier à commenter

  • Soyez le premier à aimer ceci

WebFML: Synthesizing Feature Models Everywhere (@ SPLC 2014)

  1. 1. WebFML Synthesizing Feature Models Everywhere Guillaume Bécan, Sana Ben Nasr, Mathieu Acher and Benoit Baudry 1 h:p://>nyurl.com/WebFMLDemo
  2. 2. There are numerous artefacts that exhibit features and their dependencies. Product Line Modeling variability 2 φ
  3. 3. Feature Models defacto standard for modeling variability 3 Feature Model = Feature Diagram + Proposi>onal Formula φ . Configura@on Seman@cs Set of valid configura@ons (set of selected features) of an FM. Ontological Seman@cs Hierarchy and feature groups of an FM. Define the seman@cs of the features’ rela@onships. Features parent feature 2 child features root
  4. 4. 4 Feature Models defacto standard for modeling variability Valid configura@on: {Wiki, Storage, License, Hos@ng, P.SQL, P.License, H.Service , Ontological Seman@cs Hierarchy and feature groups of an FM. Define the seman@cs of the features’ rela@onships. Domain} Hierarchy + Variability = set of valid configura@ons
  5. 5. For a given configura@on set, many (maximal) feature diagrams with different ontological seman@cs [She et al. ICSE’11, Andersen et al. SPLC’12, Acher et al. VaMoS’13] 5
  6. 6. For a given configura@on set, many (maximal) feature diagrams with different ontological seman@cs [She et al. ICSE’11, Andersen et al. SPLC’12, Acher et al. VaMoS’13] 6
  7. 7. Importance of ontological seman@cs (1) 7
  8. 8. Importance of ontological seman@cs (2) 8
  9. 9. Importance of ontological seman@cs (3) 9 Communica>on Comprehension Forward engineering (e.g., genera>on)
  10. 10. 10 Importance of ontological seman@cs (4) Two product configurators generated from two FMs with the same configura@on seman@cs but different ontological seman@cs. Good FM Good configura@on interface Bad FM Bad configura@on interface
  11. 11. Most of the exis@ng approaches neglect either configura@on or ontological seman@cs. We want both! 11 φ
  12. 12. Fundamental Problem Selec@ng a Spanning Tree of the Binary Implica@on Graph (BIG) 12
  13. 13. 13 Fundamental Problem Selec@ng a Spanning Tree of the Binary Implica@on Graph (BIG) #0 Op@mum branching (Tarjan) weigh@ng edges
  14. 14. 14 Fundamental Problem Selec@ng a Spanning Tree of the Binary Implica@on Graph (BIG) #1 Ranking lists best parent candidates for each feature
  15. 15. 15 Fundamental Problem Selec@ng a Spanning Tree of the Binary Implica@on Graph (BIG) #2 Clusters ~possible siblings
  16. 16. 16 Fundamental Problem Selec@ng a Spanning Tree of the Binary Implica@on Graph (BIG) #3 Cliques ~bi-­‐implica@ons
  17. 17. 17 Fundamental Problem Selec@ng a Spanning Tree of the Binary Implica@on Graph (BIG) #4 small BIG
  18. 18. 18 Fundamental Problem Selec@ng a Spanning Tree of the Binary Implica@on Graph (BIG) #4 reduced BIG incomplete but drama@cally reduce the problem
  19. 19. Ontological Heuris@cs • For op>mum branching, compu>ng ranking lists and clusters – ~ « closedness » of features based on their names • Syntac>cal heuris>cs – Smith-­‐Waterman (SW) and Levenshtein (L) • Wordnet – PathLength (PL) and Wu&Palmer (WP) • Wikipedia Miner offers an API to browse Wikipedia's ar>cles and compute their relatedness – Wik>onary (Wikt) 19 40 GB! Milne, D.N., Wigen, I.H.: An open-­‐source toolkit for mining wikipedia. Ar@f. Intell. 194, 222{239 (2013)
  20. 20. WebFML 20
  21. 21. • Dataset – 120+ feature models of SPLOT – 30+ product comparison matrices from Wikipedia (see Becan et al. ASE’14 and ASE’13) – Ground truths are known • Effec>veness of techniques (reduced BIG + ontological heuris>cs) – One shot synthesis – Quality of the ranking lists (top 2), clusters – Comparison with randomized and exis>ng techniques 21 Support and Empirical Study (1) Goal: evidence and empirical insights of what heuris@cs are effec@ve and what support is needed in WebFML
  22. 22. • Dataset – 120+ feature models of SPLOT – 30+ product comparison matrices from Wikipedia (see Becan et al. ASE’14 and ASE’13) – Ground truths are known • Effec>veness of techniques (reduced BIG + ontological heuris>cs) – One shot synthesis – Quality of the ranking lists (top 2), clusters – Comparison with randomized and exis>ng techniques 22 Support and Empirical Study (2) Default heuris@cs/support has been determined through an empirical study
  23. 23. • One-­‐step synthesis is far from the ground truth – despite state-­‐of-­‐the-­‐art techniques we have developed – interac>ve support is thus crucial • State-­‐of-­‐the-­‐art heuris>cs for ranking lists and clusters • Empirical insights on « cliques » and BIG reduc>on – e.g., support for unfolding of cliques 23 Support and Empirical Study (3) Default heuris@cs/support has been determined through an empirical study
  24. 24. Support and Empirical Study (3) hgp://@nyurl.com/OntoFMExperiments 24 hgp://hal.inria.fr/hal-­‐00874867
  25. 25. WebFML 25
  26. 26. WebFML 26
  27. 27. WebFML 27
  28. 28. WebFML 28
  29. 29. WebFML 29
  30. 30. WebFML 30
  31. 31. h:p://>nyurl.com/WebFMLDemo 31
  32. 32. • WebFML for synthesizing feature models: – from various kinds of artefacts – sound and meaningful – interac>ve support – full automa>on is neither feasible nor desirable • Tooling support is based on empirical studies • WebFML opens avenues for – reverse engineering variability-­‐intensive data/systems – refactoring/merging/slicing feature models 32 Conclusion
  33. 33. Need a DEMO! FraSCAti SCAParser Java Compiler JDK6 JDT Optional Mandatory Alternative- Group Or-Group Assembly Factory Binding http rest MMFrascati Component Factory Metamodel MMTuscany constraints rest requires MMFrascati http requires MMTuscany FM1 Feature Model Ontologies Knowledge User Heuris@cs WebFML: Synthesizing Feature Models 33 φ h:p://>nyurl.com/WebFMLDemo

×